A Multithreaded Communication
Substrate for OpenSHMEM

OpenSHEM Users’ Group Workshop
Oct. 7, 2014, Eugene, OR

Aurélien Bouteiller, Thomas Hérault, George Bosilca

icLor

INNOVATIVE

COI\/IF’UTING LABORATORY
ue UNIVERSITY of TENNESSEE

Motivation

uccs_send_contiguous_short_nb(...)
uccs_send_contiguous_nb(...)

[Examp!es

uccs_send_nb(...)

uccs_get_contiguous_short_nb(...)
uccs_put_gather_nb(...)
uccs_get_scalter_nb(...)

\.

J

Examples:
uccs_atomic_add_inté4_nb(...)
uccs_atomic_cwap._inté4_nb(...)

uccs_bceast_nb(...)

**Cheetah Framework Collectives
\

2
Active Message API ' RDMA PUT/GET API Atomic API Collectives API RTE
(. . A . v . A \
: - - : (Fetch) [Barrier D
Cont Non-Cont s Cont Non-Cont
[ontiguous](on-Contiguou] [ontiguous] [on-Con |guous] Fetch and Add = Commersial and open
Short, [UCCS I/Ovec J (Short Scatter Increment Gather o s v
Large Large Gather SWAP Scatter environments and
L Medium Generic J L CSWAP) Allgather o
AlltoAll SEDeCleES
(Examples: Examples: \ (Examples:
uccs_put_contiguous_short_nb(...) uccs_barrier_nb(...) rte_init(...)

rte_get_my._ec(...)
rte_srs_get_data()
rte_srs_set_data

/

\

UCCS: Provide a common low-level scalable, robust, portable, simple and
performance driven communication APl for multiple parallel programming models
over modern network interfaces

Provide common network code for implementing programming models, increasing
code reusability and reducing development effort

Support hybrid programming environments efficiently, mixed programming models
need to support efficient thread safety

Thread safety: Posting Operations

uccs_put_large_contiguous_nb(
ctx, ep, ..., desc)

Creates a descriptor for the operation (aka a
request)

Can be completed later by uccs_wait, uccs_test

In the UCCS specification, all
postings are thread safe (can be
issued simultaneously from
multiple threads, on the same
communication channel)

Implementation of most RMA
operations uses fine grain
locking (only active message
posting is not yet), using OPAL
lockless lists and data structures

There remain some state sharing
between threads (due to sharing
the endpoint handle)

Current proposal in the OpenSHMEM
community would help addressing these issues
(endpoints, contexts)

Coarse grain locking

UCCS Resource ||| En
e "
Cray Gemini Lll Pro

o
UCCS Context IG

Endpoint
Process 0

dpoint
cess N

Cray Gemini 2

1 = TUOOOO T

[UCCS Resource

UCCS Resource

InfiniBand

Fine grain locking/lockless thread safety

Thread Safety with Progress

« UCCS specification: no guaranteed™* progress if no thread is
calling a progress function

» uccs_wait, uccs_test, uccs_progress

« To ensure the semantic of OpenSHMEM asynchronous progress, one thread can be
delegated to progress UCCS

« *The UCCS implementation may spawn threads of its own to progress RMA

* Multiple threads can enter progress simultaneously

» Active Message callbacks may be invoked from any thread

that enters progress

 The callbacks must ensure their own exclusive access to shared variables if
needed

. 2 types of AM callbacks can be registered

Network_Protocol
high priority functions, that demand no additional resource and only a few computations.
Can run on any thread.

- User
for more demanding operations. Can run on User Threads only

RTE API

UCCS specification provides a portable Runtime Environment API

* Processor architecture, endianess, hardware locality info database
* Network ID database

+ |/0 forwarding

« Out of band communication service

UCCS Specification: assume all RTE routines are thread safe
Can employ PMI, Open RTE, STCI, Slurm, etc. as the backend
Unfortunately not all of these RTE backends are thread safe

Used mostly when establishing new connections: RTE is not performance
critical

Implementation delegates the RTE in a separate thread. All commands

delegated to the RTE thread
rte_send ng’

App. threads rte_send_nb ! rte Wail

Command Result
queue - queue
N T s a—

RTE thread »‘ “--;—""

Performance Evaluation

 Infiniband 20G cluster

« 2x Intel Xeon E5520 (Nehalem) 4cores (total 8 cores/node)
* Linux CentOS 6.5

 Intel MPI Benchmarks 4.0 (RMA)

 Open MPI 1.7.5 (non thread safe build)

» Deploying t processes per node (single threaded), each process pinned to a
physical core (multi mode)

« Put/Get bidirectional aggregate mode benchmarks are considered

« UCCS benchmarks

« UCCS version (thread safe extended)

» Deploying 1 process per node (with t threads), each thread pinned to a
physical core

