
Efficient Interoperability of OpenSHMEM on
Multicore Architectures

Khaled Z. Ibrahim
kzibrahim@lbl.gov

Lawrence Berkeley National Laboratory

OUG 2014: Oct. 7th, 2014

0 / 17

mailto:{kzibrahim}@lbl.gov

Supercomputing Architectures
Piz Daint

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

L3

Cache

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

L3

Cache

DDR3

DDR3

Q
P

I

PCIe3

DDR3

DDR3

Tesla K40

GDDR5

48 port Router

NIC 3NIC 1

P
C

Ie
3

P
C

Ie
3

NIC 2NIC 0

P
C

Ie
3

P
C

Ie
3

Aries DragonFly

InterconnectV
e
c
to

r

S
h
a
re

d

M
e
m

o
ry

D
is

tr
ib

u
te

d

M
e
m

o
ry

UPC

Hardware (Gemini/Aries)

Generic Hardware Abstraction Layer (GHAL)

GNI Core

Kernel Level

GNI (kGNI)

GNI DMAPP

SHMEM libpgasMPICH2

IO
C

T
L

D
IR

E
C

T

D
IR

E
C

T

Fortran, C

� Exascale Architectures: what to expect?
I Hybrid architectures
I Slower cores for power-efficiency (better to inject data while

being produced to smooth traffic)
I Less physical memory per core (smaller transfers)

� Exascale problems: what to expect?
I Strong scaling problems (smaller transfers)

� Programming Model Challenge
I Need model composition and efficient support for small

transfers.

1 / 17

Layout

General Conditions for Efficient Interoperability

OpenSHMEM and Interoperability

1 / 17

Runtime Abstraction - Pure processes

Process 3

In
te

rc
o

n
n

e
c

t

MSGsMSGs

core core core corecorecorecorecore

Node 0 Node 1

Process 2Process 1Process 0 Process 4 Process 5 Process 6 Process 7

� Model:
I Uniform MPI/SHMEM/UPC (using processes)

� Pros:
I Should be easier for application developers.
I Supporting distributed runtime on shared resources should be

easier for runtime designers.

2 / 17

Why Pure Processes Not favorable on Shared Architectures?

� Sharing is complex
I Multiple name spaces
I Complex mechanisms for sharing data (via mmap/aliasing) or

code (via remote procedure call (RPC))

� Sharing not efficient
I Resource replication (less efficient memory use), problematic

at large scale

� Sharing not explicit
I Language runtimes cannot assume physical sharing with

processes.
I Ambiguity leads to conservative assumptions → performance

penalty
I Most openMP runtime and tasking libraries are based on

threads. Also, parallel libraries (FFT, BLAS, etc) relies on
threading within a node. Efficiency rather than productivity
force us to use vendor optimized libraries.

3 / 17

Runtime Abstraction - processes + threads (funnel)

Thread 3

Process 1

core core core core

Thread 2Thread 1Thread 0

Process 0

corecorecorecore

In
te

rc
o

n
n

e
c

t

MSGs

Node 0 Node 1

� Model:
I Compose but Funnel: (compose but always switch between the

main programming model and the x)
I Funneling → Master (or single) thread communicates on

behave of all (or a group of) threads.
I Extra synchronization, less injection parallelism, but ...

� More efficient, why?

4 / 17

Runtime Abstraction - processes + threads (multiple)

In
te

rc
o

n
n

e
c

t

MSGsMSGs
Thread 3

Process 1

core core core core

Thread 2Thread 1Thread 0

Process 0

corecorecorecore

Node 0 Node 1

� Model:
I MPI/SHMEM/UPC + x (persistent x, i.e. no model switch)

� Pros:
I Expose architectural sharing (one name space) → memory

efficiency

� Could we communicate efficiently in a parallel region?
I Less application synchronization, but rarely used!

5 / 17

Thread Communication with MPI - Cray XC30 - Edison

3 6 9 12 15 18 21 24
0

25
50
75

100
125
150

2 4 6 8 10 12 14 16 18 20 22 24

0
100
200
300
400
500
600

2 4 6 8 10 12 14 16 18 20 22 24
0.0K
1.5K
3.0K
4.5K
6.0K
7.5K
9.0K

2K bytes

La
te

nc
y

(u
s)

 MPI_THREAD_FUNNELED
 MPI_THREAD_MULTIPLE
 PROCESSES

8 bytes

La
te

nc
y

(u
s)

MPI Edison (Aries) - 8 nodes

2M bytes

La
te

nc
y

(u
s)

core

core

B
e

tte
r

� 41× slowdown at concurrency level of 24 for small messages

� Difference decreases with the increase in message size →
problem shifts to bandwidth

� Same for all MPI implementations and UPC implementations
I am aware of.

6 / 17

HPC Runtime with Processes (distributed interconnect resources)

C
o

m
m

u
n

i
c

a
t
i
o

n

D

o
m

a
i
n

V-NIC

C
o

m
p

le
ti

o
n

Q
u

e
u

e

Memory

Process 0

End
EP 3

EP 2

end point 1

...

