
One-Sided Append: A New Communication
Paradigm For PGAS Models
Jim Dinan and Mario Flajslik

OpenSHMEM User Group ‘14

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Key-exchange portion of integer bucket sort algorithm

Receiver’s buffer management is done by the sender
§  Requires additional fetch-add message from the sender

§  Alternative is to pre-arrange buffer space

Sidebar: Iterations can be overlapped with nonblocking ops

3

NAS Integer Sort (IS) Key Exchange
int dst_buf[DST_BUF_SIZE]; /* Symmetric buffer for RX of keys */!
int counter = 0; /* Symmetric integer offset counter */ !
... !
for (i = 0; i < num_pes; i++) { !
 int dst_off; !
!
 dst_off = shmem_int_fadd(&counter, cnt[i], i); !
 shmem_int_put(dst_buf+dsf_off, src_buf+src_off[i], cnt[i], i); !
} !

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

PE N

4

One-Sided Append in Key Exchange

PE 0 PE 1

Counter

dst_buf

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Push: One-sided operation appends sender’s data to receiver’s buffer

Introduces “offset counter”, which is atomically updated during push

Can be used in conjunction with other proposed extensions:
§  Contexts, counting puts, nonblocking communication, …

5

SHMEM_PUSH Interface

/* SHMEM Offset Counter (OCT) object management (collective) */!
void shmem_oct_create(shmem_oct_t *oct, void *buffer, size_t len); !
void shmem_oct_destroy(shmem_oct_t *oct); !
!
/* Appending put, a.k.a. “push”, one-sided communication */ !
void shmem_push(shmem_oct_t oct, const void *src_buffer, !
 size_t len, int pe); !
!
/* Offset counter update/query routines (local) */ !
void shmem_oct_reset(shmem_oct_t oct); !
size_t shmem_oct_get(shmem_oct_t oct); !

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Fetch-add (a) implementation has a data dependency at the sender
§  Takes a network round-trip to resolve

Receiver-managed implementation is “fire-and-forget”
§  Utilized “agent” (hardware/software) at receiver side to calculate dest. location

6

Sender vs. Receiver-Managed Approach

off = fadd(counter)"

put (base + off)"

 push(…)"

Receiver Process"

(a) Implementation on OpenSHMEM 1.1" (b) Receiver-Managed Implementation"

Agent"

Sender Process"Receiver Process"Sender Process"

+"

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Key-exchange portion of integer bucket sort algorithm

Destination buffer addressed using the offset counter (OCT)
§  Allows receiver-managed implementation

§  Receiver can calculate effective target address

Sidebar: Iterations can be overlapped with nonblocking ops

7

NAS IS Key Exchange (Push)
int dst_buf[DST_BUF_SIZE]; /* Symmetric buffer for RX of keys */!
shmem_oct_create(&keys_oct, dst_buf, DST_BUF_SIZE); !
... !
for (i = 0; i < num_pes; i++) { !
 shmem_int_push(keys_oct, src_buf+src_off[i], cnt[i], i); !
} !
... !
shmem_oct_free(&keys_oct); !

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Can be implemented on top of OpenSHMEM 1.1
§  Symmetric integer used as offset counter (OCT)
§  Fetch-add of OCT followed by put

Implementation on Portals 4
1.  Append buffer as new match entry (ME) on OCT match list
2.  Match bits are selected to globally and uniquely identify the append buffer
3.  Set locally managed offset flag on ME (PTL_ME_MANAGE LOCAL)
4.  Portals counter attached to ME to expose Portals offset counter

8

Implementation of SHMEM_PUSH

NI
Portal Table Data

LE

Heap
LE

Heap
Seg.

OCT List

heap

data Data
Seg.

Destination PE Portals State

…
OCT 1 OCT 2 OCT 3

CT CT CT

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

InfiniBand® Cluster: 16 nodes, 16 PEs; OpenSHMEM over Portals 4 over IB
Drop-off at Portals max_volatile_size (buffering converts blocking to NB)

9

Early Perf. Evaluation of Key Exchange

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Proposed SHMEM_PUSH extension
§  Can accelerate appending data to a remote buffer
§  Enables runtime designers to optimize comm. pattern

–  E.g. through a receiver-managed implementation

Discuss synchronization: How do users consume this data?
§  Offset counter tells us next free location

–  Does not guarantee that data has arrived

§  Can combine with counting puts variation that counts bytes
–  Waiting for offset and received-bytes to match guarantees completion

§  Currently, programmers would use barrier or flag variables

Discuss: Can this be done efficiently in MPI?
§  Probe followed by receive or fetch-add and put

10

Concluding Discussion

