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Introduction

U Parallel computing Is a valuable technigue used for
exploiting the combined power of hundreds to thousands
of processors, avalilable on PC clusters and
supercomputers, for a single scientific simulation.

d Message Passing Interface (MPI) is a popular software
iInfrastructure that allows parallel programming on a variety
of computer hardware.

J A more recent parallel programming paradigm, known as
multi-threading, focuses on utilizing the power of Multi-core
Processors.

d MPI and multi-threading programming have been shown to
provide different benefits to applications in various
environments.

Goals

 To characterize the efficiency of applications using
alternate parallel programming methods

J To determine which parallelization technique is better
suited for each application in different environments

W To help create optimized biological applications whiz
utilizes the maximum efficiency of the computer hardware

Results

J  For sequential (single-processor) runs, the time required
for solution increases with increasing size of array.

d  For parallel runs, the time required for solution decreases
as the number of processors are increased:. 1, 2, 4 and
8 processors.

J  Multi-threaded version of the program Is currently under
development.
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Fig. 2. Merge-sort efficiency comparisons (sequential vs. parallel).

Application Parallelization

d Determine parts of programs that will benefit from
parallelization

J Create parallelized programs using both MP| and multi-
threading techniques

d Compare efficiency for a sample program: Merge sort
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begin // slave processes
if left < right then

sort (List[], left, right) Receive MPI
begin Mediate jobs among processors

if left < right then midt=lﬂlift +lrifht’.é 2
mid = (left + right) / 2 sort(list[], left, mid)
_ _ sort(list[], mid + 1, right)
sort (list[], left, mid) merge (List[], left, mid, right)

sort (list[], mid + 1, right) Send sorted data to main
merge (list[], left, mid, right) end if
endif end
end
Sequential merge-sort MP! implementation of merge-sort

Future Research

 Further explore efficiency comparisons once multi-
threaded program is developed

J Create more efficient biological applications based on
research using MPI| and multi-threading techniques

 Future supercomputers will have dual-core and quad-

core processors. These studies will help In utilizing
the CPU power efficiently.

IF-’
Fle !!I 4
°

http://www.vigyaanCD.org/

Fig. 1. Vigyaan, an electronic workbench used for computational biology,
will play a vital role in future research involving application optimization.
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