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Caveats 
�� My HPC colleagues can now go to get coffee 

�� Nothing particularly new in this talk 

�� My new geophysics/glaciologist/climatologist colleagues may at first 

think the talk has limited perspective 

�� In fact, it is of very broad perspective

�� The feel of limited perspective is related to my relative newcomer status to 

ice sheets 

�� No one is naïve enough to think that all PDEs are the same; ice sheet 

modeling will have unique difficulties, which we in the enabling 

technologies of computational science read as unique opportunities 

�� We know that we have a lot to learn before we present to your colleagues 

at geophysical or climate meetings, but this is an internal, working meeting 

among new colleagues who are getting acquainted 

�� This talk is designed to acquaint with a particular SciDAC 

center, which is representative of a wealth of others 

�� We are all working on software for general purposes that is 

customizable under a relatively stable interface to particular purposes 
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Another caveat 

�� The number of slides in this talk exceeds my 

time limit 
�� I will skip many of them, but I wanted to leave you with a 

document with more detail for later exploration 

�� A review that captures the spirit of this talk is also available: 

�� D. A. Knoll , D. E. Keyes, Jacobian-free Newton-Krylov methods: a 

survey of approaches and applications, Journal of Computational 

Physics, v.193 n.2, p.357-397, 2004

  “I have only made this letter longer because I have     

not had the time to make it shorter.” 

Blaise Pascal (1623-1662), Lettres provinciales.
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Going implicit? 

�� Why you would, if you could :

1.� multiscale problems with good scale separation 

2.� coupled problems (“multiphysics”) 

3.� problems with uncertain or controllable inputs 

(optimization: design, control, inversion) 

�� You can, so you should !

1.� optimal and scalable algorithms known 

2.� freely available software 

3.� reasonable learning curve that harvests legacy 

code
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Current focus on Jacobian-free implicit methods 

�� Two stories to track in 

supercomputing

�� raise the peak capability 

�� lower the entry threshold 

higher capability 

 for hero users 

best practices 

 for all users 

New York 

Blue at 

BNL        

(#45 on 

the Top 

500)

first frontier 

“new” frontier 

�� Jacobian a steep price, 

in terms of coding 

�� very valuable to have, but 

not necessary 

�� approximations thereto 

often sufficient 

�� meanwhile, automatic 

differentiation tools are 

lowering the threshold 
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Recent “E3” report highlights 

limitations of explicit methods 

“The dominant computational 

solution strategy over the past 30 

years has been the use of first-order-

accurate operator-splitting, semi-

implicit and explicit time integration 

methods, and decoupled nonlinear 

solution strategies. Such methods 

have not provided the stability 

properties needed to perform 

accurate simulations over the 

dynamical time-scales of interest. 

Moreover, in most cases, numerical 

errors and means for controlling 

such errors are understood 

heuristically at best.”

2007
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Recent E3 report highlights 

opportunities for implicit methods 

“Research in linear and nonlinear 

solvers remains a critical focus area 

because the solvers provide the 

foundation for more advanced 

solution methods. In fact, as 

modeling becomes more 

sophisticated to include,

increasingly, optimization, 

uncertainty quantification, 

perturbation analysis, and more, the 

speed and robustness of the linear 

and nonlinear solvers will directly 

determine the scope of feasible 

problems to be solved.” 

2007
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First out of the six new “extreme scale” reports 

identifies implicitness as a priority 

“The following priority research 

direction [was] identified: develop 

scalable algorithms for non-

hydrostatic atmospheric dynamics 

with quasi-uniform grids, 

implicit formulations, and adaptive 

and multiscale and multiphysics 

coupling… Improvements in 

scalability alone will not be 

sufficient to obtain the needed 

throughput (the time it takes to 

complete a climate simulation). 

