

1

Simplifying Software Development and Increasing
Software Productivity on High End Computers

a White Paper Submitted to the High End Computing Revitalization Task Force by
David E. Bernholdt*

Research Staff Member
Email: bernholdtde@ornl.gov

Phone: 865 574 3147
* Primary contact

Wael R. Elwasif
Research Staff Member

Email: elwasifwr@ornl.gov
Phone: 865 241 0002

Al Geist
Corporate Fellow

Email: gst@ornl.gov
Phone: 865 574 3153

James A. Kohl

Research Staff Member
Email: kohlja@ornl.gov
Phone: 865 574 3143

Stephen L. Scott

Research Staff Member
Email: scottsl@ornl.gov
Phone: 865 574 3144

Torsten Wilde

Research Staff Member
Email: wildet@ornl.gov
Phone: 865 241 5842

Computer Science and Mathematics Division

Oak Ridge National Laboratory
P. O. Box 2008, MS 6367

Oak Ridge, TN 37831-6367
Abstract
The complexity of modern scientific software is an important issue that needs to be addressed as
part of an effort to revitalize high end computing (HEC). The complexity arises from both the
scientific demands and the increasingly complex computers on which the software is run. We
believe that HEC software developers need to be able to use a higher level of abstraction to
express their computational problems. New programming models and technologies such as
domain-specific languages coupled with automatic code generation, source-to-source translation
tools, and component models are all sufficiently advanced that a concerted investment aimed at
bringing them to HEC computational scientists will bring significant near-term payoffs.

Introduction
Through a combination of hardware and software improvement, the capabilities of high end
computing (HEC) in scientific and engineering simulation have skyrocketed in recent years. As
this capability has grown, so have our expectations of, and, ultimately, our reliance upon
computational science performed on HECs. Indeed, computational simulation is now often
described as the third leg of modern science, equal in importance to experiment and theory.
However, these remarkable advances have often involved heroic efforts in software
development. As the demands on computational science increase, the software driving the
simulations becomes more complex due to increases in fidelity and problem size, as well as
changes in solution methodology. Additional complexity arises from the need to extract high
performance from parallel computer architectures that are increasingly complex and varied.

Although scientific simulation software itself has changed significantly with the rise of HEC, and
the software environment in which it is developed has changed in outwardly improved a great
deal, at the conceptual level the programming models and environments in which researchers
develop software for modern machines are little different than when they were developed in the

2

early days of parallel computing. Consequently, the software developer is forced to deal directly
with the increased hardware and scientific complexity, with obvious impacts on productivity,
performance, portability, and scientific capability.

We believe that a program to revitalize HEC should include the development of tools and
techniques to provide the software developer with a higher level of abstraction that simplifies
software development and increases productivity. The computer science research community has
pursued a variety of projects over the years with a direct or secondary focus on raising the level
of abstraction in software development. Although few of these efforts have actually impacted the
work of computational scientists to date, we believe that the seeds are present, and with the
benefit of a focused research effort, relevant capabilities can be made available to computational
scientists in the FY 2005-2009 time frame of interest to the Task Force.

Constraints
It is important to recognize that targeting computational scientists in the relatively near term
imposes some constraints on the types of computer science efforts likely to be positively
received by those actually using high end computers for scientific simulation. In many domains,
simulation codes evolve and grow over the course of years, and sometimes decades. The level of
effort embodied in these codes often makes it impractical to rewrite them from scratch in a new
language or a new paradigm. Therefore, technologies that can accommodate existing code
easily, approaches that can be applied incrementally, and those that work with widely used
scientific programming languages, such as Fortran, are more likely to gain acceptance.
Portability of both software and tools are important, and performance portability is often a
significant concern – software developers are generally willing to spend effort tuning the
performance of their code for a given platform only in proportion with the generality or
portability of the result.

Vision
Raising the level of abstraction for HEC software involves programming models and
environments that better support the range of architectures and diversity of implementations in
high end computers with portable performance, and software development approaches that help
manage overall software complexity.