V-NIC

Registered

Memory

Process 1

End Points

V-NIC

Registered

Memory

Process m-1

End Points

.

.

.

V-NIC

Registered

Memory

Process m

End Points

V-NIC

Registered

Memory

Process m+1

End Points

V-NIC

Registered

Memory

Process 2m-1

End Points

endpoint

C
o

m
p

le
ti

o
n

Q
u

e
u

e

� Processes access to interconnect
I lock-free access points to the interconnect messaging system
I Separate injection resources.

7 / 17

HPC Runtimes with Threads (sharing)

C
o

m
m

u
n

i
c

a
t
i
o

n

D

o
m

a
i
n

V-NIC

C
o

m
p

le
ti

o
n

Q
u

e
u

e

Memory

Process 0
End

EP 3

EP 2

end point 1

...
C

o
m

p
le

ti
o

n

Q
u

e
u

e

Thread 0

Thread 1

Thread m-1

V-NIC

C
o

m
p

le
tio

n

Q
u

e
u

e

Memory

Process 1
End

EP 3

EP 2

end point 1

...
C

o
m

p
le

tio
n

Q
u

e
u

e

Thread 0

Thread 1

Thread m-1

� Threads share an access point
I Serialization within the programming language runtime
I Serialization to access the messaging system

� Rely on system library thread safety
I e.g., Cray DMAPP (= serialization, system locks) → not

matching processes performance for communication

8 / 17

Efficient Interoperability with Pthreads

� What are the issues preventing efficient interoperability?

I Addressability: Influenced by the programming model
I Are threads addressable entity? or are they affecting

addressability?

I Separability of communication paths:
I How to allocate and manage resources for independent

transfers?

I Full direct reachability:
I Could we have full reachability with separable communication

paths?

� Feasible for PGAS one-sided primitives. Difficult to satisfy for
active messages or MPI two-sided.

� More details in our ICS 2014 paper:
Khaled Z. Ibrahim and Katherine Yelick. ”On the conditions for efficient interoperability with threads: an

experience with PGAS languages using cray communication domains.” In Proceedings of the 28th ACM

international conference on Supercomputing (ICS ’14).

9 / 17

One-sided: Easier to Satisfy Interoperability Conditions

C
o

m
m

u
n

i
c

a
t
i
o

n

D
o

m
a

i
n

V-NIC

Process 0

(thread 0)
End points V-NIC

Process 1

(thread 0)
End points

C
o

m
m

u
n

i
c

a
t
i
o

n

D
o

m
a

i
n

V-NIC

Process 0

(thread 1)
End points V-NIC

Process 1

(thread 1)
End points

C
o

m
m

u
n

i
c

a
t
i
o

n

D
o

m
a

i
n

V-NIC

Process 0

(thread m-1)
End points V-NIC

Process 1

(thread m-1)
End points

C
o

m
p

le
ti

o
n

Q
u

e
u

e

Memory

C
o

m
p

le
tio

n

Q
u

e
u

e

Memory

.

.

.

.

.

.

� Addressibility: In PGAS, the target is a physical memory
→ a target process (or node) is just to resolve affinity not for
processing incoming traffic.

� Separability: each thread could have its own communication
domain and own resources

� Reachability: need it full and possibly redundant.

10 / 17

Separability: Support for Shared Memory Models (pthreads)

HPC Runtime

(e.g. OpenShmem, UPC, etc)

Portable Message Runtime

(e.g. GASNet)

System Message Runtime

(e.g. Cray GNI/DMAPP, IBM PAMI)

Application

(e.g. C/C++, Fortran, etc)

Multicore runtime

(e.g. OpenMP, pthreads, CUDA, etc)

Shared Resource Pool

Split resources}
� Shared resources require thread safety

I Thread-safety through serialization
I Critical regions (lock/unlock)
I lock free data structures (atomic-based)

I Thread safety through resource split
I All levels of the stack should support resource split.
I Need to avoid implicit serialization by all used libraries, for

instance memory allocation.

11 / 17

Cray GNI MultiDomain and One-sided Performance

1 thread 2 threads 4 threads 8 threads 16 threads 24 threads

1X

2X

4X

8X

16X

Aries - 8 Nodes - 2KB transfers

M
es

sa
ge

 la
te

nc
y

re
la

tiv
e

to
 p

ro
ce

ss
es

threads per process

 1 domain 2 domains 4 domains 8 domains 16 domains 24 domains

1 thread 2 threads 4 threads 8 threads 16 threads 24 threads
1X

2X

4X

8X

16X

32X
Aries - 8 Nodes - 8B transfers

M
es

sa
ge

 la
te

nc
y

re
la

tiv
e

to
 p

ro
ce

ss
es

B
e

tte
r

� Up to 31× improvement for small messages compared with
lock-free (atomic-based) algorithms