Obtaining the needed level of 

throughput will also require 

incorporating as much implicitness 

as possible …” 
2009
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Scalable algorithms and ice sheet modeling 

c/o Haim Waisman 
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2002

2003

2003-2004 (2 vol ) 

2004
 2006 

2006

2007

Some reports predicated upon 

scalable implicit  

solvers 

Fusion Simulation 

Project 

June 2007 

2007

 Mathematical 

Challenges for the 

Department of 

Energy  

January 2008 

2008

These are 

all downloadable; 

e-mail me for pointers 
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Plan of presentation 

�� Motivations for implicit solvers 

�� multi-scale, multi-physics, multi-solve (sensitivity, stability, 

uncertainty quantification, design, control, inversion) 

�� one-dimensional model problems, linear and nonlinear 

�� State-of-the-art for large-scale nonlinearly implicit 

solvers

�� brief look at algorithms and software 

�� intuition about how they scale 

�� An illustrative story from the trenches 

�� an undergraduate semester project “gone Broadway” 
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“Explicit” versus “implicit” 

�� Implicit methods solve a 

function of state data at the 

current time, to update all 

components simultaneously 

�� equivalent to inverting a 

matrix, in linear problems 

�� Explicit methods evaluate a 

function of state data at 

prior time, to update each 

component of the current 

state independently 

�� equivalent to matrix-vector 

multiplication, in linear 

problems 
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Explicit methods can be unstable – 

 linear example 

Stable

for all �

Unstable

for �>1/2 

c/o K. Morton & D. Mayers, 2005 

initial 

data 

after 1 

step 

after 25 

steps 

after 50 

steps 

�t = 0.0012 �t = 0.0013 
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Explicit methods can be unphysically oscillatory – 

 nonlinear example (“profile stiffness”) 

Linearly implicit, nonlinearly explicit: 

Linearly and nonlinearly implicit: 

history at station 10 

history at station 10 

Oscillatory 

Non-

oscillatory 
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Timesteps for equivalent accuracy –  

GLF23 with gradient-dependent diffusivity 

Example from fusion collaboration: for sufficiently small timestep, the nonlinearly 

implicit and linearly implicit with lagged diffusivity converge on the same result, but 

the nonlinear implicit permits timesteps 104 times larger with same accuracy  

c/o Steve Jardin, PPPL 
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However – 

implicit methods can be unruly and expensive 

Explicit  Naïve Implicit 

Reliability robust when stable uncertain 

Performance predictable data-dependent 

Concurrency O(N) limited 

Synchronization once per step many times per step 

Communication nearest neighbor* global, in principle 

Workspace O(N) O(N
w
), e.g., w=5/3 

Complexity O(N) O(N
c
), e.g., c=7/3 

* plus the estimation of the stable step size 
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Motivation #1:  

Many simulation opportunities are multiscale 
�� Multiple spatial scales 

�� interfaces, fronts, layers 

�� thin relative to domain 

size, � << L

�� Multiple temporal scales 

�� fast waves 

�� small transit times 

relative to convection or 

diffusion, � << T 

�� Analyst must isolate dynamics of interest and model the rest in a 

system that can be discretized over more modest range of scales 

�� Often involves filtering of high frequency modes, quasi-

equilibrium assumptions, etc. 

�� May lead to infinitely “stiff” subsystem requiring implicit 

treatment 

Richtmyer-Meshkov instability, c/o A. Mirin, LLNL
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   CS 

 Math 

Applications 

Common

technologies

respond

Many 

applications 

drive 

e.g., DOE’s SciDAC* portfolio is multiscale 

* Scientific Discovery through Advanced Computing 
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Examples of scale-separated features  

of multiscale problems 

�� Gravity surface waves in global climate 

�� Alfvén waves in tokamaks 

�� Acoustic waves in aerodynamics 

�� Fast transients in detailed kinetics chemical 

reaction 

�� Bond vibrations in protein folding (?) 

Explicit methods are restricted to marching out the long-scale dynamics 

on short scales.  Implicit methods can “step over” or “filter out” with 

equilibrium assumptions the dynamically irrelevant short scales, 

ignoring stability bounds. (Accuracy bounds must still be satisfied; for 

long time steps, one can use high-order temporal integration schemes!) 



