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GOAL 

!   Informing the OpenSHMEM community  
!   Study of strong scaling applications on GPU clusters 
!   Overheads of CPU controlled communication  
!   Possibly address this through GPU-initiated communication  
!   Case study using NVSHMEM  

!   Start of a discussion and not a solution 
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NVIDIA’s GOAL 

Standard for one-sided communication in a parallel context 
!   Move beyond host-managed communication 
!   Express communication within parallelism 
!   NVSHMEM is a tool to  

!   understand overheads and requirements  
!   Influence standard 
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ACRONYMS & SYNONYMS 

!   GPU == GPGPU == TOC 
!   GPU is the historical name 
!   GPGPU General Purpose GPU, modern GPU with compute 

capability 
!   TOC Throughput Optimized Core 

!   Power efficient  parallel computation 

!   LOC Latency Optimized Core 
!   CPU-like cores 
!   Trade higher power use for fewer, shorter clock cycles 
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JUN14 TOP500 HIGHLIGHTS 

Top 15 Greenest Systems 

GPUs Power 72% 
Accelerated Systems 

8 New GPU Systems 

Xeon%Phi%
25%%

Others%
3%%

NVIDIA%GPU%
72%%

June%2014%Top500%Share%for%Accelerators%
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TOP APPLICATIONS NOW WITH BUILT-IN GPU 
SUPPORT 

AMBER 

NAMD 

GROMACS 

CHARMM 
LAMMPS 

DL_POLY 

Non-GPU 
Apps 

Molecular Dynamics 

Adobe CS 

Apple 
Final Cut 

Sony Vegas 
Pro 

Avid Media 
Composer 

Autodesk 
3dsMax 

Other GPU 
Apps 

Non-GPU 
Apps 

Digital Content Creation 

Gaussian 
GAMESS 

NWChem 

CP2K Quantum 
Espresso 

Non-GPU 
Apps 

Quantum Chemistry 

ANSYS 

Simulia 
Abaqus 

MSC 
Nastran Altair 

Radioss 

Non-GPU 
Apps 

Computer-Aided Engineering 

Application 
Market Share 
by Segment 

207 GPU-Accelerated Applications  
www.nvidia.com/appscatalog 5 



QUDA 
!   QUDA (QCD on CUDA) is a library to accelerate LQCD 

computations 
!   Used as a GPU back end for Chroma, MILC, CPS, etc. 

!   Algorithm of choice is Hybrid Monte Carlo 
!   Markov chain => no task parallelism 
!   Parallelize over grid points 
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QUDA 

!   Presently running at 150 Tflops sustained on Titan 
!   Volume=403x256 split over 1152 GPUs 
!   At the limit of strong scaling using present algorithms 

!   Physics goal is to run at Volume=1283x512 
!   200x increase in compute power needed (scales super linearly 

with volume) 
!   Need improved strong scaling and faster computers 
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MULTI-GPU IMPLEMENTATION 

!   Scalable multi-GPU solver  
is required 
!   CUDA streams to overlap  

communication and 
compute 

!   Separate interior halo-
region 
update kernels 

!   Use MPI for node-to-node 
communication 
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WHAT IS LIMITING SCALING? 

!   Increasingly latency limited as we approach the 
exascale 
!   GPUs get faster (wider) 
!   Latency remains fixed 

!   Latency limiters have many sources 
!   Software overhead from calling CUDA API routines 
!   Hardware overhead from launching a CUDA kernel 
!   Halo-region updates do not launch enough threads to saturate 

the GPU  
!   Inability to issue use MPI / CUDA asynchronously with respect 

to each other 

!   Network latency is not presently a limiter 
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CASE STUDY WITH QUDA 

Interior 
update 

Halo updates Device to 
Host 

Host to  
device 

Kernel launch 
blocked by serialized 

cudaMemcpy API overhead 
Kernel launch 

latency 

CUDA  APIs cannot  
be called until  

MPI is complete 
Gaps in  

runtime are 
MPI 
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WHAT IS THE SOLUTION? 

!   Possible solution with GPU-initiated communication 
!   Software overhead from calling CUDA API routines 

!   Avoid API overhead by using GPU-driven communication 

!   Hardware overhead from launching a CUDA kernel 
!   Use a single kernel for all updates 

!   Inability to issue MPI / CUDA asynchronously with respect to 
each other 
!   GPU kernel-level communication without having to synchronize 

with Host 
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WHY SHMEM? 

!   Performance on the GPU  
!   Massive number of threads 
!   Hardware scheduler to hide memory access latency 

!   Overheads of send/recv operations 
!   Synchronization coupled with data movement 
!   Request allocation and queuing 
!   Message matching and unexpected messages 

!   Light-weight one-sided communication  
!   Avoid synchronization and artificial serialization  
!   Massively parallel and fine-grained communication 
!   GPU-initiated SHMEM 
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EMULATION PLATFORM 

!   CUDA IPC (Inter-process (P2P) Communication) 
!   Since CUDA 4.2 
!   Allows inter-process mapping of GPU buffers (similar to IPC in linux) 

!   GPUs should be in the same PCIe root complex 

!   Direct transfers between GPUs, bypassing CPU memory and from kernels 
!   Data can be moved using direct access (loads/store) or copy API 

