
Constructing Collaborative Desktop Storage Caches

for Large Scientific Datasets

SUDHARSHAN S. VAZHKUDAI

Oak Ridge National Laboratory

XIAOSONG MA

North Carolina State University

VINCENT W. FREEH

North Carolina State University

JONATHAN W. STRICKLAND

North Carolina State University

NANDAN TAMMINEEDI

North Carolina State University

TYLER SIMON

Oak Ridge National Laboratory

and

STEPHEN L. SCOTT

Oak Ridge National Laboratory

Author’s address: S. Vazhkudai, T. Simon, S. Scott, Computer Science and Mathematics

Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831. X. Ma, V. Freeh, J. Strickland,
and N. Tammineedi, Department of Computer Science, North Carolina State University, Raleigh,
NC, 27695-7534.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0000-0000/2006/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, June 2006, Pages 1–0??.

2 · Sudharshan Vazhkudai et al.

High-end computing is suffering a data deluge from experiments, simulations, and apparatus
that creates overwhelming application dataset sizes. This has led to the proliferation of high-end
mass storage systems, storage area clusters, and data centers. These storage facilities offer a
large range of choices in terms of capacity and access rate, as well as strong data availability and
consistency support. However, for most end-users, the “last mile” in their analysis pipeline often
requires data processing and visualization at local computers, typically local desktop workstations.
End-user workstations—despite more processing power than ever before—are ill-equipped to cope
with such data demands due to insufficient secondary storage space and I/O rates. Meanwhile, a
large portion of desktop storage is unused.

We propose the FreeLoader framework, which aggregates unused desktop storage space and I/O
bandwidth into a shared cache/scratch space, for hosting large, immutable datasets and exploiting
data access locality. This paper presents the FreeLoader architecture, component design, and per-
formance results based on our proof-of-concept prototype. Its architecture comprises contributing
benefactor nodes, steered by a management layer, providing services such as data integrity, high
performance, load balancing, and impact control. Our experiments show that FreeLoader is an
appealing low-cost solution to storing massive datasets, by delivering higher data access rates
than traditional storage facilities: namely, local or remote shared file systems, storage systems,
and Internet data repositories. In particular, we present novel data striping techniques that allow
FreeLoader to efficiently aggregate a workstation’s network communication bandwidth and local
I/O bandwidth. In addition, the performance impact on the native workload of donor machines
is small and can be effectively controlled. Further, we show that security features such as data
encryptions and integrity checks can be easily added as filters for interested clients. Finally, we
demonstrate how legacy applications can use the FreeLoader API to store and retrieve datasets.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management; C.2.4
[Computer-Communication Networks]: Distributed Systems; C.4 [Performance of Sys-

tems]:

General Terms: Storage Networking, Storage Resource Management

Additional Key Words and Phrases: Distributed storage, storage scavenging, storage cache, server-
less storage system, scientific data management, parallel I/O, striped storage

1. INTRODUCTION

Increasingly, scientific discoveries are driven by analyses of massive data, produced
by instruments or computer simulations [Gray and Szalay 2003; Gray et al. 2005;
Avery and Foster 2001]. This has led to the proliferation of high-end mass storage
systems, storage area clusters, and data centers as storage fabric elements for Grids,
and Internet scientific data collections. These storage systems offer a wide range of
choices in terms of capacity, access rate, access control, support for high-throughput
parallel I/O, optimization for wide-area bulk transfers, and data reliability.

However, for most end-users of scientific data, certain stages of their tasks often
require computing, data processing, or visualization at local computers,
typically personal desktop workstations. A local workstation is and will remain
an indispensable part of end-to-end scientific workflow environments, for several
reasons. First, it provides users with interfaces to view and navigate through data,
such as images, timing and profiling data, databases, and documents. Second, users
have more control over hardware and software on their personal computers com-
pared to on shared high-end systems (such as a parallel computer), which allows
much greater flexibility and interactivity in their tasks. Third, personal computers

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 3

provide convenience in connecting users’ computing/visualization tasks with other
tools used daily in their work and collaboration, such as editors, spreadsheet tools,
web browsers, multimedia players, and visual conference tools. Finally, compared
to high-end computing systems that are often built to last for years, desktop work-
stations at research institutions get updated more often and typically have higher
compute power than individual nodes of a large, parallel system. This is especially
advantageous for running sequential programs, and there exist many essential sci-
entific computing tools that are not parallel. Applications that were once beyond
the capability of a single workstation are now routinely executed on personal desk-
top computers. The combination of fast CPU, large memory, and the prospering
Linux environment provides scientists with a familiar—yet powerful—computing
platform right in their office, often times enabling them to avoid the overhead of
obtaining parallel computer accounts, frequent data movement, and submitting, as
well as waiting for the completion of batch jobs.

While personal computers are up to their important roles in scientific workflows
with advantages in human-computer interface and processing power, storage nowa-
days usually becomes their limiting factor. Commodity desktop computers are often
equipped with limited secondary storage capability and I/O rates. Shared storage
in university departments and research labs are mostly provided for hosting ordi-
nary documents such as email and web-pages, and usually comes with small quota,
low bandwidth, and heavy workloads. This imbalance between compute power and
storage resources leaves scientists with two unattractive choices when processing
datasets larger than their workstations’ available disk space. First, their worksta-
tions can remotely access the data sets—but the wide-area network latencies kill
performance. Second, they can use a high-performance computer, which has suf-
ficient disk space–but will have to perform their computation either at a crowded
head node or through a batch system.