IBM’s BlueGene/P: 72K 

quad-core procs w/ 2 

FMADD @ 850 MHz              

= 1.008 Pflop/s 

13.6 GF/s 

8 MB EDRAM 

4 processors 

1 chip 

13.6 GF/s 

2 GB DDRAM 

32 compute cards 

435 GF/s 

64 GB  

32 node cards 

72 racks 

1 PF/s 

144 TB  

Rack 

System 

Node Card 

Compute Card 

Chip 

14 TF/s 

2 TB  

Thread concurrency:        

288K (or 294,912) processors 

Available at Argonne 

National Laboratory soon 

What’s “big iron” for, if not multiscale? 
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Review: two definitions of scalability 
�� “Strong scaling” 

�� execution time (T) decreases in 

inverse proportion to the number 

of processors (p)

�� fixed size problem (N) overall

�� often instead graphed as 

reciprocal, “speedup” 

�� “Weak scaling” (memory 

bound)

�� execution time remains constant, 

as problem size and processor 

number are increased in 

proportion

�� fixed size problem per processor

�� also known as “Gustafson scaling” 

T  

p

good

poor

poor

N � p

log T

log p 

good

Slope

= -1

Slope

= 0
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�� Algebraic multigrid a key algorithmic technology 
�� Discrete operator defined for finest grid by the application, itself, and for many 

recursively derived levels with successively fewer degrees of freedom, for solver 
purposes

�� Unlike geometric multigrid, AMG not restricted to problems with “natural” 
coarsenings derived from grid alone 

�� Optimality (cost per cycle) intimately tied to the ability to 
coarsen aggressively 

�� Convergence scalability (number of cycles) and parallel 
efficiency also sensitive to rate of coarsening 

Solvers are scaling: 

algebraic multigrid (AMG) on BG/L (hypre) 

Figure shows weak scaling result for AMG out to 

120K processors, with one 25��25��25block per 

processor (up to 1.875B dofs) procs

�� While much research and 
development remains, multigrid 
will clearly be practical at BG/
P-scale concurrency 2B dofs

15.6K dofs

s
e
c

c/o U. M. Yang, LLNL



Ice Sheet Modeling 16-Sep-2009 

Explicit methods do not weak scale! 
�� Illustrate for CFL-limited 

explicit time stepping* 

�� Parallel wall clock time 

d-dimensional domain, length scale L

d+1-dimensional space-time, time scale T

h computational mesh cell size 

� computational time step size

�=O(h�) stability bound on time step 

n=L/h number of mesh cells in each dim 

N=nd number of mesh cells overall 

M=T/� number of time steps overall 

O(N) total work to perform one time step 

O(MN) total work to solve problem 

P number of processors 

S storage per processor 

PS total storage on all processors (=N)

O(MN/P) parallel wall clock time 

� (T/�)(PS)/P � T S1+�/d P�/d

(since � � h� � 1/n� = 1/N�/d = 1/(PS)�/d )

3 months 10 days 1 day Exe. time 

105�105�105104�104�104103� 103�103Domain 

�� Example: explicit wave 

problem in 3D (�=1, d=3)

27 years 3 months 1 day Exe. time 

105� 105104� 104103� 103Domain 

�� Example: explicit diffusion 

problem in 2D (�=2, d=2)

*assuming dynamics needs to be 

followed only on coarse scales 

“blackboard” 
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�� Interfacial coupling 

�� Ocean-atmosphere coupling 

in climate 

�� Core-edge coupling in 

tokamaks

�� Fluid-structure vibrations in 

aerodynamics 

�� Boundary layer-bulk 

phenomena in fluids 

�� Surface-bulk phenomena in 

solids

�� Bulk-bulk coupling 

�� Radiation-hydrodynamics 

�� Magneto-hydrodynamics  

Motivation #2: 

 Many simulation opportunities are multiphysics 

SST Anomalies, c/o A. Czaja, MIT

�� Coupled systems may admit destabilizing modes not 

present in either system alone 
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�� Model problem 

�� Exact solution 

�� Numerical approx. 

