
Esmond G. Ng 
Lawrence Berkeley National Laboratory 

September 16, 2009 



  Joint project between 

  Lawrence Berkeley National Laboratory (PI: Esmond Ng) 
  Los Alamos National Laboratory (co-PI: William Lipscomb)  

  Input for slides comes from 

  Daniel F. Martin 
  Samuel W. Williams 



  Current state-of-the-art: 
  Glimmer-CISM – serial code. 
  Use uniform gridding. 
  Can model Greenland at a horizontal resolution of ~5 km. 

  Higher resolution (of ~1 km) is needed to accurately model the dynamics 
of ice streams, iceberg calving, grounding-line migration. 

  Continue to use uniform gridding for high-resolution modeling is infeasible, 
particularly for Antarctica. 
  Simulating all of Greenland at 1-km resolution requires ~40M nodes, assuming 

20 vertical layers per ice column. 
•  ~1.6M nodes at 5-km resolution. 

  Issues:  memory requirements, turnaround time. 



  Should take advantage of the fact that, for example, ice velocities 
towards the centers of ice sheets are much slower than near the edges. 
  Useful to have adaptive gridding in regions with higher velocities. 
•  Incorporate adaptive mesh refinements (AMR). 

Much higher resolution 
(1 km versus 5 km) 
required in regions of 
high velocity (yellow  
green).  

[Rignot & Thomas, 2002]  



  Need to improve the performance of high-resolution ice sheet modeling 
due to increase in problem size. 
  Attain high performance via parallel computing, algorithmic improvements, 

and auto-tuning. 
•  Implement Glimmer-CISM in the Chombo framework. 
•  Apply auto-tuning to improve performance of computational kernels. 



  Refined regions are organized into rectangular 
patches. 

  Refinement in time as well as in space for 
time-dependent problems. 

  Algorithmic advantages: 
  Build on mature structured-grid discretization 

methods. 
  Low overhead due to irregular data structures, 

relative to single structured-grid algorithm. 



  Goal: to support a wide variety of applications that use AMR by means of a 
common software framework.  

  Approach: 
  Mixed-language programming: C++ for high-level abstractions, Fortran for 

calculations on rectangular patches. 
  Bulk-synchronous SPMD model based on flat MPI parallelism. Global metadata 

replicated for all processors. 
  Re-useable components, based on mapping of mathematical abstractions to 

classes. Components are assembled in different ways to implement different 
applications capabilities. 

  Layered architecture, that hides different levels of detail behind interfaces. 
  High performance: models developed in Chombo are “born parallel”. Scalability 

to 10K processors is routine, 100K processors is under active development. 

  Supported as part of the SciDAC APDEC CET. 



  Layered software architecture made up of reusable components: 
  Layer 1: Data and operations on unions of rectangles – set calculus, rectangular 

arrays (with interface to Fortran). Data on unions of rectangles. 
  Layer 2: Tools for managing interactions between different levels of refinement 

in an AMR calculation - interpolation, averaging, coarse-fine boundary 
conditions.   

  Layer 3: Solver libraries – geometric multigrid solvers on unions of rectangles, 
AMR hierarchies; hyperbolic solvers;  AMR time stepping. 

  Layer 4: Complete parallel applications.   
  Utility Layer: Code instrumentation, interoperability libraries - API for HDF5 I/O, 

AMR data alias.   

  Applications users come in at various levels depending on their application 
requirements. 

  Modest extensions to Chombo required for ice sheet application: 
horizontal refinement, line solver-based relaxation schemes for geometric 
multigrid solvers.   



AMR for incompressible Navier-Stokes illustrates the ability to 
perform frequent regridding in a time-dependent calculation. 

Calculation of fourth-order accurate solutions to 
compressible Euler equations demonstrates infrastructure 
for AMR on mapped grids. Each block is a 32x32 patch. 

AMR Embedded Boundary calculation of flow in a carotid artery 
demonstrates that rectangular refined blocks can be used to 
efficiently cover geometrically complex regions (in this case, the 
surface of the artery). 

AMR calculation of flow in the San Francisco Bay and Delta using 2D 
shallow-water equations. Refined grids are used to resolve the details of 
narrow channels. 



  Gas Dynamics Benchmark 
  PPM Godunov scheme, fixed-size patches. 
  96% efficient scaled speedup over range of 

128-8192 processors (195-210 seconds). 
  Cost / grid point about 1.1x that of ideal serial 

calculation. 
  16x speedup over uniform-grid calculation with 

the same fine-grid resolution. 

  Poisson Benchmark 
  Geometric AMR Multigrid, variable-sized patches. 
  87% efficient scaled speedup over range of 

256-8192 processors (8.4-9.5 seconds). 
  Cost / grid point about 2.2x that of ideal serial 

calculation. 
  48x speedup over uniform-grid calculation with 

the same fine-grid resolution.  

Regular 

Regular 



  Baseline model is the one used in  
Glimmer-CISM: 
  Logically-rectangular grid, obtained 

from a time-dependent uniform 
mapping. 

  2D equation for ice depth, coupled with 
steady elliptic equation for the horizontal 
velocity components. The vertical velocity is 
obtained from the assumption of 
incompressibility. 

  Advection-diffusion equation for temperature. 

  These all have straightforward stable discretizations on rectangular grids that 
can easily be extended to block-structured refined grids. Implementation will 
be based on constructing solvers using the Chombo libraries. 

