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Simulate response of Antarctic
ice sheet to recent climate

change and predict future |

What is the forcing on What physics govern
the ice sheet? — the r_espoﬁsetgf the —
ice sheet:
} '
l_ : Stress
: Coupling transmission in
Atmospheric between ice || jce masses and
variability? and sssociated
Oceanic variability? environment dynamics
Direct of indirect?

Migration of the
grounding line
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Components of an ice sheet A

Slessor

Fichner-Ronne ~ Glacier __
e Shet

e slow-flowing interior (~10 m/yr) g .
e fast-flowing ice streams (>500 m/yr) e \\y
e floating ice shelves e m'-f a
e grounding line
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Antarctic mass balance

Wingham and others
(2006) use ERS radar
altimetry to determine
change in surface
elevation from 1992 to
2003.

Elevation change (cm)
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Amundsen Sea mass balance

1995

Wingham and others
(2009) use cross-
calibrated ERS-2 and

ENVISAT radar 4
altimetry to extend L
time series from 1995 e o
to 2008.
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Forcing is thought to be
oceanic

observations suggest
that thinning of floating
ice shelves is
ubiquitous (~ 4 m/yr)

thinning results in
retreat of the
grounding line (as
mapped by SAR
interferometry)

pattern of thinning
excludes atmospheric
(snowfall) and internal
dynamics

Shepherd and others (2004)
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Coupling ice shelves to grounded ice

Payne and others (2004)
showed how
perturbations to ice shelf
could be transmitted up
the ice stream on decadal
time scales
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Mechanism

increased flow

increased flow
upstream

drawdown of ice
surface (thinning)

local increase in surface
slope (gravitational
driving)
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Basic components of model

e stress solution

— first-order
approximation
to shallow ice

— No acceleration

— hydrostatic
balance
aSSL!med N normal shear gravitational
vertical stress stresses driving

deviators
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Glacier force balance

© Bob Bindschadler
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General first-order model

e solve for 28Txx+afyy _|_8Txy +@‘L’xz :_pg@
horizontal ox Ox Oy Oz Ox
velocities , 0 ,0u 9 v

e substitute for 8 f@x 8xf8y+
stresses using 0 f(ou ov) 0 féu Os
constitutive oy 2 [8)/ +8x) 220z ' Cax
relation for ice ] _tn)/
(Glen’s flow law) oul v (ou ovY 2

e two 3d elliptical 1 | Ox +8y +[§+5) .
equations coupled |/ =747 ),
through effective [[a” a") S J
viscosity Ay &)z oz )]
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First-order model

e need to use stretched
coordinates because of
irregular geometry in
vertical

e complicates each
horizontal second
derivative term
requires (1 = 5)

e roughly 40 terms in
total
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Model geometry and boundary conditions

force balance

viscous slip law © = B2u
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IPCC Assessments

4th AR (2007) provides
sea-level estimates but
explicitly excludes this
type of process

Previous coupled
modelling only allows ice-
atmosphere coupling

Huybrechts and de Wolde
(1999) increased find
precipitation in interior

However, only mechanism
of mass loss was surface
melt, which reqwred
warming of ~8 °C, which
led to grounding- I|ne
retreat
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Basic components of model

e stress solution

— first-order
approximation
to shallow ice

— No acceleration

— hydrostatic
balance
assumed in
vertical
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Coupling ice sheets to oceans

Wind Open Northward transport
e shore

) lead w, Grounded
;g ice sheet
Climate B
change 'SW@ Numerics of
%/// grounding line

Bedrock

migration

Southern ﬂ Ice shelf '

Floating
Ocean | L—> ocean <—|_> ice shelf
cavity
plume model
HadCM3 and OCCAM
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A. Modelled ocean variability

Key control thought
to be upwelling of
Circumpolar Deep
Water (CDW) on to
continental shelf at
depth of ~500 m

NOT direct oceanic
warming because this
water mass is up to a
century old

Only observations
suggest that 1994
was warmer (by ~0.5
°C) than 2000
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Latitude
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OCCAM coastal current system in area

Temperature (°C) between 500-1000 m depth
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OCCAM potential temperature
Monthly means varying with depth and latitude from 1985-2003, in vicinity of Pine
Island Glacier
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B. Coupling ocean to ice

Interaction of ocean ~ W Open Nortward transport
and ice within cavity e lead ik
dominated by plume
of buoyant, melt-rich
water that flows
along underside of
shelf