�� Phase 1 (“R”) 

�� Phase 2 (“D”) 

�� Overall advance 

�� Phase 1 solution 

�� Phase 2 solution 

�� Overall advance 

Well defined for 

all time if � > u0

Operator splitting can destabilize multiphysics 

Can blow up in 

finite time!
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�� Example from Estep et al. (2007), � = 2, u0 = 1

�� 50 time steps, phase 1 subcycled inside phase 2 

Operator splitting can destabilize multiphysics  

1 “R” per “D” 5 “R” per “D” 10 “R” per “D” 
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This is a prototype for a reaction-diffusion PDE 

�� Diffusive time-scale is constant in time (for each wave 

number), whereas reactive time-scale changes with solution 

magnitude

�� Besides opening the possibility of finite-time blow-up for a 

problem that is well defined for all time, operator splitting 

leaves a first-order error, independent of integration errors 

for the two phases 

�� Splitting a single equation is just the simplest example 

�� Other types of multiphysics (multiple equations in one 

domain, multiple domains) similarly treatable (see D.

Estep, et al. 2007) 
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�� Climate prediction 

�� Subsurface contaminant 

transport or petroleum 

recovery, and seismology 

�� Medical imaging 

�� Stellar dynamics, e.g., 

supernovae

�� Nondestructive evaluation 

of structures 

�� Uncertainty can be in 

�� constitutive laws 

�� initial conditions 

�� boundary conditions 

Motivation #3:  

Many simulation opportunities face uncertainty 

Subsurface property estimation, c/o Roxar

�� Sensitivity, optimization, parameter estimation, boundary 

control require the ability to apply the inverse action of the 

Jacobian or its adjoint – available in all Newton-like 

implicit methods 
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Adjoints “probe” uncertain problems efficiently 

�� “Forward” operator equation 

�� Desired functional of solution 

�� If we can solve for v given �

�� Then desired output … 

    … reduces to an inner product 

for each forcing  f !

�� Define adjoint operator 
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Significance and nonlinear generalizations 
�� For one solution of the adjoint problem (per output 

functional desired) one can evaluate many outputs per 

input to the forward problem

�� at a cost of one inner product each 

�� Otherwise, one would have to solve the forward 

problem for each input 

�� Many types of generalization to nonlinear operators 

are possible, involving local linearizations 

�� Only price to be paid in coding (ability to solve with 

linearized adjoint) is often already included in the price 

paid to take the forward problem implicit 

�� Caveat: shortcuts for solving with L not always available for L*
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Forward vs. inverse problems 

model 

forward problem 

solution 

inverse problem 

model 

params 

+ regularization 
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Significance for implicit methods 
�� Inverse problems can be formulated as PDE-

constrained optimization problems 

�� objective function (mismatch of model output and “true” output) 

�� equality constraints (PDE) 

�� possible inequality constraints, in addition 

�� Cast as nonlinear rootfinding problem

�� Form (augmented) Lagrangian 

�� Take gradient of Lagrangian with respect to design variables, state 

variables, and Lagrange multipliers 

�� Obtain large nonlinear rootfinding problem 

�� Solving with Newton requires Jacobian of gradient, or 

Hessian of Lagrangian 

�� Major blocks are Jacobian of PDE system and its adjoint �
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Constrained optimization w/Lagrangian 

�� Consider Newton’s method for solving the nonlinear 

rootfinding problem derived from the necessary 

conditions  for constrained optimization 

�� Constraints

�� Objective

�� Lagrangian

�� Form the gradient of the Lagrangian with respect to 

each of x, u, and � to get a root-finding problem:
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Newton reduced SQP 
�� Applying Newton’s method leads to the KKT system 

for states x , designs u , and multipliers �

�� Then

�� Newton Reduced SQP solves the Schur complement 

system H �u = g , where H is the reduced Hessian
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Applications requiring scalable solvers – 

conventional and progressive 

�� Magnetically confined fusion

�� Poisson problems 

�� nonlinear coupling of multiple 

physics codes 

�� Accelerator design 

�� Maxwell eigenproblems 

�� shape optimization subject to 

PDE constraints 

�� Porous media flow 

�� div-grad Darcy problems 

�� parameter estimation

actual 

ailments 

presenting 

symptoms 



Ice Sheet Modeling 16-Sep-2009 

The TOPS Center for Enabling Technology 

spans 4 labs & 5 universities 

 Towards Optimal Petascale Simulations

Our mission: Enable scientists and engineers to take full advantage 

of petascale hardware by overcoming the scalability bottlenecks 

traditional solvers impose, and assist them to move beyond “one-

off” simulations to validation and optimization (~$32M/10 years) 