  As part of this project, we will also provide capabilities for alternative 
models [Dukowicz, Price, and Lipscomb (2009)] 

  
∂H
∂t

= b−∇ ⋅Hu

  

2 ∂

∂ x
f 2 ∂u

∂ x
+
∂v
∂ y









 +

∂

∂ y
f ∂u
∂ y

+
∂v
∂ x









 +

∂

∂ z
f ∂u
∂ z

= − ρg ∂s
∂ x

2 ∂

∂ y
f 2 ∂v

∂ y
+
∂u
∂ x









 +

∂

∂ x
f ∂u
∂ y

+
∂v
∂ x









 +

∂

∂ z
f ∂v
∂ z

= − ρg ∂s
∂ y

   

∂T
∂t

=
k
ρc

∇2T − u ⋅∇T +
Φ

ρc
− w ∂T

∂ z



  Compilation alone is unlikely to yield good performance on any 
architecture. 

  Hand optimization maximizes a kernel’s performance on one architecture.  

  But, it is desirable to have Performance Portability, the ability to write a 
program once and achieve good performance on any architecture today or 
tomorrow.  

  Auto-tuning automates the enumeration and exploration of possible 
optimizations, and exploits a computer’s processing power to quickly 
benchmark them to find the fastest. 

  Auto-tuning has been demonstrated in packages such as ATLAS, FFTW, 
MKL, OSKI where auto-tuned routines/functions were encapsulated into 
libraries. 

  Auto-tuning (like choice of compiler) is completely orthogonal to the 
algorithms and computational methods employed. 



  The advent of multicore demanded changes to auto-tuners 
  explore styles of parallelism (bulk synchronous, DAG, hybrid, …) 
  tune in parallel (to emulate runtime SPMD behavior) 
  new bandwidth and cache optimizations 

  Auto-tuning Compilers 
  replace code generation selection heuristics with search 
  limited to transforms deemed legal by language semantics 

  Auto-tuning Frameworks 
  adopt code parsing capabilities of compilers but may allow transforms that are 

legal only with domain-specific knowledge 
  (less general/portable, better performance) 

  Application-specific auto-tuner 
  create an auto-tuner tailored to a specific application 
  least general/portable, best performance 



  We created a multicore SpMV auto-tuner. 
  Common code that can be reused on a wide range of applications 
  Ran on a series of matrices of varying size, sparsity, nonzeros per row 

  Performance and improvement vary from architecture to architecture and 
matrix to matrix.  

Auto-tuned 
(portable C) 

Reference 
(pthreads) 

Reference 
(serial) 



Auto-tuned 
(portable C) 

Reference 

Auto-tuned 
(ISA specific) 

  We explored optimizing finite difference operators and prototyped an 
auto-tuner for the Laplacian 7-point stencil.  (SC’08) 

  Delivered good scalability and performance on modern architectures. 

  More recently embraced a framework approach to port optimization 
knowledge from one kernel to another ~ e.g. LaplacianDivergence, or 
rectahedralhexagonal grids.  (CUG’09) 



Auto-tuned 
(portable C) 

Reference 

Auto-tuned 
(ISA specific) 

  The LBMHD application is rather unique in its computation 
(LBM that combines CFD & EM) and requisite optimizations.   

  Constructed an application-specific auto-tuner for it.  (IPDPS’08) 



  The LBMHD application is rather unique in its computation 
(LBM that combines CFD & EM) and requisite optimizations.   

  Constructed an application-specific auto-tuner for it.  (IPDPS’08) 

  Extended single node auto-tuner to MPI & hybrid 
auto-tuning at scale.  (CUG’09) 

  Auto-tuning delivered a 3x increase in 
application performance on 512 cores 
of the NERSC XT4. 



  We will extend our experience to improve the performance of linear 
solvers in Glimmer-CISM. 

  For matrix-free structured grid representation, we may implement: 
  an application-specific auto-tuner for maximum performance, or  
  A code generation framework to cope with changing functionality. 

  We will investigate the possibility of subjecting an AMR-based solution to 
auto-tuning of the computational kernels, communication, and load 
balancing components. 



  PI:  Esmond G. Ng 

  AMR work 
  Daniel F. Martin 
  Woo-Sun Yang 

  Auto-tuning 
  Samuel Williams 

  Linear solvers 
  Xiaoye Li 
  Esmond Ng 

  Collaborators: 
  William H. Lipscomb 

(LANL) 
  William D. Collins 
  Michael Wehner 



  We will address an important aspect of climate change by utilizing the 
expertise in applied mathematics and computer science at LBNL. 

  We will develop an efficient parallel ice sheet modeling code by 
  incorporating structured-grid AMR to increase resolution in regions where 

changes are more rapid, 
  improving performance and convergence of multigrid/multilevel solvers in the 

Chombo framework, and 
  developing auto-tuning techniques to improve performance of key 

computational kernels. 



  Year 1: 
  Completing basic algorithm and software design, and implementing basic solver 

components for ice-sheet model in the Chombo framework as independent 
software components, including testing and verification. 

  Applying auto-tuning to key computational kernels in the existing Glimmer-CISM 
code. Investigating the impact of linear equations solvers on the performance of 
Glimmer-CISM. 

  Year 2: 
  Prototyping and validating AMR-based code 
  Investigating performance optimization of the AMR code using auto-tuning 

techniques. 

  Year 3: 
  Performing detailed algorithmic and software improvements. 


