

TOC-CENTRIC COMMUNICATION:
A CASE STUDY WITH NVSHMEM

October 2014

GOAL

!   Informing the OpenSHMEM community
!   Study of strong scaling applications on GPU clusters
!   Overheads of CPU controlled communication
!   Possibly address this through GPU-initiated communication
!   Case study using NVSHMEM

!   Start of a discussion and not a solution

1

NVIDIA’s GOAL

Standard for one-sided communication in a parallel context
!   Move beyond host-managed communication
!   Express communication within parallelism
!   NVSHMEM is a tool to

!   understand overheads and requirements
!   Influence standard

2

ACRONYMS & SYNONYMS

!   GPU == GPGPU == TOC
!   GPU is the historical name
!   GPGPU General Purpose GPU, modern GPU with compute

capability
!   TOC Throughput Optimized Core

!   Power efficient parallel computation

!   LOC Latency Optimized Core
!   CPU-like cores
!   Trade higher power use for fewer, shorter clock cycles

3

JUN14 TOP500 HIGHLIGHTS

Top 15 Greenest Systems

GPUs Power 72%
Accelerated Systems

8 New GPU Systems

Xeon%Phi%
25%%

Others%
3%%

NVIDIA%GPU%
72%%

June%2014%Top500%Share%for%Accelerators%

4

TOP APPLICATIONS NOW WITH BUILT-IN GPU
SUPPORT

AMBER

NAMD

GROMACS

CHARMM
LAMMPS

DL_POLY

Non-GPU
Apps

Molecular Dynamics

Adobe CS

Apple
Final Cut

Sony Vegas
Pro

Avid Media
Composer

Autodesk
3dsMax

Other GPU
Apps

Non-GPU
Apps

Digital Content Creation

Gaussian
GAMESS

NWChem

CP2K Quantum
Espresso

Non-GPU
Apps

Quantum Chemistry

ANSYS

Simulia
Abaqus

MSC
Nastran Altair

Radioss

Non-GPU
Apps

Computer-Aided Engineering

Application
Market Share
by Segment

207 GPU-Accelerated Applications
www.nvidia.com/appscatalog 5

QUDA
!   QUDA (QCD on CUDA) is a library to accelerate LQCD

computations
!   Used as a GPU back end for Chroma, MILC, CPS, etc.

!   Algorithm of choice is Hybrid Monte Carlo
!   Markov chain => no task parallelism
!   Parallelize over grid points

6

QUDA

!   Presently running at 150 Tflops sustained on Titan
!   Volume=403x256 split over 1152 GPUs
!   At the limit of strong scaling using present algorithms

!   Physics goal is to run at Volume=1283x512
!   200x increase in compute power needed (scales super linearly

with volume)
!   Need improved strong scaling and faster computers

7

MULTI-GPU IMPLEMENTATION

!   Scalable multi-GPU solver
is required
!   CUDA streams to overlap

communication and
compute

!   Separate interior halo-
region
update kernels

!   Use MPI for node-to-node
communication

8

WHAT IS LIMITING SCALING?

!   Increasingly latency limited as we approach the
exascale
!   GPUs get faster (wider)
!   Latency remains fixed

!   Latency limiters have many sources
!   Software overhead from calling CUDA API routines
!   Hardware overhead from launching a CUDA kernel
!   Halo-region updates do not launch enough threads to saturate

the GPU
!   Inability to issue use MPI / CUDA asynchronously with respect

to each other

!   Network latency is not presently a limiter

9

CASE STUDY WITH QUDA

Interior
update

Halo updates Device to
Host

Host to
device

Kernel launch
blocked by serialized

cudaMemcpy API overhead
Kernel launch

latency

CUDA APIs cannot
be called until

MPI is complete
Gaps in

runtime are
MPI

10

WHAT IS THE SOLUTION?

!   Possible solution with GPU-initiated communication
!   Software overhead from calling CUDA API routines

!   Avoid API overhead by using GPU-driven communication

!   Hardware overhead from launching a CUDA kernel
!   Use a single kernel for all updates

!   Inability to issue MPI / CUDA asynchronously with respect to
each other
!   GPU kernel-level communication without having to synchronize

with Host

11

WHY SHMEM?

!   Performance on the GPU
!   Massive number of threads
!   Hardware scheduler to hide memory access latency

!   Overheads of send/recv operations
!   Synchronization coupled with data movement
!   Request allocation and queuing
!   Message matching and unexpected messages

!   Light-weight one-sided communication
!   Avoid synchronization and artificial serialization
!   Massively parallel and fine-grained communication
!   GPU-initiated SHMEM

12

EMULATION PLATFORM

!   CUDA IPC (Inter-process (P2P) Communication)
!   Since CUDA 4.2
!   Allows inter-process mapping of GPU buffers (similar to IPC in linux)

!   GPUs should be in the same PCIe root complex

!   Direct transfers between GPUs, bypassing CPU memory and from kernels
!   Data can be moved using direct access (loads/store) or copy API

(cudaMemcpy/cudaMemcpyAsync)

! Upto 8 GPUs – 2 per card – 4
cards under same PCIe root
complex using raiser cards with
PCIe switch

