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Key-exchange portion of integer bucket sort algorithm 

Receiver’s buffer management is done by the sender 
§  Requires additional fetch-add message from the sender 

§  Alternative is to pre-arrange buffer space 

Sidebar: Iterations can be overlapped with nonblocking ops 
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NAS Integer Sort (IS) Key Exchange 
int dst_buf[DST_BUF_SIZE]; /* Symmetric buffer for RX of keys */!
int counter = 0;           /* Symmetric integer offset counter */ !
... !
for (i = 0; i < num_pes; i++) { !
  int dst_off; !
!
  dst_off = shmem_int_fadd(&counter, cnt[i], i); !
  shmem_int_put(dst_buf+dsf_off, src_buf+src_off[i], cnt[i], i); !
} !
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PE N 
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One-Sided Append in Key Exchange 
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Push: One-sided operation appends sender’s data to receiver’s buffer 

Introduces “offset counter”, which is atomically updated during push 

Can be used in conjunction with other proposed extensions: 
§  Contexts, counting puts, nonblocking communication, … 
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SHMEM_PUSH Interface 

/* SHMEM Offset Counter (OCT) object management (collective) */!
void shmem_oct_create(shmem_oct_t *oct, void *buffer, size_t len); !
void shmem_oct_destroy(shmem_oct_t *oct); !
!
/* Appending put, a.k.a. “push”, one-sided communication */ !
void shmem_push(shmem_oct_t oct, const void *src_buffer, !
                size_t len, int pe); !
!
/* Offset counter update/query routines (local) */ !
void shmem_oct_reset(shmem_oct_t oct); !
size_t shmem_oct_get(shmem_oct_t oct); !
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Fetch-add (a) implementation has a data dependency at the sender 
§  Takes a network round-trip to resolve 

Receiver-managed implementation is “fire-and-forget” 
§  Utilized “agent” (hardware/software) at receiver side to calculate dest. location 
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Sender vs. Receiver-Managed Approach 
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Key-exchange portion of integer bucket sort algorithm 

Destination buffer addressed using the offset counter (OCT) 
§  Allows receiver-managed implementation 

§  Receiver can calculate effective target address 

Sidebar: Iterations can be overlapped with nonblocking ops 
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NAS IS Key Exchange (Push) 
int dst_buf[DST_BUF_SIZE]; /* Symmetric buffer for RX of keys */!
shmem_oct_create(&keys_oct, dst_buf, DST_BUF_SIZE); !
... !
for (i = 0; i < num_pes; i++) { !
  shmem_int_push(keys_oct, src_buf+src_off[i], cnt[i], i); !
} !
... !
shmem_oct_free(&keys_oct); !
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Can be implemented on top of OpenSHMEM 1.1 
§  Symmetric integer used as offset counter (OCT) 
§  Fetch-add of OCT followed by put 

Implementation on Portals 4 
1.  Append buffer as new match entry (ME) on OCT match list 
2.  Match bits are selected to globally and uniquely identify the append buffer 
3.  Set locally managed offset flag on ME (PTL_ME_MANAGE LOCAL) 
4.  Portals counter attached to ME to expose Portals offset counter 
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Implementation of SHMEM_PUSH 
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InfiniBand® Cluster: 16 nodes, 16 PEs; OpenSHMEM over Portals 4 over IB 
Drop-off at Portals max_volatile_size (buffering converts blocking to NB) 
 

9 

Early Perf. Evaluation of Key Exchange 
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Proposed SHMEM_PUSH extension 
§  Can accelerate appending data to a remote buffer 
§  Enables runtime designers to optimize comm. pattern 

–  E.g. through a receiver-managed implementation 

Discuss synchronization: How do users consume this data? 
§  Offset counter tells us next free location 

–  Does not guarantee that data has arrived 

§  Can combine with counting puts variation that counts bytes 
–  Waiting for offset and received-bytes to match guarantees completion 

§  Currently, programmers would use barrier or flag variables 

Discuss: Can this be done efficiently in MPI? 
§  Probe followed by receive or fetch-add and put 

10 

Concluding Discussion 




