[image: image1.jpg]pP—=5" Office of
QA Science

U.S. DEPARTMENT OF ENERGY

Advanced Scientific Computing Research

FY 2003 Accomplishment

Harness: The Ultimate in Flexible High-Performance Computing
Al Geist*, Christian Engelmann, James Kohl, Stephen L. Scott, Oak Ridge National Laboratory; Jack Dongarra, Graham Fagg, University of Tennessee; Vaidy Sunderam, Dawid Kurzyniec, Emory University

Summary

Extracting dynamic and flexible scientific computation power from networked machines remains difficult even today. The “Harness” high-performance computing environment organizes resources, programs, and services using “plug-in” software modules, and dynamically self-adapts to cater to changing application demands.

The Harness system provides a distributed virtual machine (or DVM) environment, where clusters of PCs, workstations, and “big iron” computers can all be used together as one giant, high-performance computer (in the spirit of its widely-used predecessor, “Parallel Virtual Machine” (PVM)). Traditional computing environments require modification of the scientific software to “fit” into the available hardware resource configuration, but Harness turns the table and allows the software to customize the computing environment to suit its needs, even dynamically at run-time.

A new Harness prototype has been specially optimized for traditional functional computing languages (C/C++ and Fortran) that are used most often by scientific software codes. The system consists of two major parts: a foundational “kernel” and a set of “plug-in” software modules that can dynamically attach to the kernel to provide the functionality needed by a specific scientific software application. The lightweight kernel manages the set of software plug-ins as directed by the scientific application, to instantaneously provide the collection of functions and services needed to solve the given scientific problem. Harness plug-ins operate much like those in a common web browser, but with special capabilities added for high-performance parallel or distributed execution. While the kernel provides only basic functions, such as dynamic loading and unloading of plug-ins, the plug-ins themselves can provide a wide variety of functions and services, from numerical libraries and parallel programming models to networking, resource discovery and distributed control.

The Harness kernel supports a range of system and user-defined plug-in modules that can be either single- or multi-threaded in nature, and the kernel offers a number of handy default plug-in modules. An “object messenger” is included for communicating with other parallel tasks in the application. The messenger provides a level of asynchronous messaging among the applications and plug-ins within a given Harness DVM. Plug-ins can pass requests to other plug-ins to invoke method calls, and then proceed on with their own computation while they await the results. A “program loader” plug-in is provided to execute complete, monolithic programs via the Harness kernel. The program loader allows programs to be started and controlled by localized plug-ins or even by other Harness programs. For example, the kernel is notified of such a program’s termination, and plug-ins can register to receive this notification in the form of a special “callback” method call.

In order to provide better compatibility with existing distributed system software, and to fit into the widely used web-services model, the Harness kernel uses an object-oriented abstraction for loading and unloading plug-ins and their services. Several instances of a given plug-in can be created simultaneously, allowing for multiple implementations, representing distinct variants of a given plug-in, to work together as needed with different sub-modules within a single large software application.

The distributed virtual machine (DVM) environment provided with the Harness prototype is completely assembled from plug-ins. More precisely, Harness is a “container” which manages all the necessary virtual machine services, as provided by the plug-ins. The basic DVM services include a network service, which provides for remote communication and method invocation using various pluggable protocols. A distributed database plug-in provides scalable peer-to-peer control and symmetric replication of information for fault-tolerance and automated recovery. A specific DVM instance can be started by loading appropriate plug-ins under run-time program control, or can be specified at initial startup using command line parameters.

This latest Harness software is packaged in portable source code distributions (“tar” archives) and uses the GNU autotools (autoconf, automake, autoheader and libtool) for automated configuration and installation on most systems. Given this compatibility with common Open Source and GNU standards, the software is easy to install and use on most Unix platforms. Precompiled binary “RPM” packages for Linux are also under development.

To assist users in the development of customized user-defined plug-ins, Harness uses an extensive error checking and reporting scheme to provide developers with the necessary hints for plug-in debugging. All method calls return a result value that informs the caller of the severity and potential cause of a problem. Any unexpected result is printed out to the command line in form of a call stack trace. Additionally, a dynamic memory watchdog keeps track of the allocated memory and reports any problems. An optimized version of Harness without this extra diagnostic infrastructure is also available for production runs.

Given Harness’ flexible and powerful plug-in-based computation model, several advanced fault-tolerance capabilities are possible. The Harness team has extended the popular MPI message-passing system to create the new FT-MPI system that can recover or gracefully shut down in response to a computer crash or network failure. Harness uses a special, linear scalable distributed control algorithm within its database plug-in to eliminate any single points of failure in the system.

For further information on this subject contact:

Dr. Fred Johnson, Program Manager

Mathematical, Information, and Computational

 Sciences Division

Office of Advanced Scientific Computing Research

Phone: 301-903-3601

fjohnson@er.doe.gov

* 865-574-3153, geistgaii@ornl.gov

