
A Multithreaded Communication
Substrate for OpenSHMEM

OpenSHEM Users’ Group Workshop
Oct. 7, 2014, Eugene, OR

Aurélien Bouteiller, Thomas Hérault, George Bosilca

Motivation

•  UCCS: Provide a common low-level scalable, robust, portable, simple and
performance driven communication API for multiple parallel programming models
over modern network interfaces

•  Provide common network code for implementing programming models, increasing
code reusability and reducing development effort

•  Support hybrid programming environments efficiently, mixed programming models
•  need to support efficient thread safety

2

Thread safety: Posting Operations
•  uccs_put_large_contiguous_nb(

ctx, ep, …, desc)
•  Creates a descriptor for the operation (aka a

request)
•  Can be completed later by uccs_wait, uccs_test

•  In the UCCS specification, all
postings are thread safe (can be
issued simultaneously from
multiple threads, on the same
communication channel)

•  Implementation of most RMA
operations uses fine grain
locking (only active message
posting is not yet), using OPAL
lockless lists and data structures

•  There remain some state sharing
between threads (due to sharing
the endpoint handle)
•  Current proposal in the OpenSHMEM

community would help addressing these issues
(endpoints, contexts)

3

Endpoint
Process 0

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0Endpoint
Process N

UCCS Resource
Cray Gemini 2

UCCS Context

UCCS Resource
InfiniBand

Endpoint
Process 0

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0Endpoint
Process N

Endpoint
Process K

Endpoint
Process 0Endpoint

Process 0
Endpoint
Process 0

Endpoint
Process 0Endpoint
Process M

UCCS Resource
Cray Gemini

Fig. 1: A relation between the UCCS communication context, resource, and end-
points

conditional swap for both 32 and 64 bit data sizes. The Active Message (AM)
interface can be used to support remote execution and two-sided communica-
tion operations. This is performed by first registering a callback handler, then
sending the data itself in a manner similar to the RMA put operations. Group
communication can also be performed using the provided collective operation
functions.

All communication calls in UCCS are inherently non-blocking, so their com-
pletion must be checked by waiting on a request handle created for tracking
an operation’s progress. To aid in the management of outstanding operations,
UCCS provides functions to test or wait on these handles in whichever way
best suits the given situation. The user may test or wait either on a specific
handle, all handles in a provided list, or any of the handles in a provided list.
These management functions result in a returned status that indicates whether
the operation completed successfully, an error occurred, or some other status as
appropriate. In addition to the test and wait functions for remote completion,
it is also possible to ensure local completion of all outstanding operations by
flushing all communication intended for a particular set of endpoints from the
local execution context calling the function.

4.3 UCCS and OpenSHMEM Integration

The UCCS and RTE APIs provide an interface that enables simple yet e�cient
implementation of the OpenSHMEM API (Figure 3). The integration process
can be divided into two primary phases: UCCS library initialization and com-
munication semantics implementation.

Coarse grain locking

Fine grain locking/lockless thread safety

Thread Safety with Progress
•  UCCS specification: no guaranteed* progress if no thread is

calling a progress function
•  uccs_wait, uccs_test, uccs_progress
•  To ensure the semantic of OpenSHMEM asynchronous progress, one thread can be

delegated to progress UCCS
•  *The UCCS implementation may spawn threads of its own to progress RMA

•  Multiple threads can enter progress simultaneously

•  Active Message callbacks may be invoked from any thread
that enters progress
•  The callbacks must ensure their own exclusive access to shared variables if

needed
•  2 types of AM callbacks can be registered
•  Network_Protocol

high priority functions, that demand no additional resource and only a few computations.
Can run on any thread.

•  User
for more demanding operations. Can run on User Threads only

4

RTE API
•  UCCS specification provides a portable Runtime Environment API

•  Processor architecture, endianess, hardware locality info database
•  Network ID database
•  I/O forwarding
•  Out of band communication service

•  UCCS Specification: assume all RTE routines are thread safe
•  Can employ PMI, Open RTE, STCI, Slurm, etc. as the backend
•  Unfortunately not all of these RTE backends are thread safe
•  Used mostly when establishing new connections: RTE is not performance

critical
•  Implementation delegates the RTE in a separate thread. All commands

delegated to the RTE thread

5

RTE thread

App. threads

Command
queue

Result
queue

rte_send_nb

rte_send_nb

rte_wait

Performance Evaluation
•  Infiniband 20G cluster
•  2x Intel Xeon E5520 (Nehalem) 4cores (total 8 cores/node)
•  Linux CentOS 6.5

•  Intel MPI Benchmarks 4.0 (RMA)
•  Open MPI 1.7.5 (non thread safe build)
•  Deploying t processes per node (single threaded), each process pinned to a

physical core (multi mode)
•  Put/Get bidirectional aggregate mode benchmarks are considered

