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Q Joint project between

Lawrence Berkeley National Laboratory (Pl: Esmond Ng)
Los Alamos National Laboratory (co-Pl: William Lipscomb)

Q Input for slides comes from

Daniel F. Martin
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Ice Sheet Modeling

Q Current state-of-the-art:
= Glimmer-CISM - serial code.
= Use uniform gridding.
= Can model Greenland at a horizontal resolution of ~5 km.

Q Higher resolution (of ~1 km) is needed to accurately model the dynamics
of ice streams, iceberg calving, grounding-line migration.

A Continue to use uniform gridding for high-resolution modeling is infeasible,
particularly for Antarctica.

= Simulating all of Greenland at 1-km resolution requires ~40M nodes, assuming
20 vertical layers per ice column.

« ~1.6M nodes at 5-km resolution.
= |ssues: memory requirements, turnaround time.

oy ; — 2
é’f‘%% U.S. DEPARTMENT OF Office of @?g?@l@g .’_'/’J'>| A ==
ENERGY Science : ..L_\?o%ﬁ'sm?é

:::::::




Project Goal and Approaches

O Should take advantage of the fact that, for example, ice velocities
towards the centers of ice sheets are much slower than near the edges.

= Useful to have adaptive gridding in regions with higher velocities.
* Incorporate adaptive mesh refinements (AMR).

" , Much higher resolution
)*3 S (1 km versus 5 km)

required in regions of
high velocity (yellow -
green).

Sea

Ross Sea

0 1.5 km/year
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Project Goal and Approaches

O Need to improve the performance of high-resolution ice sheet modeling
due to increase in problem size.

= Attain high performance via parallel computing, algorithmic improvements,
and auto-tuning.

« Implement Glimmer-CISM in the Chombo framework.

« Apply auto-tuning to improve performance of computational kernels.
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Block-Structured Local Refinement

O Refined regions are organized into rectangular
patches. 1Or
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O Refinement in time as well as in space for
time-dependent problems.
Q Algorithmic advantages:

= Build on mature structured-grid discretization
methods.

= Low overhead due to irregular data structures,
relative to single structured-grid algorithm.
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Chombo: AMR Software Framework

O Goal: to support a wide variety of applications that use AMR by means of a
common software framework.

Q Approach:

= Mixed-language programming: C++ for high-level abstractions, Fortran for
calculations on rectangular patches.

= Bulk-synchronous SPMD model based on flat MPI parallelism. Global metadata
replicated for all processors.

= Re-useable components, based on mapping of mathematical abstractions to

classes. Components are assembled in different ways to implement different
applications capabilities.

= lLayered architecture, that hides different levels of detail behind interfaces.

= High performance: models developed in Chombo are “born parallel”. Scalability
to 10K processors is routine, 100K processors is under active development.

Q Supported as part of the SciDAC APDEC CET.
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Layered Library Framework

O Layered software architecture made up of reusable components:
= Layer 1: Data and operations on unions of rectangles - set calculus, rectangular
arrays (with interface to Fortran). Data on unions of rectangles.

= Layer 2: Tools for managing interactions between different levels of refinement
in an AMR calculation - interpolation, averaging, coarse-fine boundary
conditions.

= Layer 3: Solver libraries - geometric multigrid solvers on unions of rectangles,
AMR hierarchies; hyperbolic solvers; AMR time stepping.

= Layer 4: Complete parallel applications.

= Utility Layer: Code instrumentation, interoperability libraries - APl for HDF5 |/0,
AMR data alias.

O Applications users come in at various levels depending on their application
requirements.

O Modest extensions to Chombo required for ice sheet application:
horizontal refinement, line solver-based relaxation schemes for geometric
multigrid solvers.
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Examples of Chombo Capabilities

AMR Embedded Boundary calculation of flow in a carotid artery
demonstrates that rectangular refined blocks can be used to
efficiently cover geometrically complex regions (in this case, the
surface of the artery).

AMR for incompressible Navier-Stokes illustrates the ability to
perform frequent regridding in a time-dependent calculation.

T T — — T T T —7

0001 error(density,
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L1(error)

* Y
Calculation of fourth-order accurate solutions to AMR calculation of flow in the San Francisco Bay and Delta using 2D
compressible Euler equations demonstrates infrastructure shallow-water equations. Refined grids are used to resolve the details of
for AMR on mapped grids. Each block is a 32x32 patch. narrow channels.
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Block-Structured AMR Performance

Q Gas Dynamics Benchmark AMR Gas Dynaries Benchmark Weak Scaling

= PPM Godunov scheme, fixed-size patches. e

= 96% efficient scaled speedup over range of e E
128-8192 processors (195-210 seconds). . T G S — ‘—

. . . . Losk | _

= Cost / grid point about 1.1x that of ideal serial E 124 i
calculation. ]

= 16x speedup over uniform-grid calculation with ..L .
the same fine-grid resolution. ) Y H P [
. Concurrency

Q Poisson Benchmark

= Geometric AMR Multigrid, variable-sized patches. AMRPolsson Benchmark Weal Scaling

= 87% efficient scaled speedup over range of TR ]
256-8192 processors (8.4-9.5 seconds). P e o s ]

. . . . 0 ¢ @ ¢ | . |

* Cost / grid point about 2.2x that of ideal serial | |
calculation. =1 |

= 48x speedup over uniform-grid calculation with ~ «- "~~~ 771
the same fine-grid resolution. -
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Models and Discretizations

O Baseline model is the one used in
Glimmer-CISM:

= Logically-rectangular grid, obtained
from a time-dependent uniform

mapping.
= 2D equation for ice depth, coupled with o a ta a1 ;
steady elliptic equation for the horizontal 2/ 2&—Z+&—; i a—Z+a—: e A
. . . . z z
velocity components. The vertical velocity is ; . : :
] . Jdv  Jdu 0 du Jv Jd .dv as
obtained from the assumption of 2|2 S| = pg
. o y Jdy Jdx| Jdx dy dx| dz Jz ay
incompressibility. ' ' ' '
. . . . T k _, ®  IT
= Advection-diffusion equation for temperature. E=EV T—u-VT+E—wE

O These all have straightforward stable discretizations on rectangular grids that
can easily be extended to block-structured refined grids. Implementation will
be based on constructing solvers using the Chombo libraries.

