
Development and
Extension of Atomic
Memory Operations
in OpenSHMEM
 Pavel Shamis, ORNL
Manjunath Gorentla Venkata, ORNL
Stephen W. Poole, ORNL
Swaroop Pophale, Mellanox
Michael Dubman, Mellanox
Richad Graham, Mellanox
Dror Goldenberg, Mellanox
Gilad Shainer, Mellanox

2 Presentation name

Goal of The Paper

• Highlight the challenges of implementing AMOs in
OpenSHMEM

• Start a discussion with the community about potential
solutions and extensions for AMOs in OpenSHMEM

3 Presentation name

Challenges

1.  Underlying hardware does not support full set of atomic
operations

–  Common issue for new technologies that aim to support
OpenSHMEM (Mellanox Connect-X2, Cray Gemini ASIC)

2.  Multiple network devices
–  Two or more NICs on a node

3.  Heterogeneous systems with multiple types of devices
–  Very common (!): Shared Memory + NIC

4 Presentation name

Challenges – Common Denominator

•  The typical solution – switch to a “common” AMO
mechanism
–  Typically results in software based implementation of AMOs
–  Some implementations use two-sided semantic (!)

5 Presentation name

Potential Solution - 1

• Hints by programmer
–  Programmer declares ahead which AMOs are used by application

(e.g. command line option, etc)

• Motivation
–  If programmer uses only a limited set of AMOs support by HW,

OpenSHMEM can disable the software AMOs

• Pros/Cons
+ Requires only minimal changes to the application or runtime parameters
-  Programmer has to to review the code and identify list of used AMOs
-  Still no guaranty that OpenSHMEM implementation will be able to provide

optimized AMOs
-  Does not address all the challenges (only #1)

6 Presentation name

Potential Solution - 2

• Hints by the OpenSHMEM library implementation
–  OpenSHMEM provides an indication about supported / optimized

AMOs

• Motivation
–  If an application detects that some operations are unsupported it

may replaces these with an alternative flow

• Pros/Cons
+ Simplifies the OpenSHMEM library development and potentially enables

efficient utilization of underlying hardware capabilities
-  The burden of AMO management is upon the application developers
- May not be portable
-  Does not address all the challenges (only #1)

7 Presentation name

Potential Solution - 3

• Manage a different memory region for each variation of
AMOs
–  Assignment of a different symmetric heap/storage for each atomic

provider (hardware, software, etc)

• Motivation
–  Ensure that AMO performance is not degraded when there are

multiple AMO providers

• Pros/Cons
+ Address all the challenges
-  The burden of AMO and memory storage management is upon the

application developers; developer is responsible to enquire about different
groups of AMOs, allocate and manage AMOs over a particular region of
memory

8 Presentation name

Potential Solution - 4

•  Leveraging already existing AMOs in order to implement
operations that are not directly supported by hardware
–  For example implementation of 32bit atomics through 64bit atomic

GET and CSWAP

• Motivation
–  Avoid fallback to “slow” software based atomics for all AMOs

• Pros/Cons
+ The approach is transparent to user
-  Does not address all the challenges

9 Presentation name

System Configuration

• HP ProLiant DL380p system (ORNL’s ESSC)
•  Two compute nodes, each with two Intel Xeon E5-2650

CPUs, for a total of 16 CPU cores and 32 threads.
• Compute nodes are interconnected with Mellanox

ConnectX-3 VPI HCA connected back-to-back (no switch)
• CentOS release 6.5 with MLNX-OFED-2.2-1.5.5 and

OpenSHMEM-UCCS v0.3
• OSU OpenSHMEM Atomic Test v4.4.

•  Used to evaluate the blocking atomics: FADD, FINC,SWAP, CSWAP
•  Checks how these atomic operations are affected by the quality of the AMO

implementation by measuring the full round trip communication latency.

10 Presentation name

AMO Algorithm for 32bit AMOs Using
64bit AMOs

•  Initiator atomically issues atomic get (Fetch-and-add 0)
• Once value is fetched, it updates (based on the requested

operation) the relevant bits
• Use CSWAP with previously fetched value as a compare

argument and the updated value as the swap argument
•  If the fetched value is identical to previously fetched value –

Success, otherwise - Retry

11 Presentation name

Evaluation Results

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9

am_event_amo_estimate

shmem_longlong_fadd

shmem_longlong_finc

shmem_longlong_cswap

shmem_longlong_swap

shmem_int_finc

shmem_int_cswap

shmem_int_swap

La
te

nc
y

(u
se

c)

12 Presentation name

Summary

•  Introduction of new AMOs (without hardware support) may
have side-effects and negatively affect the performance of
already existing AMOs in OpenSHMEM

• OpenSHMEM community must closely collaborate with
hardware vendors to ensure that new atomic operations in
OpenSHMEM are supported at the hardware level and the
gap between software requirements and hardware AMOs
support does not increase

• OpenSHMEM community has to provide a mechanism to
enable the coexistence of software and hardware-based
AMOs

13 Presentation name

Acknowledgements

This work was supported by the United States Department of Defense &
used resources of the Extreme Scale Systems Center at Oak Ridge

National Laboratory.
Empowering the Mission

14 Presentation name

Questions ?