©
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Numerical model

o vertically integrated, time

dependent ice

e mass balance gives plume melt/freeze
depth (D) incorporates melt and
entrainment ——>|plume . )

e horizontal momentum balances v
(U and V) (Coriolis, lateral and TSUV| 4\

surface drag, buoyancy etc
included)

e temperature (T) and salinity (S) ambient
transport with lateral mixing

entrainment

¢ linearized equation of state for
density

e run to equilibrium in ~ 10 days
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Shelf topography

: : Depth of | helf b
e relationship between epth of ice shelf base (m)

upper-surface
elevation and thickness
obtained from Corr and
others (2001) flight
lines

e relationship extend to
whole ice shelf based
on Bamber DEM

e grid resolution of 1 km
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Entrainment of ambient water
Salinity (%s)

338 340 34.2 344 346

e 1994 profiles of ambient 0
temperature and salinity =
from Jacobs and others 3
(1996) =
400 -
600 m
600 +
BOO -
1000 ; : ' .
Scale -3 -2 .. 0 1
Potential Teamperature (°C)
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Path of plume
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Mass balance

Entrainment rates in km yr!

e entrainment
comprises 99%
of the mass input
to the plume

e entrainment
concentrated at
depth close to
the grounding
line
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Mass balance

_ Melt rates in m yr!
e very high melt Y

rates predicted
with 10 km of the

grounding line

e secondary
pattern governed
by path of plume

e modelled tuned
to reproduce
mean melt rates
obtain from ice-
divergence
calculations (see
later)
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Quick estimate ...

e assuming ice velocity of 2
km yr1 gives transit time of
5 yrs for 10 km

e estimate melt rate based on
thickness reduction in this
time

e two 1988 BAS flight lines
give melt rates of 83 and
120 m yrt
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Perturbation of ambient water mass

e Pine Island ice
shelf observed to
be thinning at
~4 myrt
(Shepherd and
others 2004)

e can estimate
magnitude of
warming needed
to generate this
change of melt

e ~0.3 °C is close
to OCCAM and
observed
variability

ASCR SciDAC, Annapolis Sept. 2009 :

i 0
8 3445
©

melt rate, mean value 20.57 m/yr

20 km

South
-

34
[e]

Slide 29

200

150

100

.l T r '50

L 50

-100

-150

-200

-% University of

B BRISTOL



C. Numerical modelling of GL migration

3000

Full effect of ocean
warming can only

be simulated if GL 2000
allowed to retreat

Cross-section through West Antarctica

1000 |-

There are long-
standing issues
with the modelling
this process -1000 ¢
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o
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Issues

Surface

° WOI"k by VIElI and Payne (2005) _______ Sealevel ----A=———" T
showed that fixed grid can not model e
migration well (NN B
in 1-d. a stretched coordinate - e
systems works but difficulties in s T4 o o range0s s
implementing in 2-d. B, T pmmewam
grounding line affects both basal gl e )
traction and gravitation driving g °
(break in surface slope) - ————
recent theoretical advances (e.g., 55 B
Schoof) suggest problem is at least | e
solvable Groer i

S o
also issues associated with g < Sl cmeiotzin
incorporating ice streams with width §. 90 2 g i
<50 km s 0.5 15 2 25 3 35
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Adaptive Mesh Refinement

thickness profiles
1200

Nests, doubling

resolution
dx = 6.3km,
dx = 3.1km,
= Base domain dx = 1.6km etc...
= dx =12.5km Mesh
of refinement with
grounding line
| Schoof solution feedback
o} 100 200 300 4(;0 500 600 700 800 : /9K
suggests grid at Fixed
grounding line may still grid
have to be < 1km
12.5km 200m 25m
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Nested grid

e need to solve 3d
elliptical equations at
each time step

e very computationally
expensive

e can avoid some of
this expense by using
nested grids

e allow focus on ice
streams and
grounding lines

e 5 km BEDMAP dataset
e WALIS ice streams
e grounding line
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Summary

Simulate response of Antarctic

ice sheet to recent climate
change and predict future |

What is the forcing on
the ice sheet?

What physics govern
— the response of the

r

Oceanic variability?‘/
Atmospheric

variability? o
Direct of indirect? ~

ice sheet?
}
: Stress
Coupling transmission in
between ice || jce masses and
and oceay” associated‘/
dynamics
Role of basal Migratio_n of_th
processes grounding line
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