The complexity of current programming models is easily seen. While extremely popular,
traditional message passing paradigms require explicit coordination between sending and
receiving processes. Important to HEC, increasing processor counts makes such coordination
ever more challenging, and potentially performance-reducing. Shared-memory programming
models, often thread-based, are often considered easier to use, but do not easily lend themselves
to the development of performance-portable algorithms on distributed shared memory or other
platforms. “Multi-level” parallel approaches, i.e., combining OpenMP and MPI are increasingly
popular, reflecting the rise of HECs built as symmetric multiprocessors (SMPs) on high-speed
interconnects. Experience to date suggests that while such approaches can sometimes achieve
good results, they come at a significant cost in terms of code complexity and computational
experimentation required to identify the best combinations of processes and threads (which
typically cannot be intuited from simple information about the target computer). A higher level
of abstraction in this area would provide a simplified programming model capable of expressing
the desired parallel algorithms, while automating the “implementation” on a given platform
based on performance models for the hardware and software. We believe a programming model

3

that provides a shared memory abstraction will likely form the basis for the most effective
approach; however, it is also important to provide migration paths for codes based on other
models, especially message passing.

The increasing levels of parallelism required to maintain efficiency in traditional single-program
multiple data programs running on machines with ever-increasing processor counts is also a
significant challenge, both in terms of scientific formulations that provide the required degree of
parallelism and in terms of the management of so many processes. One way to finesse such
issues is to move to an environment which facilitates the simultaneous use of coarse- and fined-
grain parallelism by allowing the running parallel job to be partitioned into a number of parallel
sub-tasks (of different sizes) running concurrently. Such an environment must be largely or
completely automated, and ideally would be capable of making decisions about the optimal
partition size for each task based on performance models, as well as inferring computational
dependencies among tasks. Another important issue that arises with increasing parallelism and
the linking of distributed HEC resources via the Grid is fault tolerance and recovery. Large
machines are reaching the point where the time required to boot the system is roughly equal to
the mean time between failures. The hardware, operating system, and programming
environment must work together to provide users with simple, preferably transparent
mechanisms to allow HEC software to tolerate faults.

Although the use of available programming environments with modern HECs frequently leads to
complicated programming in order to extract the best possible performance, the nature of the
science, the problems, and the methodology needed to solve them also contributed significantly
to the complexity of modern HEC software. Raising the level of abstraction in this context
entails being able to express the necessary computations at a higher level. For example, through
the use of domain-specific high-level languages, or component models which facilitate the
assembly of large, complex applications from smaller, more manageable software units. But to
be truly effective, such approaches need to be combined with the capability to “reason” about the
computational context in order to generate the most efficient code, or to assemble the most
efficient set of components for the task and HEC platform at hand. With the use of tools to
automate aspects of code generation and application composition also comes the need to be able
to validate the results they produce and verify final results of the code. This will necessitate the
increased use of formal specification languages and tools, and other approaches, which are
currently little used in HEC.

We draw on two analogies to help solidify our vision. First is the modern approach to
developing graphical user interface based applications from elementary widgets. Widgets of
increasing complexity can be composed into skeleton applications by automatic code generation
tools. Developers maintain the ability to alter “tunable” aspects of the widgets as they desire. In
HEC, the widget concept could be similarly used to abstract away certain details of the
underlying programming environment. The second comes from a recent DARPA High
Productivity Computing Systems workshop, where the discussion repeatedly returned to
MATLAB as the archetype of a high-level environment in which developers are extremely
productive, but in which performance requirements cannot be easily satisfied. What is needed
then, is something akin to MATLAB at the top level, but which allows the user to drill down
through the tool chain and intervene in the processing or code generation in order to tune the
results.

4

In the following section we briefly describe some of the technologies we see as being important
to our vision of raising the level of abstraction for the HEC software developer.

Relevant Technologies
Domain-specific languages and automatic code generation tools provide an obvious means of
raising the level of abstraction. Domain-specific languages (DSLs) allow software developers to
express programs in a form that is tailored to the scientific domain of interest, typically closer to
the way the scientist thinks about the problem than is possible in a traditional programming
language. The DSL input can be processed in a variety of ways: interpreted, compiled into object
code, or translated into a traditional programming language through the use of automatic code
generation tools. Historically, DSLs have been viewed primarily as a convenience for the
programmer – reducing the effort required to create software for experimentation, but generally
not producing code with performance or capability suitable for production use. However, a
number of recent projects have shown that much more is possible. In traditional software
development, the developer must make many decisions regarding the implementation that are
then fixed in the source code. A well-designed DSL can be viewed as a means of encapsulating
the “science” before the implementation decisions are made. Code generation tools can then be
designed to include extensive and rigorous optimizations in the process of generating the
traditional-language source code in a way that is not possible in the traditional development
approach, as well as introducing appropriate code for fault tolerance and recovery and other
features. Performance models for both the (generated) code and the target hardware platform can
be used as additional input to the optimizations in order to tailor the generated code. Such an
approach can be used to address hardware differences, as well as simplifying the task of tailoring
algorithms and code to different programming models, even on the same hardware (though
clearly this requires a high level of abstraction in the DSL). DSLs coupled with optimizing code
generation has the potential to bring tremendous benefits to HEC software development, but
much work is needed to develop an infrastructure that allows DSLs and processors to be created
quickly and easily.

