Advanced Scientific Computing Research

-- An Introduction --

Ice Sheet Modeling
Principal Investigator Workshop
Annapolis, MD
September 16-17, 2009

Walter M. Polansky
Office of Advanced Scientific Computing Research
FY09: $4.8B
ARRA: $1.6B
FY10 (Req): $4.9B

Office of the Director
William Brinkman

Deputy Director for Field Operations
George Malosh

Deputy Director for Science Programs
Patricia Dahmer
Staff

Deputy Director for Resource Management
Jeffrey Salmon

Office of the Director

ASCR
Strayer

RDG
Kung

Project Assessment
Lehman

SC Integrated
Support Center

Office of LFE
Strait

Office of SSI
Jones

SCOR
Kling

BES
Palmitano

FES
Synakowski

NP
Henry (A)

Budget
Klausing

Business Policy
& Operations
Phan

Grants
& Contracts Support
Stokes

BMSS
Phan (A)

SCP&D & Analysis
Barden

Human Capital
Resources
Dickenson

OSTI
Warrick

AMSO
Baedker

ASO
Lutha

BES
Richards

BESO
Holland

FSD
Livengood

OSO
Moore

PSO
Faul

PNSO
Wels

SSO
Golan

TJSCO
Turt

FY09: $368M
ARRA: $157M
FY10 (Req): $409M
Deliver Petascale Science Today
- Continue to make the Leadership Computing Facilities available to the very best science through Innovative and Novel Computational Impact on Theory and Experiment (INCITE).
- Continue to work with Pioneer Applications to deliver scientific results from day one.

Build the Intellectual Foundation for the Future
- Nuture –
 - World class mathematics and computer science research efforts
 - Applications critical to DOE missions through Scientific Discovery through Advanced Computing (SciDAC).
- Provide direct support for “bleeding-edge” research groups willing to take on the risk of working with emerging languages and operating systems.
- Foster innovative research at the ever blurring boundary between Applied Mathematics and Computer Science.

Realize the Promise of Extreme Scale
- Work with key science applications to identify opportunities for new research areas only possible through extreme scale computing.
- Support innovative research on advanced architectures and algorithms that accelerates the development of hardware and software that is well suited to extreme scale computational science.

http://www.sc.doe.gov/ascr/index.html
Advancing Science through large-scale data, modeling and simulation

- Centers for Enabling Technology: Address mathematical and computing systems software issues

- Institutes: Assist Scientific Applications teams and foster next generation computational scientists

http://www.scidac.gov
SciDAC Model

Scientific Discovery

Applications

Computing/Networking

- Accelerator science and simulation
- Climate modeling and simulation
- Fusion science
- Petabyte high-energy/nuclear physics
- Nuclear physics
- Radiation transport
 - Groundwater reactive transport modeling and simulation

- Centers for Enabling Technology
- Scientific Applications Partnerships
- Institutes (University-lead)

Leadership Computing-
ANL 556 TF IBM BG/P

Leadership Computing-
ORNL > 1 PF Cray XT5

Production Computing-
NERSC ~360 TF Cray XT4

ESnet On path toward Dual rings 40Gbps/10 Gbps fault tolerant

http://www.sc.doe.gov/ascr/Facilities/Facilities.html
Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program started in 2004.

– Small number of computational intense, high impact projects
– Open to national and international researchers, including industry
– No requirement of DOE or Office of Science funding or topic area
– Peer and computational reviews

2009 INCITE Allocations

Approximately 890 million processors awarded in 2009
Ice Sheets Are Important

- A relatively recent, natural event illustrates why:
 - About 19,000 years ago, ice sheets started melting in North America and Eurasia
 - In 2,000 years, the melting glaciers dumped so much fresh water into the North Atlantic the overturning ocean circulation stopped
 - Greenland cooled.
 - 2,500 years later, the freshwater flow ceased.
 - Greenland’s temperature rose by 15 deg C, sea levels rose 5 meters!

Recent simulations on Jaguar and Pheonix at ORNL show deglaciation during the Bølling-Allerød, Earth’s most recent period of natural global warming. Courtesy NCCS

Ice sheet dynamics can be abrupt; Climate changes can be significant
Ice Sheet Modeling

- **Models**
 - Improve models for ice sheet dynamics and interaction between ice sheet and land/ocean
 - Understand the dynamical properties of ice sheet (e.g., crack formation and propagation)
 - Implement these models on HPC

- **Opportunities**
 - Develop data assimilation techniques for incorporating actual data into new models
 - Establish credibility of models and simulations: verification, validation, and uncertainty quantification

- **Computational Algorithms**
 - Scalable algorithms for extreme-scale simulations
 - Adaptive algorithms to focus on important small-scale phenomena
 - Appropriate numerical methods for the simulation of ice sheet dynamics (high-order, non-Newtonian fluid, heat conduction, etc)

- **Infrastructure**
 - Leadership-class high-performance computers for high-fidelity, high-resolution simulations
 - Analysis, visualization, and storage of simulation results – large data sets!
 - Collaboration: data and model exchange
“Perhaps the most significant applications of scientific computing come not in the solution of old problems, but in the discovery of new phenomena through numerical experimentation.”

Lax Report on Large Scale Computing in Science and Engineering, 1982