Columbia University University of Colorado University of Texas 

Southern Methodist 

University 

Lawrence Livermore 

National Laboratory 

Sandia National Laboratories 
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TOPS institutions 

UCB/LBNL
ANL

UT

TOPS  lab (4) 

CU

LLNL

TOPS  university (5) 

SMU

CU-B

Towards Optimal Petascale Simulations�

SNL
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TOPS is building a toolchain of proven 

solver components that interoperate 
�� We aim to carry users from “one-off” solutions

to the full scientific agenda of sensitivity,
stability, and optimization (from heroic point
studies to systematic parametric studies) all in 
one software suite

�� TOPS solvers are nested, from applications-
hardened linear solvers outward, leveraging 
common distributed data structures

�� Communication and performance-oriented 
details are hidden so users deal with 
mathematical objects throughout 

�� TOPS features these trusted packages, whose 

functional dependences are illustrated (right):
Hypre, PETSc, ScaLAPACK, SUNDIALS, 

SuperLU, TAO, Trilinos

Optimizer 

Linear solver 

Eigensolver 

Time 

integrator

Nonlinear 

solver

Indicates

dependence

Sens. Analyzer 

These are in use and actively debugged in dozens of 
high-performance computing environments, in dozens 
of applications domains, by thousands of user groups 
around the world.
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Adams           Baker                Cai               Demmel          Falgout          Ghattas

Heroux       Hu              Kaushik             Keyes            Knepley               Li           

Manteuffel   McCormick   McInnes         Moré            Munson            Ng           Reynolds 

  Rouson         Salinger         Smith       Woodward       C. Yang      U. Yang        Zhang 

Faces of TOPS
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It’s all about algorithms (at the petascale) 

�� Given, for example:

�� a “physics” phase that 
scales as O(N)

�� a “solver” phase that 
scales as O(N3/2)

�� computation is almost all 
solver after several 
doublings

�� Most applications groups 
have not yet “felt” this 
curve in their gut 

�� as users actually get into 
queues with more than 
4K processors, this will 
change

Solver takes 

50% time on 

128 procs 

Solver takes 

97% time on 

128K procs 

Weak scaling limit, assuming efficiency of 

100%  in both physics and solver phases 

problem size 
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Reminder: solvers evolve underneath “Ax = b”

�� Advances in algorithmic efficiency rival advances in 

hardware architecture 

�� Consider Poisson’s equation on a cube of size N=n3

�� If n=64, this implies an overall reduction in flops of

~ 16 million 

Year Method Reference Storage  Flops 

1947 GE (banded) Von Neumann & 

Goldstine

n5 n7

1950 Optimal SOR Young n3 n4 log n 

1971 CG-MILU Reid n3 n3.5 log n 

1984 Full MG Brandt n3 n3

�2u=f 64

64
64

*Six months is reduced to 1 second 

*
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year

relative

speedup

Algorithms and Moore’s Law 

�� This advance took place over a span of about 36 years, or 24 

doubling times for Moore’s Law

�� 224 	 16 million 
 the same as the factor from algorithms alone! 

16 million 

speedup

from each 

Algorithmic and 

architectural 

advances work 

together! 
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SPMD parallelism w/domain decomposition 

puts off limitation of Amdahl in weak scaling 

Partitioning of the grid induces 

block structure on the system 

matrix (Jacobian) 

Computation scales with area;

communication scales with 

perimeter; ratio fixed in weak 

scaling

�1

�2

�3

A23 A21 A22 

rows assigned 

to proc “2” 
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Domain decomposition relevant  

to any local stencil formulation 

finite differences finite elements finite volumes 

•�  lead to sparse Jacobian matrices

J=

node i

row i

•� however, the inverses are generally 

dense; even the factors suffer 

unacceptable fill-in in 3D 

•�  want to solve in subdomains only, 

and use to precondition full sparse 

problem
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 There is no “scalable” without “optimal” 