� Monotonic improvement with the domain count
� UPC is exploiting the GASNet features, and we plan to have

better support for OpenSHMEM on GASNet.
12 / 17

IBM PAMI MultiContext and One-sided Performance

1 t h r e a d 2 t h r e a d s 4 t h r e a d s 8 t h r e a d s 1 6 t h r e a d s 3 2 t h r e a d s 6 4 t h r e a d s
1 x

1 0 x

Ra
rio

 of
 in

cre
as

e i
n l

ata
nc

y f
or

thr
ea

ds
 co

mp
are

d w
ith

 pr
oc

es
se

s

 1 c o n t e x t
 2 c o n t e x t s
 4 c o n t e x t s
 8 c o n t e x t s
 1 6 c o n t e x t s
 3 2 c o n t e x t s
 6 4 c o n t e x t s

8 - B y t e M e s s a g e s - 4 B G Q n o d e s

B
e

tte
r

� Up to 16 × improvement for small messages

� BGQ Single socket systems.

13 / 17

Layout

General Conditions for Efficient Interoperability

OpenSHMEM and Interoperability

13 / 17

OpenSHMEM and Interoperability - Programming Model Interface

shmem int put(IN endpoint, IN target, IN source, IN nelems, IN pe)

� Need an identifier for thread-specific resources, or loose
hundreds of cycles for thread state lockup. Injection
overheads are few tens of cycles.

I MPI tried to adopt but is more suitable for PGAS.

� Direct mapping to IBM PAMI contexts, Cray Domains,
Infiniband rails, Portal 4 VNICs.

� Application level allocation and query of thread-specific
resources.

� Additional threads safety using locks should not hurt
performance as long this lock does not migrate.

� GASNet already support such resource split on Cray
Machines, released Nov. 2013.

� The challenge is at the target side. Need to match
the injection rate with drainage rate.

14 / 17

OpenSHMEM and Interoperability - The Target Side

C
o

m
m

u
n

i
c

a
t
i
o

n

D
o

m
a

i
n

V-NIC

Process 0

(thread 0)
End points V-NIC

Process 1

(thread 0)
End points

C
o

m
m

u
n

i
c

a
t
i
o

n

D
o

m
a

i
n

V-NIC

Process 0

(thread 1)
End points V-NIC

Process 1

(thread 1)
End points

C
o

m
m

u
n

i
c

a
t
i
o

n

D
o

m
a

i
n

V-NIC

Process 0

(thread m-1)
End points V-NIC

Process 1

(thread m-1)
End points

C
o

m
p

le
ti

o
n

Q
u

e
u

e

Memory

C
o

m
p

le
tio

n

Q
u

e
u

e

Memory

.

.

.

.

.

.

� Message layer domains (context, rails, or endpoints) are
scarce resources on most systems!

I Cannot provide square of the threads to enable thread
addressibility.

� Linear communication paths require redundant reachability
path to the same physical address.

I Redundant memory registration create redundant reachability
paths.

I Portals 4 non-matching tables need to be coherent across all
virtual NICs.

15 / 17

OpenSHMEM and Interoperability - The Target Side

C
o

m
m

u
n

i
c

a
t
i
o

n

D
o

m
a

i
n

V-NIC

Process 0

(thread 0)
End points V-NIC

Process 1

(thread 0)
End points

C
o

m
m

u
n

i
c

a
t
i
o

n

D
o

m
a

i
n

V-NIC

Process 0

(thread 1)
End points V-NIC

Process 1

(thread 1)
End points

C
o

m
m

u
n

i
c

a
t
i
o

n

D
o

m
a

i
n

V-NIC

Process 0

(thread m-1)
End points V-NIC

Process 1

(thread m-1)
End points

C
o

m
p

le
ti

o
n

Q
u

e
u

e

Memory

C
o

m
p

le
tio

n

Q
u

e
u

e

Memory

.

.

.

.

.

.

� Need to avoid active target model
I Require service threads equal to the injection threads.
I Require mutual exclusion at the target if the service thread

is not specified.

16 / 17

Conclusions

� Interoperability is key for future extreme scale systems.
I Unless you want your programming model to be a superset of

everything.

� PGAS one-sided models provide efficient abstractions for
interoperability.

I Addressibility should not be affected by the use of threads or
processes.

� We have a successful GASNet implementation for
efficient interoperability.

I Berkeley UPC is benefiting from it and we are working on
extending it to OpenSHMEM.

� Conditions for efficient interoperability with pthreads:
Addressability, Separability, Reachability.

� Target side requirements are tricky: multi-reachability
(coherent redundant symmetric heap tables), passive target,
etc.

17 / 17

Thanks & Questions

This research used resources in Lawrence Berkeley National Laboratory, which is supported by the DOE Office of

Advanced Scientific Computing Research under contract number DE-AC02-05CH11231. This research used

resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the

Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

17 / 17

	Hybrid Programming
	Hybrid Architectures
	Efficient Interoperability Conditions
	Performance Improvement