13

NVSHMEM ON P2P PLATFORM

! An OpenSHMEM influenced API, implemented using
! MPI/OpenSHMEM
! CUDA P2P protocol

! It is not a new standard
! Its an experimental tool to understand

! Bottlenecks
! Network requirements
! Semantic gaps

14

! initialization and cleanup (host)
! nvstart_pes, nvstop_pes

! allocation and deallocation (host)
! nvshmalloc and nvshmcleanup

! nvshmem_barrier_all (host)

! nvshmem_get_ptr (host/GPU)

! put and get routines (GPU)
! nvshmem_(float/int)_(p/g)

! nvshmem_(float/int)_(put/get)

! nvshmem_(quiet/fence) (GPU)

! nvshmem_wait/wait_until (GPU)

NVSHMEM API

15

SIMPLIFIED 2DSTENCIL EXAMPLE

u[i][j] = u[i][j]
+ (v[i+1][j] + v[i-1][j]

+ v[i][j+1] + v[i][j+1])/x

16

CHANGE IN THE MODEL

Loop {

 Interior Compute (kernel launch)

 Pack Boundaries (kernel launch)

 Stream Synchronize

 Exchange (MPI/OpenSHMEM)

 Unpack Boundaries (kernel launch)

 Boundary Compute (kernel launch)

 Stream/Device Synchronize

}

-  Kernel launch overheads
-  CPU based blocking synchronization

Traditional

Compute, Exchange and Synchronize
(single kernel launch)

-  Support SHMEM communication and
synchronization primitives from
inside GPU kernel

Envisioned

17

USING NVSHMEM
! Persistent kernel to Get, Compute and Synchronize
! Or intermediate versions with multiple kernels

Persistent kernel version:

Host code

 . . .

 u = (void *) nvshmalloc (size)

 v = (void *) nvshmalloc (size)

 sync= (void *) nvshmalloc (sizeof(int)*npeers)

 . . .

 . . .

 one_kernel <<< >>> (u, v, sync …)

 . . .

 cudaDeviceSynchronize();

18

USING NVSHMEM

 Device Code

 __global__ void one_kernel (u, v, sync, …) {

 i = threadIdx.x;

 for (…) {

 if (i+1 > nx) {

 v[i+1] = nvshmem_float_g (v[1], rightpe)

 }

 if (i-1 < 1) {

 v[i-1] = nvshmem_float_g (v[nx], leftpe)

 }

 u[i] = (u[i] + (v[i+1] + v[i-1] . . .

 contd….

contd….

 /*peers array has left and right PE ids*/

 if (i < 2) {

 nvshmem_int_p (sync[i], 1, peers[i]);

 nvshmem_quiet();

 nvshmem_wait_until (sync[i], EQ, 1);

 }

 //intra-process sync

 ------- //compute v from u and sync

 }

}

19

VISUAL PROFILE - TRADITIONAL

(Time marked for one step, Domain size/GPU – 1024, Boundary – 16, Ghost Width – 1)

20

VISUAL PROFILE - TRADITIONAL

(Time marked for one step, Domain size/GPU – 128, Boundary – 16, Ghost Width – 1)

21

VISUAL PROFILE – PERSISTENT KERNEL

(Time marked for complete run – 30 steps)
(Domain size/GPU– 128, Boundary – 16, Ghost Width – 1)

22

PRELIMINARY RESULTS

Domain Size/
GPU Traditional Persistent Kernel

64 195.33 13.88
128 193.7 21.32
256 193.18 39.77
512 220.28 132.61
1024 375.8 389.65
2048 1319.74 1312.59
4096 5299.23 4776.31
8192 21480.32 18394.88

Time per Step (usec)
(Ghost Width – 1; Boundary – 16)

(Threadsperblock – 512; blocks -15)
(4 Processes – 1 Process/GPU)

tl

Time per Step (usec)
(Domain size – 2048; Ghost Width – 1; Boundary – 2)

(Extrapolation by reducing problem size per GPU, assuming
constant exchange and synchronization time)

Benchmark numbers, beware!!

GPU Count Traditional Persistent Kernel
4 375 389
16 226 132
64 196 39
256 194 21
1K 192 13
4K 202 13
16K 193 12
64K 194 13

0"

500"

1000"

1500"

64" 128" 256" 512" 1K" 2K"

Ti
m
e%
pe

r%S
te
p%
(u
se
c)
%

Stencil%Size%%

tradi/onal" persistent"kernel"

1"

10"

100"

1000"

4" 16" 64" 256" 1K" 4K" 16K" 64K"

Ti
m
e%
pe

r%
St
ep

%(u
se
c)
%

Number%of%GPUs%

Tradi.onal" Persistent"Kernel"

23
4 K40m GPUs connected on a Xeon
E5-2690 socket using PLX switches

CONCLUDING REMARKS

23

! Strong scaling of applications on GPU clusters
! Important for problems being solved
! Overheads from CPU-controlled communication

! NVSHMEM – a tool to understand
! Overheads
! Requirements
! Semantic gaps

! Influence standards to move support communication
within parallelism

Thank you!!

Questions?

