[image: image1.png]speedup

50

OHarinaran, et al
OPresent Work

10 20 30
number of processors

40

Advanced Scientific Computing Research

FY 2003 Accomplishment

 “-Mag” – Extensible and scalable tools for computational nanoscience

G. Brown, H.K. Lee, M. Eisenbach, Oak Ridge Institute for Science and Education

T. C. Schulthess *, M. Summers, and G. M. Stocks, Oak Ridge National Laboratory

Summary

A generic toolset for algorithms and data structures used in computational nanomagnetism that can be used for rapid prototyping as well as high performance computing applications is being developed. Adequacy of the generic programming paradigm for scalable algorithms is demonstrated.
One of the predicaments of computational nanoscience (CNS) is that modeling tools have to be very flexible while at the same time making maximal use of high performance computing (HPC) technology. Flexibility is required because CNS always lives at the boundary of applicability of established methods. For example, due to reduced dimensionality familiar paradigms upon which methods of computational materials science are built no longer apply. Solving such problems will require a combination of computational methods that have been developed in different fields; implementations of these methods thus have to become more flexible. On the other hand, good performance on HPC systems is required when methods are used outside of their natural regime, since they will always be used for problems that are bigger than what they have been designed for. Codes that make efficient use of HPC technology, however, typically have evolved over relatively long time periods with data structures and design principles that are not readily transferable between codes and computer architectures. Furthermore, longevity of methods and codes in materials science also implies computational tools should rely on standardized technology (compilers, libraries, etc.), since they will almost certainly outlive even the latest computer architectures and custom-built communication software.

A practical approach that accommodates all these requirements, is to base CNS modeling on a set of scalable and extensible tools from which codes for rapid prototyping as well as codes for high performance computing applications can be built. In particular, when these tools become part of the resulting modeling code and rely only on commonly used (standardized) compilers, portability is straightforward and longevity thus possible.

With the development of the -Mag toolset, which implements commonly used algorithms and data structures in computational nanomagnetism, we are pursuing exactly this strategy. We make extensive use of the generic programming paradigm [1], where data structures and algorithms are designed to conform to very general (generic) concepts. We use standard C++, where via the template mechanism, these generic concepts are instantiated as object classes by the compiler, rendering efficient and highly optimized code. Applicability of these tools for rapid prototyping applications has been demonstrated in a number of modeling projects [2,3].

In essence, the generic programming approach has a fundamental disposition towards extensibility without performance penalties since it makes use of compile time polymorphism rather than the usual run time polymorphism of object oriented programming. Not surprisingly it has become very popular for numeric applications. However, its usefulness for parallel computing has yet to be demonstrated. Here we have set out to demonstrate that policy concepts can be defined for a particular algorithm that encode all of the parallel computing details, allowing enhancing portability for a particular generic algorithm.

[image: image2.jpg]pP—=5" Office of
QA Science

U.S. DEPARTMENT OF ENERGY

-Mag parallel processing speedup (circles) for 64000 interacting magnetic dipoles, and results for a similar FMM calculation (squares) from recently published work [6].

As an example we have used the fast multiple method [4]. We have defined a parallel computation concept, and implemented, besides the usual and natural domain decomposition strategy, a task decomposition strategy [5]. The advantage of this approach is that the serial as well as all parallel implementations share the same source code for the FMM algorithm. The scaling with number of processors of the generic implementations is the same as the explicit implementation of a particular parallelization strategy of the FMM that has recently been published. These results demonstrate that the generic design paradigm used in the -Mag tool set provides flexible, extensible, and scalable tools with no performance penalty on parallel computers.

The -Mag toolset is available under the terms of the GNU Public License. An initial release can be downloaded from www.ccs.ornl.gov/mri/psimag. Our near term plans are to use the toolset for the hands-on session of the first nanoscience workshops this summer (see www.cnms.ornl.gov or www.ccs.ornl.gov/mri and follow workshop links) and subsequently release a stable version after feedback from workshop participants has been incorporated.

[1] M. H. Austern, Generic Programming and the STL (Addison-Wesley, Reading, Mass., 1999).

[2] G. Brown, et al., J. Appl. Phys. 91, 7056 (2002).

[3] H. K. Lee, et al., J. Appl. Phys. 91, 6926 (2002).

[4] L. F. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems (MIT Press, Cambridge, 1988).

[5] C. H. Choi, et al., J. Comp. Chem. 22, 1484 (2001).

[6] B. Hariharan, S. Aluru, and B. Shanker, in Proceedings of Supercomputer Conference, 2002.

[sc2002.org/paperpdfs/pap.pap295.pdf]

For further information on this subject contact:

Dr. Gary M. Johnson, Director Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research

Phone: 301-903-5800

gary.johnson@science.doe.gov

* 865-574-4344, schulthesstc@ornl.gov

