Message Passing Interface vs. Multi-threading:
Which Parallelization Technique is More Efficient?

OAK RIDGE Jonathan C. Rann WINSTON
NATIONAL

SALEM

Yeosgumim \/\/inston-Salem State University STATE

Research Alliance in Math and Science
Computational Sciences and Engineering Division, Oak Ridge National Laboratory
Mentor: Dr. Pratul Agarwal

Introduction

U Parallel computing Is a valuable technigue used for
exploiting the combined power of hundreds to thousands
of processors, avalilable on PC clusters and
supercomputers, for a single scientific simulation.

d Message Passing Interface (MPI) is a popular software
iInfrastructure that allows parallel programming on a variety
of computer hardware.

J A more recent parallel programming paradigm, known as
multi-threading, focuses on utilizing the power of Multi-core
Processors.

d MPI and multi-threading programming have been shown to
provide different benefits to applications in various
environments.

Goals

 To characterize the efficiency of applications using
alternate parallel programming methods

J To determine which parallelization technique is better
suited for each application in different environments

W To help create optimized biological applications whiz
utilizes the maximum efficiency of the computer hardware

Results

J  For sequential (single-processor) runs, the time required
for solution increases with increasing size of array.

d  For parallel runs, the time required for solution decreases
as the number of processors are increased:. 1, 2, 4 and
8 processors.

J  Multi-threaded version of the program Is currently under
development.

Sequential Mergesort MPI Inplementation of Mergesort

2a000a

- .";. I. [ ';. ..';. -T:::
timber of Bements Fumber of Elements

Fig. 2. Merge-sort efficiency comparisons (sequential vs. parallel).

Application Parallelization

d Determine parts of programs that will benefit from
parallelization

J Create parallelized programs using both MP| and multi-
threading techniques

d Compare efficiency for a sample program: Merge sort

9342201310587 2 |
C Divide the data set in half ma;n (MPI ??9‘5)
egin master process
9 3 4 220 1 | 3 10 5 8 7 2 initialize MPI emnvirormmnent
"/ \ get task identification and info (rank, proc)
9342201 3105872 Send MPI to sort
Sort each haif lnltJ:allZE sort
Receive MPI from sort
1349 220 2357810 End MPI enviromnent
Merge the halves t end
obtain sorted list _ _
12334578910220 sort (List[], left, right)

begin // slave processes
if left < right then

sort (List[], left, right) Receive MPI
begin Mediate jobs among processors

if left < right then midt=lﬂlift +lrifht’.é 2
mid = (left + right) / 2 sort(list[], left, mid)
_ _ sort(list[], mid + 1, right)
sort (list[], left, mid) merge (List[], left, mid, right)

sort (list[], mid + 1, right) Send sorted data to main
merge (list[], left, mid, right) end if
endif end
end
Sequential merge-sort MP! implementation of merge-sort

Future Research

 Further explore efficiency comparisons once multi-
threaded program is developed

J Create more efficient biological applications based on
research using MPI| and multi-threading techniques

 Future supercomputers will have dual-core and quad-

core processors. These studies will help In utilizing
the CPU power efficiently.

IF-’
Fle !!I 4
°

http://www.vigyaanCD.org/

Fig. 1. Vigyaan, an electronic workbench used for computational biology,
will play a vital role in future research involving application optimization.

The Research Alliance in Math and Science program is sponsored by the Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing R esearch, U.S. Department of Energy. The work was performed at the Oak Ridge
National Laboratory, which iz managed by UT-Battelle, LLC under Coniract No. De-AC05-000R22725. Thiz work has been authored by a contractor of the U.5. Government, accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publizh or

reproduce the publizhed form of this contribution, or allow others to do zo, for U.S. Government purposes.

The author would like to thank Dr. Pratul K. A garwal for the opportunity to work on this project. Many thanks also go to Dr. Elva Jones, chair of the Computer Science m

depattment at Winston-Salem State TTniversity, as well as Tudy Burns. Finally, special thanks go to Debhie MceCoy for making provision for this research experience.

//’ Office of
; —4 Science

U.5. DEFARTMENT OF ENERGY