�� “Optimal” for a theoretical numerical analyst means a 

method whose floating point complexity grows at most 

linearly in the data of the problem, N, or (more practically 

and almost as good) linearly times a polylog term 

�� For iterative methods, this means that the product of the 

cost per iteration and the number of iterations must be O(N

logp N)

�� Cost per iteration must include communication cost as 

processor count increases in weak scaling, P � N

�� BlueGene, for instance, permits this with its log-diameter 

hardware global reduction 

�� Number of iterations comes from condition number for 

linear iterative methods; Newton’s superlinear convergence 

is important for nonlinear iterations 
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Why optimal algorithms? 

�� The more powerful the computer, the greater the 

importance of optimality

�� though the counter argument is often employed �

�� Example:

�� Suppose Alg1 solves a problem in time C N2, where N is the 

input size 

�� Suppose Alg2 solves the same problem in time C N log2 N 

�� Suppose Alg1 and Alg2 parallelize perfectly on a machine of 

1,000,000 processors 

�� In constant time (compared to serial), Alg1 can run a 

problem 1,000 X larger, whereas Alg2 can run a 

problem nearly 65,000 X larger 
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Components of scalable solvers for PDEs 

�� Subspace solvers 

�� elementary smoothers 

�� incomplete factorizations

�� full direct factorizations 

�� Global linear preconditioners

�� Schwarz and Schur methods 

�� multigrid

�� Linear accelerators 

�� Krylov methods 

�� Nonlinear rootfinders 

�� Newton-like methods 

alone unscalable:

either too many 

iterations or too 

much fill-in

opt. combins. of 

subspace solvers 

mat-vec algs. 

vec-vec algs.

+ linear solves 
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Newton-Krylov-Schwarz:  

a PDE applications “workhorse” 

Newton 
nonlinear solver 

asymptotically quadratic 

Krylov
accelerator

spectrally adaptive 

Schwarz
preconditioner

parallelizable
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“Secret sauce” #1:  

iterative correction w/ each step O(N)

�� The most basic idea in iterative methods for Ax = b 

�� Evaluate residual accurately, but solve approximately, 

where        is an approximate inverse to A

�� A sequence of complementary solves can be used, e.g., 

with        first and then         one has 

�� Scale recurrence, e.g., with                                          , 

leads to multilevel methods

�� Optimal polynomials of                 lead to various 

preconditioned Krylov methods 
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smoother

Finest Grid 

First Coarse Grid 

coarser grid has fewer cells 

 (less work & storage) 

Restriction

transfer from fine 
to coarse grid 

Recursively apply this 

idea until we have an 
easy problem to solve 

A Multigrid V-cycle 

Prolongation

transfer from coarse 
to fine grid 

“Secret sauce” #2: 

treat each error component in optimal subspace 

c/o R. Falgout, LLNL 
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“Secret sauce” #3: 

skip the Jacobian 

�� In the Jacobian-Free Newton-Krylov (JFNK) method 

for F(u) = 0 , a Krylov method solves the linear Newton 

correction equation, requiring Jacobian-vector 

products

�� These are approximated by the Fréchet derivatives 

     (where       is chosen with a fine balance between 

approximation and floating point rounding error) or 

automatic differentiation, so that the actual Jacobian 

elements are never explicitly needed

�� One builds the Krylov space on a true F�(u) (to within 

numerical approximation) 

Carl Jacobi 
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Secret sauce #4: 

use the user’s solver to precondition 

�� Almost any code to solve F(u) = 0 computes 

a residual and invokes some process to 

compute an update to u based on the 

residual

�� Defines a weakly converging nonlinearly 

method

�� M is, in effect, a preconditioner and can be 

applied directly within a Jacobian-free 

Newton context

�� This is the “physics-based preconditioning” 

strategy discussed in the E3 report 
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Example: fast spin-up of ocean circulation model 

using Jacobian-free Newton-Krylov 

�� State vector, u(t)