(cudaMemcpy/cudaMemcpyAsync) 

! Upto 8 GPUs – 2 per card – 4 
cards under same PCIe root 
complex using raiser cards with 
PCIe switch 
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NVSHMEM ON P2P PLATFORM 

! An OpenSHMEM influenced API, implemented using  
! MPI/OpenSHMEM  
! CUDA P2P protocol 

! It is not a new standard 
! Its an experimental tool to understand  

! Bottlenecks  
! Network requirements 
! Semantic gaps  
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! initialization and cleanup (host) 
! nvstart_pes, nvstop_pes 

! allocation and deallocation (host) 
! nvshmalloc and nvshmcleanup 

! nvshmem_barrier_all (host) 

! nvshmem_get_ptr (host/GPU) 

! put and get routines (GPU)  
! nvshmem_(float/int)_(p/g)  

! nvshmem_(float/int)_(put/get) 

! nvshmem_(quiet/fence) (GPU) 

! nvshmem_wait/wait_until (GPU) 

 
 

NVSHMEM API 
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SIMPLIFIED 2DSTENCIL EXAMPLE 

u[i][j] = u[i][j] 
+ (v[i+1][j] + v[i-1][j] 

+ v[i][j+1] + v[i][j+1])/x    
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CHANGE IN THE MODEL 

Loop {  
 
     Interior Compute (kernel launch) 
         
     Pack Boundaries (kernel launch) 
 
     Stream Synchronize 
  
     Exchange (MPI/OpenSHMEM) 
 
     Unpack Boundaries (kernel launch) 
 
     Boundary Compute (kernel launch)   
 
     Stream/Device Synchronize    
   
}        
 
-  Kernel launch overheads 
-  CPU based blocking synchronization  
 

 
 
    
 

Traditional 

Compute, Exchange and Synchronize  
(single kernel launch) 
 
 
-  Support SHMEM communication and 
synchronization primitives from 
inside GPU kernel 

Envisioned 
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USING NVSHMEM 
! Persistent kernel to Get, Compute and Synchronize 
! Or intermediate versions with multiple kernels 

Persistent kernel version:  
 
Host code 
 
   . . .  

   u = (void *) nvshmalloc (size)  

   v = (void *) nvshmalloc (size)  

   sync= (void *) nvshmalloc (sizeof(int)*npeers)  

   . . .  

   . . .  

   one_kernel <<< >>> (u, v, sync …)    

   . . .       

   cudaDeviceSynchronize();  
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USING NVSHMEM 
 
   Device Code 
 
   __global__ void one_kernel (u, v, sync, …)  { 

 

     i = threadIdx.x; 

 

     for (…) {   

         

         if (i+1 > nx) {  

               v[i+1] = nvshmem_float_g (v[1], rightpe) 

         } 

         if (i-1 < 1) {  

               v[i-1] = nvshmem_float_g (v[nx], leftpe) 

         } 

      

         -------   

 

         u[i] = (u[i] + (v[i+1] + v[i-1] . . .  

 

         contd…. 

 

contd…. 

 

         /*peers array has left and right PE ids*/ 

         if (i < 2) { 

             nvshmem_int_p (sync[i], 1, peers[i]);  

             nvshmem_quiet(); 

             nvshmem_wait_until (sync[i], EQ, 1); 

         } 

         //intra-process sync 

 

         ------- //compute v from u and sync 

     } 

}  
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VISUAL PROFILE - TRADITIONAL 

(Time marked for one step, Domain size/GPU – 1024, Boundary – 16, Ghost Width – 1) 
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VISUAL PROFILE - TRADITIONAL 

(Time marked for one step, Domain size/GPU – 128, Boundary – 16, Ghost Width – 1) 
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VISUAL PROFILE – PERSISTENT KERNEL 

(Time marked for complete run – 30 steps)  
(Domain size/GPU– 128, Boundary – 16, Ghost Width – 1) 
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PRELIMINARY RESULTS 

Domain Size/
GPU Traditional Persistent Kernel 

64 195.33 13.88 
128 193.7 21.32 
256 193.18 39.77 
512 220.28 132.61 
1024 375.8 389.65 
2048 1319.74 1312.59 
4096 5299.23 4776.31 
8192 21480.32 18394.88 

Time per Step (usec)  
(Ghost Width – 1; Boundary – 16) 

(Threadsperblock – 512; blocks -15) 
(4 Processes – 1 Process/GPU) 

tl 

Time per Step (usec)  
(Domain size – 2048; Ghost Width – 1; Boundary – 2) 

(Extrapolation by reducing problem size per GPU, assuming 
constant exchange and synchronization time) 

Benchmark numbers, beware!! 

GPU Count Traditional Persistent Kernel 
4 375 389 
16 226 132 
64 196 39 
256 194 21 
1K 192 13 
4K 202 13 
16K 193 12 
64K 194 13 
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4 K40m GPUs connected on a Xeon 
E5-2690 socket using PLX switches 



CONCLUDING REMARKS 
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!  Strong scaling of applications on GPU clusters  
! Important for problems being solved 
! Overheads from CPU-controlled communication 

!  NVSHMEM – a tool to understand 
! Overheads  
! Requirements  
! Semantic gaps  

!  Influence standards to move support communication 
within parallelism 



Thank you!!  
 

Questions? 