• UCCS benchmarks
•  UCCS version (thread safe extended)
•  Deploying 1 process per node (with t threads), each thread pinned to a

physical core
•  Similar communication pattern to the IMB deployment

6

Active Message Injection Rate
•  1050 AM message

sent from the
origin, T threads
are spinning in
uccs_progress()

•  When the 1050
messages have
been received, an
ack is sent back

•  Some congestion
is observed (some
coarse grain locks
still present in the
implementation)

•  In all threaded
cases, injection
rate improved with
MT compared to
single thread

7

IN
J

E
C

T
IO

N
 R

A
T

E
 (

K
m

e
s

s
a

g
e

s
/s

)

T: NUMBER OF THREADS

UCCS Multithreaded Active Message Injection Rate (IB20G)
1 send thread, T recv threads, 4 bytes messages

Maximum
Standard Deviation
Average

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 4 8

UCCS Fairness
•  Same AM

benchmark, 8
receive threads

•  Perfect load
balance: ~131
callbacks per
threads

•  No thread is
favored, good
spread

•  standard
deviation
between runs is
low

•  Is this a good
thing ? (think
interrupt spread)

8

#
E

X
E

C
U

T
E

D
 C

A
L

L
B

A
C

K
S

RUN (sorted by #callbacks executed by thread 0)

UCCS Active Message Callback Spread (IB20G)
8 Recv Threads, 1050 messages per run

thread 0
(7 other threads, colored by thread id)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 200 400 600 800 1000

The RMA benchmarks

• MPI deployments use 1 process per core
• UCCS deployments use 1 thread per core

9

P0 P1 P2 P3

…

MPI processes pairs, even ranks on
first node, odd ranks on second node

P(2t-1)

Flush

MPI
RMA

P0t0
P1t0

P0t1
P1t1

…

AM ack

UCCS
RMA

The RMA benchmarks

• MPI deployments use 1 process per core
• UCCS deployments use 1 thread per core

10

P0 P1 P2 P3

…

MPI processes pairs, even ranks on
first node, odd ranks on second node

P(2t-1)

Flush

MPI
RMA

P0t0
P1t0

P0t1
P1t1

…

AM ack

UCCS
RMA

Starting point: large grain mutexes

• This is the poor
performance with
a coarse grain
mutex protecting
all routines…
• Not very enticing,

can we do better?

11

A
G

G
R

E
G

A
T

E
 B

A
N

D
W

ID
T

H
 (

G
b

it
/s

)

MESSAGE SIZE (Bytes)

UCCS MT PutLong Ping-pong-duplex (dancer IB20G)

1 thread
2 thread
4 thread
6 thread
8 thread

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

16K 64K 256K 1M 4M

PER THREAD BW (8 threads)

 0
 2
 4
 6
 8

 10
 12
 14

16K 64K 256K 1M 4M

Multithreaded Put benchmark
•  1 thread:
•  UCCS bandwidth

slightly better than
MPI

•  2 threads:
•  UCCS and MPI

bandwidth improved
(especially for
medium messages)

•  More threads:
•  MPI reaches best

bandwidth for 4
threads, congestion
starts to happen for
8 threads

•  UCCS also congested
for 4/8 threads

12

A
G

G
R

E
G

A
T

E
 B

A
N

D
W

ID
T

H
 (

G
b

it
/s

)

MESSAGE SIZE (Bytes)

Concurrent PUT, Pings-pong-duplex (IB20G)

UCCS PUT, 1 thread
UCCS PUT, 2 threads
UCCS PUT, 4 threads
UCCS PUT, 8 threads
IMB MPI PUT
IMB MPI PUT, 2 pairs
IMB MPI PUT, 4 pairs
IMB MPI PUT, 8 pairs

 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

16K 64K 256K 1M 4M

Multithreaded Get benchmark
• Same

observation
hold for GET
benchmark

13

A
G

G
R

E
G

A
T

E
 B

A
N

D
W

ID
T

H
 (

G
b

it
/s

)

MESSAGE SIZE (Bytes)

Concurrent GET, Pings-pong-duplex (IB20G)

UCCS GET, 1 thread
UCCS GET, 2 thread
UCCS GET, 4 thread
UCCS GET, 8 thread
IMB MPI GET
IMB MPI GET, 2 pairs
IMB MPI GET, 4 pairs
IMB MPI GET, 8 pairs

 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

16K 64K 256K 1M 4M

Concluding Remarks
• Designed thread safety interface to UCCS

specification
• Early performance results encouraging
•  Competes with multiple MPI processes (in a non-thread safe MPI build), with

multiple non-shared endpoints
•  Observed good overall fairness, even when contentions are observed

•  Future works
•  Observing behavior with multiple channels/qpairs to separate threads
•  Observing overlap in synthetic benchmarks
•  Observing OpenSHMEM application performance
•  Investigating “endpoints/PE/contexts” proposed extension to OpenSHMEM
•  Investigating “mixed model” programming (OpenSHMEM+MPI, OpenSHMEM

+dataflow) when sharing the base communication substract

14