« Similar communication pattern to the IMB deployment

Active Message Injection Rate

1050 AM message UCCS Multithreaded Active Message Injection Rate (IB20G)

sent from the
origin, T threads 1 send thread, T recv threads, 4 bytes messages

are spinning in @55 T : T T T
uccs_progress|() ? —=— Maximum g x
When the 1050 %50 - oo Standard DeVIatIOn//" """"" R
messageshave @ | —— Average
been received, an a ‘ e
ack is sent back Esool S e |
Some congestion X 00 ‘
) / O stalesetelesetetetetetetetetesese ‘
s observed (some w35l e
: - b BRI RIEERILEEIRARIRIIINRKE |
coarse grain locks s R R R SIXEIKIKEE
. . < e X R IR
still presentinthe £330 B s S 05 O e S
. . 3 R RARLLRXARAK:
implementation) = 1 IR,
in all threaded Qo5 | 0 R
. . - : : QXRKRARAR
cases, injection SB[R R S R
rate improved with L
MT compared to =2
) 2 15]]]]
single thread -
1 2 4 8

T: NUMBER OF THREADS

Same AM
benchmark, 8
receive threads

Perfect load
balance: ~131
callbacks per
threads

No thread is
favored, good
spread

standard
deviation
between runs is
low

Is this a good
thing ? (think
interrupt spread)

UCCS Fairness

UCCS Active Message Callback Spread (IB20G)
8 Recv Threads, 1050 messages per run

X tll'lread 0

. (7 other threads, colored by thread id) X

800
RUN (sorted by #callbacks executed by thread 0)

1000

The RMA benchmarks

/ PO P1 P2 P3 P(2t—1)\

MPI
RMA

Flush

)

)

)

MPI processes pairs, even ranks on
first node, odd ranks on second node

POtO
P1t0

UCCS
RMA

AM ack |$>

-

POtl
P1t1

/

 MPI deployments use 1 process per core
« UCCS deployments use 1 thread per core

The RMA benchmarks

/ PO P1 P2 P3 P(2t—1)\ / L \

MPI UCCS
RMA RMA

Flush || [| AM ack

MPI processes pairs, even ranks on

\@ node, odd ranks on second noy \ /
 MPI deployments use 1 process per core
« UCCS deployments use 1 thread per core

Starting point: large grain mutexes

* This is the poor
performance with
a coarse grain
mutex protecting
all routines...

* Not very enticing,
can we do better?

- -l N
c O o

AGGREGATE BANDWIDTH (Gbit/s)
N

-t
(9]

-y
N

UCCS MT PutLong Ping-pong-duplex (dancer IB20G)

"y
o
I

-y
(3}
!

-t
Y
L}

L ,,,,,,,,,,,,,,,,,,,,,,,, 0

—_— 1 t'hread
2 thread

,,

16K 64K 256K 1M 4M

16K 64K 256K 1M 4M

MESSAGE SIZE (Bytes)

Multithreaded Put benchmark

« 1 thread:

« UCCS bandwidth
slightly better than
MPI

e 2 threads:

« UCCS and MPI
bandwidth improved
(especially for
medium messages)

 More threads:

« MPI reaches best
bandwidth for 4
threads, congestion
starts to happen for
8 threads

« UCCS also congested
for 4/8 threads

Concurrent PUT, Pings-pong-duplex (IB20G)

@27
E
5 25
23

=22 § s
921 e
S20 ¢ | | |
Q19 R Pt A —
Z18 —»— UCCS PUT, 1 thread
ol UCCS PUT, 2 threads
m}ﬁ ¢ —=— UCCSPUT,4threads
>F 7 SN —»— UCCS PUT, 8 threads |
Gl e IMB MPI PUT
wi L IMB MPI PUT, 2 pairs -
D] | P e e IMB MPI PUT, 4 pairs -
(518 o e - IMB MPI PUT, 8 pairs -
< | | | |

16K 64K 256K 1M 4m

MESSAGE SIZE (Bytes)

Multithreaded Get benchmark

« Same
observation
hold for GET

benchmark

AGGREGATE BANDWIDTH
_oolRpnraoInoS

Concurrent GET, Pings-pong-duplex (IB20G)

‘_-—'- 5
B

O A O N M

,,,

4 —«— UCCS GET, 1 thread

"""" AN A R UCCS GET, 2 thread]

&K —— UCCS GET, 4 thread]

,, —»— UCCS GET, 8 thread 1

,,,,,,,,,,,,,,,,,,,,,,,,,,,, . ======== IMB MPI GET |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, IMB MPI GET, 2 pairs J
e e, === IMB MPI GET, 4 pairs -
P S IMB MPII GET, 8 pair|s q
6K 64K 256K 1M 4M

MESSAGE SIZE (Bytes)

Concluding Remarks

» Designed thread safety interface to UCCS
specification

 Early performance results encouraging

« Competes with multiple MPI processes (in a non-thread safe MPI build), with
multiple non-shared endpoints

* Observed good overall fairness, even when contentions are observed

 Future works

» Observing behavior with multiple channels/qpairs to separate threads

« Observing overlap in synthetic benchmarks

* Observing OpenSHMEM application performance

» |nvestigating “endpoints/PE/contexts” proposed extension to OpenSHMEM

 |nvestigating “mixed model” programming (OpenSHMEM+MPI, OpenSHMEM
+dataflow) when sharing the base communication substract