Source-to-source transformation tools (S2S) share with DSLs and automatic code generation
tools many similar capabilities with respect to software development, but also provide a means
of working with existing software. S2S tools will facilitate the evolution of code that researchers
can’t affort to rewrite from scratch. An important example would be the use of an S2S tool to
transform a generically written code into one specialized to a particular programming model or
hardware platform. Simple text tools (e.g., the unix sed command) are not sufficient to the task.
Rather, tools are required that parse the source language to an abstract syntax tree (AST) and
allow user-defined manipulations on the AST prior to writing code back out. As with
DSL/automatic generation tools, some initial work has been done in this area, but efforts are
needed to broaden the available languages, generalize the capabilities, and make it easier for
software developers to express the desired transformations.

S2S tools are obviously closely related to compilers, and can be derived from compiler tool
suites. We note in general the need for high-quality, freely available and distributable (i.e., open
source) compiler tools to support this and other HEC computer science R&D activities. An
important gap in this area is the lack of production-quality open source compiler suites for
Fortran 90/95/2000, an important language to HEC scientific software. Preferably, such a tool
suite should be integrated with or interoperable with compilers for a wide range of other
languages.

5

Programming models, of course, have a tremendous influence on the level of abstraction and
complexity of software. Unfortunately, message passing, presently the most widely used parallel
programming model, can be likened to assembly language because the programmer must manage
nearly every detail of the communication. Shared-memory models offer much greater ease of
use, but the memory space is often treated as “flat”, promoting the development of algorithms
that work well only on uniform memory systems (of which there are very few in HEC).
However, experience has shown that a shared memory programming model which exposes the
locality of data and promotes consideration of the non-uniform memory access hierarchy, is very
effective in encouraging the development of parallel algorithms which are efficient across both
shared- and distributed-memory platforms. Approaches focusing on shared data rather than
explicit links between processes also have a significant advantage when incorporating fault
tolerance. In message passing and similar approaches, access to the data manipulated by the
parallel algorithm is a “second order” operation, which the programmer must translate into
explicit instructions for process-to-process communications. Failure of a process requires the
programmer to find a new mapping between the data of interest and the processes they have to
talk to. In a data-centric model, on the other hand, the programmer indicates directly the data
they want to access, paving the way for the underlying environment to transparently relocate the
data. Data-centric models are also more amenable to techniques such as redundant storage (for
example, using an in-memory RAID-like approach to distributed data structures) to facilitate
recovery from a fault. Programming models designed from the start with fault tolerance
capabilities will also be more amenable than when it is grafted on to existing environments.
Data-centric approaches will also work better in environments that provide workflow/scheduling
capabilities to provide increased parallelism, as mentioned in the Vision section.

With mixed-language programming on the rise, is it important that programming models be
available across the major HEC languages in an interoperable form. The question of whether
programming models are implemented as libraries or as compilers is also relevant. The use of
source-to-source transformation tools can help to blur the distinction, and to make compiler (-
like) solutions more universally available.

Component models are emerging as an important tool for managing the complexity of large-
scale software systems in the business and internet communities. While domain-specific
computational frameworks have been used in HEC for some time, only recently have efforts
begun to develop the more flexible and extensible component approach for HEC. Components
raise the level of abstraction by treating functional units of software as building blocks for large-
scale applications. These units (components) are defined by the interface they present while
their internal implementation remains opaque. The component approach promotes the creation
of reusable, interoperable software with a potential user base much larger than if the code were
embedded in a monolithic application. With a large suite of components available for numerical
solvers, data management, and other common needs, many researchers would be able to
assemble applications from a large proportion of “off the shelf” components, thus increasing
productivity. Tools to facilitate selection of components, automatic composition, and
performance tuning will be very useful in reducing software complexity.

Finally, most of the technologies cited above involve some degree of automation of the process
of code generation or application composition. To have confidence that such tools are doing
what they claim, and that the resulting applications will run reliably and produce correct results,
specification languages and verification technologies will also become increasingly important.

