
OpenSHMEM with Threads: A Bad Idea?
Gabriele Jost, Ulf R. Hanebutte, James Dinan

OpenSHMEM User Group (OUG) Meeting Oct. 7, 2014

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

 Typical motivation for multi-threading:

 Exploit available shared address space
– Use direct load/store access rather than calls to communication library

– Enable compiler optimizations for better performance

– No communication calls, communication buffers

 Reduced memory requirements

 Lore for Extreme Scale Systems: MPI + X SHMEM+Threads ?

 … BUT: OpenSHMEM is based on PGAS:

 Global address space within each node:
– Direct access using shmem_ptr

– Smart OpenSHMEM avoids unnecessary communication

 Why introduce extra baggage?

 Thread start-up overhead, synchronization, thread-safety, other
interoperability requirements, …

2

Motivation
Stimulate discussion on multi-threaded execution in OpenSHMEM

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

OpenSHMEM memory model:

 Two shared, symmetric segments:
– Data: statically declared shared objects

– Heap: dynamically allocated share objects

 Access symmetric object through Processing Element (PE) local pointer
– Within one SMP node segments of peer PEs can be mapped to each other

(shmem_ptr)

Performance challenges on SMP nodes:

 “non-uniform” HPC systems:
– Rich hierarchy of shared caches, cc NUMA domains, NUMA shared memory islands,

multiple sockets, large number of cores, etc

 Application inherent multi-level parallelism :
– Domain decomposition (coarse-grained)

– Intra-domain solver routines (finer-grained)

 How do we map the application hierarchy onto the system hierarchy?
– Topology-aware OpenSHMEM and/or hybrid programming?

3

SHMEM on SMP Clusters

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Example:
SNAP

4

Hybrid Programming Execution Modes

Example:
NPB-MZ

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Lower memory requirements

 Reduced amount of replicated user data and reduced size of
communication buffers -> often impacts computational performance

 Very important for systems with 100’s or 1000’s of nodes

Convenient way to exploit fine grained parallelism

 NPB-MZ LU: Multi-zone CFD code with limited #zones

Provide for flexible load-balancing on coarse and fine grain

 NPB-MZ BT: Assign multiple smaller zones to one PE

 PEs with larger workloads could employ more threads

Convenient way to exploit task parallelism at fine granularity

 OpenMP 4.0 tasking, OmpSS, Cilk,….

5

Hybrid Programming Opportunities
Past experience mostly based on MPI+OpenMP

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Thread-safety in OpenSHMEM is essential

 Different levels of thread support, similar to MPI, proposed by Cray

Just adding thread safety may not be enough:

 Threads share communication state of the PE

– shmem_fence/quiet, barrier affect all threads, introduces unnecessary
synchronization

 Threads share network-level resources and state

Desirable model would be:

 Multiple threads associated with one PE

 Memory resources depend on the #PEs only

 Per-thread communication resources

6

Some Thoughts on Thread Support

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

 Hybrid programming convenient, but is it the most efficient?

 OpenSHMEM pointers improve compute performance without threads

 OpenSHMEM extensions could address memory resource requirements

 changes to the memory model

 OpenSHMEM process teams to exploit application hierarchies

 OpenSHMEM Standard extensions can do more:

 Enable multiple communication streams for non-blocking communication
efficiently e.g. via communication contexts

 Exploit shared memory which is not cache coherent

 …

7

Threads in OpenSHMEM:
Why we don’t need them

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Interoperability:

 Need to support OpenSHMEM + X

– X = OpenMP, Cilk, ompSS, etc

– Hybrid programming evolutionary path to bring existing applications up to
Exascale

Hybrid programming convenient to exploit application multi-
level parallelism

Reduce memory requirements

 Add a second, node-level programming API

 User can adjust node-level memory requirements

8

Threads in OpenSHMEM:
Why we can’t live without them … for now

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Characteristics of realistic OpenSHMEM applications:

 Likely to be different from legacy codes based on 2-sided MPI

 Computations tightly interleaved with non-blocking communication and
atomic updates

 Need for realistic workloads to identify and investigate limits of
OpenSHMEM

What will OpenSHMEM look like for Extreme Scale in 2020?

Evolutionary approach:

 Roadmap for OpenSHMEM evolution in small steps

 OpenSHMEM extensions to address limitation

Revolutionary approach:

 Start new and provide backward compatibility over time

9

Questions for OpenSHMEM community

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

10

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

12

OpenSHMEM Memory Model

Symmetric
Data Segment

Symmetric
Heap

Private

Memory

PE 0 PE 1 PE 2 PE 3

Put Get

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

13

“Non-Uniform” HPC Systems

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Communication

Multi-threading

Structure of NPB-MZ codes

 NPB-MZ: Multi-Zone Versions of the
NAS Parallel Benchmarks

 Computational Fluid Dynamics

 Available at www.nas.nasa.gov

 “SHMEM”-like implementations in
older distributions are available (eg
NPB 3.1-MZ)

 All communication outside of
parallel regions

14

Structure of NPB-MZ

http://www.nas.nasa.gov/

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

15

NPB-MZ BT Code Example
call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

end if

end do

end do

...

subroutine zsolve(u, rsd,…)

...

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5

u(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO NOWAIT

end do

...

!$OMP END PARALLEL

call to shmem_put

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

 Solves linear Boltzman transport equation

 A wave-front is employed for parallelization

 OMP threads handle MPI communication independently

 Sending thread identified via sending processor and message tag

16

SNAP Application Proxy Code Example

Call MPI_RECV (value,…, proc,
tag,..)