�� Propagation operator (this is any 
code) � (u,t): u(t) = � (u(0),t)
�� here, single-layer quasi-geostrophic ocean 

forced by surface Ekman pumping, 
damped with biharmonic hyperviscosity 

�� Task: find state u that repeats every 
period T (assumed known) 

�� Difficulty: direct integration (DI) to 
find steady state may require 
thousands of years of physical time 

�� Innovation: pose as Jacobian-free 
NK rootfinding problem, F(u) = 0,
where F(u) � u - � (u(0),T)
�� Jacobian is dense, would never think of 

forming!

converged streamfunction 

difference between DI and 

NK (10-14)
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Example: fast spin-up of ocean circulation model 

using Jacobian-free Newton-Krylov 
2-3 orders of 

magnitude

speedup of 

Jacobian-free 

NK relative to 

Direct 

Integration

(DI)

OGCM:

Helfrich-

Holland

integrator 

Implemented

in PETSc as 

undergraduate

research 

project 

c/o T. Merlis (Columbia’05, now Caltech, Dept. Environmental Science & Engineering) 
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�� Engage at a higher-level than Ax=b

�� Newton-Krylov-Schwarz/MG on coupled nonlinear system 

�� Sensitivity analyses 

�� validation studies 

�� Stability analyses 

�� “routine” outer loop on steady-state solutions

�� Optimization

�� parameter identification 

�� design of facilities 

�� control of experiments 

TOPS’ wishlist for MHD collaborations — 

“Asymptopia” 
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Hardware Infrastructure

A
R
C
H
I
T
E
C
T
U
R
E
S

Applications 

A “perfect storm” for scientific simulation 

scientific models 

numerical algorithms 

computer architecture 

scientific software engineering 

(dates are symbolic) 

1686 

1947 

1976 

1992
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TOPS dreams that users will… 

�� Understand range of algorithmic options w/

tradeoffs

e.g., memory vs. time, comp. vs. comm., inner iteration 

work vs. outer 

�� Try all reasonable options “easily”  

without recoding or extensive recompilation 

�� Know how their solvers are performing 

with access to detailed profiling information 

�� Intelligently drive solver research 

e.g., publish joint papers with algorithm researchers 

�� Simulate truly new physics free from solver limits 

e.g., finer meshes, complex coupling, full nonlinearity 

User’s 

Rights
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SciDAC’s computational math “centers”
�� Interoperable Tools for Advanced Petascale Simulations (ITAPS) 

PI: L. Freitag-Diachin, LLNL

For complex domain geometry

�� Algorithmic and Software Framework for Partial Differential Equations 
(APDEC)

PI: P. Colella, LBNL

For solution adaptivity

�� Combinatorial Scientific Computing and Petascale Simulation (CSCAPES) 

PI: A. Pothen, Purdue U

For partitioning and ordering 

�� Towards Optimal Petascale Simulations (TOPS) 

PI: D. Keyes, Columbia U

For scalable solution 

See: www.scidac.gov/math/math.html
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ITAPS
Interoperable Tools for Advanced Petascale Simulations 

Develop framework for use of multiple mesh and discretization strategies within a 
single PDE simulation.  Focus on high-quality hybrid mesh generation for representing 
complex and evolving domains, high-order discretization techniques, and adaptive 
strategies for automatically optimizing a mesh to follow moving fronts or to capture 
important solution features. 

c/o L. Freitag, LLNL
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Algorithmic and Software Framework for PDEs
Develop framework for PDE simulation based on locally structured grid 
methods, including adaptive meshes for problems with multiple length scales; 
embedded boundary and overset grid methods for complex geometries; 
efficient and accurate methods for particle and hybrid particle/mesh 
simulations.

c/o P. Colella, LBNL

APDEC 
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CSCAPES
Combinatorial Scientific Computing and Petascale  Simulation 

Develop toolkit of partitioners, dynamic load balancers, advanced sparse matrix 
reordering routines, and automatic differentiation procedures, generalizing 
currently available graph-based algorithms to hypergraphs 

c/o A. Pothen, Purdue

Contact detection 
Particle Simulations 
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Linear solvers & preconditioners 
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