O As part of this project, we will also provide capabilities for alternative
models [Dukowicz, Price, and Lipscomb (2009)]
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Automatic Performance Tuning

O Compilation alone is unlikely to yield good performance on any
architecture.

O Hand optimization maximizes a kernel’s performance on one architecture.

O But, it is desirable to have Performance Portability, the ability to write a
program once and achieve good performance on any architecture today or
tomorrow.

0 Auto-tuning automates the enumeration and exploration of possible
optimizations, and exploits a computer’s processing power to quickly
benchmark them to find the fastest.

O Auto-tuning has been demonstrated in packages such as ATLAS, FFTW,
MKL, OSKI where auto-tuned routines/functions were encapsulated into
libraries.

O Auto-tuning (like choice of compiler) is completely orthogonal to the
algorithms and computational methods employed.
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Evolving Auto-tuning

QO The advent of multicore demanded changes to auto-tuners
= explore styles of parallelism (bulk synchronous, DAG, hybrid, ...)
= tune in parallel (to emulate runtime SPMD behavior)

* new bandwidth and cache optimizations

Q Auto-tuning Compilers
= replace code generation selection heuristics with search
= limited to transforms deemed legal by language semantics

Q Auto-tuning Frameworks

= adopt code parsing capabilities of compilers but may allow transforms that are
legal only with domain-specific knowledge

= (less general/portable, better performance)

Q Application-specific auto-tuner
= create an auto-tuner tailored to a specific application
= least general/portable, best performance
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Prior Work: Auto-tuning SpMV

O We created a multicore SpMV auto-tuner.
O Common code that can be reused on a wide range of applications
O Ran on a series of matrices of varying size, sparsity, nonzeros per row
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aQ Performance and improvement vary from architecture to architecture and
matrix to matrix.
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Prior Work: Auto-tuning Stencils

O We explored optimizing finite difference operators and prototyped an
auto-tuner for the Laplacian 7-point stencil. (SC’08)

Q Delivered good scalability and performance on modern architectures.

8.00 Opteron 2356 3.00 Xeon X5355 3.00 - BlueGene/P
2,00 (Barcelona) (Clovertown)
2.50 B 2.50
6.00
2.00 2.00 -
£ 5.00 1 J
g. 4.00 8‘ 1.50 g' 1.50 Auto-tun.ed
T T T (ISA specific)
O 3.00 | LY (0]
5 00 || L B 1.00 1.00 Auto-tuned
(portable C)
1.00 0.50 0.50
Reference
0.00 0.00 T T T 0.00
1 2 ‘ 4 8 1 2 4 8 1 2 4
(single socket) 2P (single socket) 2P (single socket)
Cores Cores Cores

O More recently embraced a framework approach to port optimization
knowledge from one kernel to another ~ e.g. Laplacian—>Divergence, or
rectahedral->hexagonal grids. (CUG’09)
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Prior Work: Auto-tuning LBMHD

QO The LBMHD application is rather unique in its computation
(LBM that combines CFD & EM) and requisite optimizations.

QO Constructed an application-specific auto-tuner for it. (IPDPS’08)
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Prior Work: Auto-tuning LBMHD

QO The LBMHD application is rather unique in its computation
(LBM that combines CFD & EM) and requisite optimizations.

QO Constructed an application-specific auto-tuner for it. (IPDPS’08)

QO Extended single node auto-tuner to MPI & hybrid
auto-tuning at scale. (CUG’09)

Q Auto-tuning delivered a 3x increase in
application performance on 512 cores
of the NERSC XTA4.
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Auto-tuning Work

O We will extend our experience to improve the performance of linear
solvers in Glimmer-CISM.

O For matrix-free structured grid representation, we may implement:
= an application-specific auto-tuner for maximum performance, or
= A code generation framework to cope with changing functionality.

O We will investigate the possibility of subjecting an AMR-based solution to
auto-tuning of the computational kernels, communication, and load
balancing components.
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Personnel

Q Pl: Esmond G. Ng

O AMR work Q Linear solvers
= Daniel F. Martin = Xiaoye Li
= Woo-5un Yang = Esmond Ng

O Collaborators:

= William H. Lipscomb
(LANL)

= William D. Collins
= Michael Wehner

QO Auto-tuning
= Samuel Williams
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Summary

O We will address an important aspect of climate change by utilizing the
expertise in applied mathematics and computer science at LBNL.

O We will develop an efficient parallel ice sheet modeling code by

» incorporating structured-grid AMR to increase resolution in regions where
changes are more rapid,

= improving performance and convergence of multigrid/multilevel solvers in the
Chombo framework, and

= developing auto-tuning techniques to improve performance of key
computational kernels.
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Tentative Deliverables

aQ Year 1:

= Completing basic algorithm and software design, and implementing basic solver
components for ice-sheet model in the Chombo framework as independent
software components, including testing and verification.

= Applying auto-tuning to key computational kernels in the existing Glimmer-CISM
code. Investigating the impact of linear equations solvers on the performance of
Glimmer-CISM.

O  Year 2:
= Prototyping and validating AMR-based code

= |nvestigating performance optimization of the AMR code using auto-tuning
techniques.

Q Year 3:
= Performing detailed algorithmic and software improvements.
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