
McBride, Crystal 
1 

Iterative Solution of Hermite Boundary Integral Equations 

 

Abstract.    Iterative methods for solving linear equations are especially useful for systems involving a large number 
of variables, and for matrices that are sparse (a sparse matrix is one in which most entries are zero).  Such systems arise 
when a partial differential equation is solved by means of a cubic Hermite approximation of the corresponding 
boundary integral equation.  The Hermite approximation relies on knowledge of the function derivatives (gradient), and 
these gradient equations are sparse.  By employing a sparse representation of these matrices, e.g., compressed row 
storage, the memory and the computational cost of working with the matrix can be significantly reduced.  The goal of 
this work has been to exploit the sparsity present in the Hermite matrices, thereby reducing the cost of the matrix vector 
multiplication required by the iterative solver.  In this project, a compressed row storage (CRS) format has been 
implemented; the primary task in constructing the CRS was the determination of where the non-zero entries would be 
located.  Timing results, comparing the computational costs of the sparse and non-sparse algorithms will be carried out 
as future research.  This work was motivated by applications of the Hermite approximation for moving boundary 
problems.  For these simulations, a boundary integral solution is obtained at every time step, and thus it is critical to 
reduce the time required by the linear solver.  Other possible applications of this work include elasticity, geomechanics, 
electromagnetics, acoustics, low- Reynolds number hydrodynamics, biomechanics, and off- shore structures. 
 
 

 In computational mathematics, iterative methods are derived from an initial guess 

in the attempt to find successive approximations. In former work such as “A Cubic 

Hermite Boundary Integral Approximation”, it was shown that a differentiable (cubic 

Hermite) boundary integral interpolation should be effective for the solution of moving 

boundary problems. Moving boundary problems in mainly used in science and 

engineering. The goal is to track the time step of a “moving boundary”, e.g, modeling the 

breaking of a water wave, the dripping of a faucet, or even measuring the wavelength of a 

sound wave. The iterative Hermite algorithm used in the project deals with a 3N by 3N 

system of linear equations. It is known to be linear due to the form of A x = b.  A 

represents the matrix of the general form: a ij  where i represents the rows and j represents 

the columns. The matrix-vector multiplication can then be written as: 
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For each a ij  in this submatrix (a matrix inside matrix) is N by N. The vector x1 represents 

the unknown boundary values of potential (the work required to move a unit from a 

reference point to a designated point) or flux (the rate of flow through a given surface). 

The first block row of equations if the discretized form (defined for a finite or countable 

set of values) of the exterior limit boundary integral equation for the Laplace equation. 

The vectors x2 and x3 represents the gradient (vector having x and y components that are 

the partial derivatives of a function with respect to the variables). The second and third 

rows are the difference of the interior and exterior limits. In addition, the gradient 

equations of the interpolation (estimate of a value of a function or series between two 

values) algorithms are sparse. Since the gradient equations only involve singular integrals 

over local fields/ boundedness, A2j and A3j are sparse matrices. Therefore, the diagonal 

blocks A22 and A33 are symmetric positive definite, then A22 = A33 = 0. First, assume an 

initial guess of zero for x2 and x3 and solve for x1. Lastly, update the values for x2 and x3 

by solving for them.  

 

 

Step 1:   
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Step 2:   

 

 

 

 

 

A23 and A32 are considered the weakly (carefree) couple. Weakly couple is defined as a 

couple such that their greatest common divisor is one and at least one of the couple is 

prime. The weakly couple will not specifically affect the results so they are excluded 

from the sparse transformations.  

 

 In the current project, the primary task was to manipulate the advantage of the 

structure of a sparse matrix when determining the location of the non- zero elements. The 

concept of sparse data is to compress the row, column, or diagonal storage, which will 

significantly reduce memory usage and computing time. However, the sparse matrix 

storing requires a scheme for knowing how to construct the matrix. Employing the 

compressed row storage (CRS) format required two main steps. The first step consisted 

of constructing three vectors. The CRS format is free information for the general public 

that explains the definition and the purpose for these vectors. The value vector is simply 

the non- zero matrix entries. The row- pointer vector tells the row location of the non- 

zero(s). The column- pointer vector is the non- zero matrix entries from the column. The 

three vectors must be constructed in the Fortran subroutines for the remaining four sparse 
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matrices: A21, A22, A31, and A33. The next step is to perform a new matrix multiplication 

using the three vectors that were created. The bulk of the work included debugging, as 

usual with computer programming languages. One main task consisted of checking the 

results. The values of the potential, flux, and the gradient were supposed to remain the 

same as the non- sparse algorithms. Only a slight difference in the results was expected.  

 

 

 

 

 

 

 

 

 

As one can see from the two matrix- vector multiplications, the summation has been 

reduced from N amount of times to a known value such as k2.     

 In conclusion, timing results and comparing the computational costs of the sparse 

and non- sparse algorithms will be carried out. For example, if there were two N by N  

matrices, the non- sparse algorithms would take 2N2 operations per iteration. The sparse 

algorithms would produce a total of 6N operations per iteration. 2N2 versus 6N is an 

obvious dramatic difference. Another advantage of using sparse is the capability to solve 

larger problems using a desktop or a personal computer (PC). The value of N depends 

strictly upon the problem that needs to be solved. If the value of N is roughly estimated at 
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15,000, then a supercomputer might be necessary. The timing results will vary depending 

on the value of N, as well as the quality of the machine. Naturally, a supercomputer will 

run phenomenally faster than an average PC.  For the application of moving boundary 

problems, higher accuracy and faster computing are crucially essential. 

 Applications of boundary element method (BEM) encompass a variety of fields. 

Elasticity, structural mechanics, acoustics, and cathodic protection/ offshore structures 

are only a few examples. Moreover, elasticity refers to the manner in which solids 

respond to stress, or the application of the force over a given unit area. Structural 

mechanics is defined as the computation of internal forces and stresses within particular 

structures. Acoustics is the study of the production, transmission, and reception of sound. 

Cathodic protection is a technique to control or prevent stress corrosion of a metal 

surface. It’s often used in offshore structures such as rigs, drilling, and production 

platforms. The definitions can verify the extreme importance of time evolution. 

Implementation of sparse representation of the Hermite matrix will permit solving BIEs 

with high accuracy, without highly refined grids. The future research is targeted toward 

extending the result to three dimensions (3D), which will result in a more noticeable 

decrease in the computational costs of sparse versus non- sparse algorithms. 

     

 

 

 

 