Users may also choose to install a large storage system accessible from their
desktop workstations. However, this is not cheap. Although disks themselves are
relatively affordable today (at $1000 to $2000 for 1 TB), building a storage system
requires expensive hardware such as fiber channel switches. For example, a 365GB
disk array currently costs over $6000 and a 4TB array costs over $40,000,1 which is a
non-trivial expense, especially for academic and government research environments.
This has not yet taken into account the maintenance costs. Although price is
expected to fall for the same capacity, data size is expected to rise, often at a higher
speed. In fact, parallel simulations can easily generate TBs of data per application
per day already [Bair et al. 2004]. When groups of users store their scientific
datasets in a shared storage system, even a large space can quickly be exhausted,
as demonstrated by shared scratch file systems at supercomputer centers.

Further, even when workstation-attached storage is abundant, users normally
choose not to retain copies of the downloaded scientific datasets on their desktops
beyond the processing duration. These datasets are several orders of GB or larger
and are usually archived in mass storage systems, file servers, etc. Subsequent
requests to these datasets involve data migration from archival systems at transfer
rates significantly lower than local I/O or LAN throughput [Lee et al. 2002; Lee

1Price quote from www.ibm.com as of 2005.

ACM Journal Name, Vol. V, No. N, June 2006.

4 · Sudharshan Vazhkudai et al.

0%

20%

40%

60%

80%

100%

Purdue ORNL Microsoft

Domain

%
 S

to
ra

g
e

A
va

ila
b

le

AvailableSharedStorage AvailableStorage/Desktop

N/A

Fig. 1. Space availabile on shared storage servers and desktops based on surveys at Microsoft,
Purdue and ORNL. Surveys included shared servers at Purdue and ORNL amounting to several
TB. Data from Microsoft was not available for this category. Desktop surveys included several

hundreds of workstations at both Purdue and ORNL and at least 50000 machines from Microsoft.
Desktop storage capacity typically ranged from 30 to 80GB of space per workstation.

et al. 2004; Vazhkudai and Schopf 2003].

Meanwhile, collectively a large amount of disk space remains idle on personal
computers within academic or industry organizations (Figure 1). Studies show
that on average, at least half of the disk space on desktop workstations is idle, and
the fraction of idle space increases as the disks become larger [Adya et al. 2002;
Douceur and Bolosky 1999]. In addition, most workstations are online for the vast
majority of the time [Chien et al. 2003]. A desirable low-cost alternative then,
is to harness the collective storage potential of individual workstations

much as one harnesses idle CPU cycles [Litzkow et al. 1988]. Besides aggregating
storage capacity, this brings performance benefits as well: as networking trends
suggest that a fast LAN connection can stream data faster than local disk I/O, a
workstation can get higher data throughput by effectively performing parallel I/O
on multiple workstations where its data is distributed.

We envision a distributed storage framework, FreeLoader (Figure 2), that pro-
vides abundant, high-performance site-local storage for scientific datasets with very
little additional expense, by aggregating idle desktop storage resources. With
FreeLoader, workstation owners—within a local area network—donate some disk
space, and FreeLoader stripes datasets onto multiple such workstations (called
benefactors) to enhance data access rates. Imagine a group of scientists in an
organization—working on a problem of mutual interest—who regularly run their
simulations on a remote supercomputer to generate dozens of gigabytes of snapshot-
data per timestep. They often download these terabytes of result-data onto local

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 5

Data

Source-1

Scientific
Application

FreeLoader

Storage Cloud

FreeLoader

Client

Stripe of
Morsels

Data

Source-N

download using different protocols

parallel get()
and put()

User

ftp://remote-source-1 gsiftp://remote-source-N

�

local

remote

FreeLoader

benefactors

Fig. 2. Envisioned FreeLoader Environment

machines and use visualization tools to study them numerous times for a period of
weeks.

On the other hand, using FreeLoader these researchers can pool the idle disk
space on their workstations into a transparent, shared cache and scratch space.
This enables each researcher in the group to process the raw datasets as if they
reside on a high-performance shared file system, allowing easy collaboration and
obviating expensive downloading/migration operations. As interest fades on this
batch of datasets, they will get replaced by new datasets that are currently “hot.”

It is important to note that interactive data-intensive computing has several
unique characteristics.

—Datasets are usually write-once-read-many. Further, they are usually shared
since people within the same organization, e.g., a research group or academic
department, often times have shared interest on certain datasets [Otoo et al.
2004].

—Often, scientists have the primary copy of a dataset safely stored in a remote
repository, typically at archiving or file systems attached to a parallel computer,
or at data collections on the web [ncbi 2005; The Astrophysical Research Con-
sortium 2005; Szalay and Gray 2001].

—A certain dataset is of interest for a limited period, e.g., a few days or weeks.
It may be frequently re-visited during this period, often by multiple coworkers
in the collaboration [Iamnitchi et al. 2004]. However, beyond this processing
duration, users normally choose not to retain copies of the downloaded datasets
locally.

—Workstations that are used to perform scientific data analysis or visualization

ACM Journal Name, Vol. V, No. N, June 2006.

6 · Sudharshan Vazhkudai et al.

tend to have more performance and resources.

Although there exists other work on desktop storage aggregation [Adya et al.
2002; Butt et al. 2004], FreeLoader is novel in the following aspects. First, rather
than providing a general-purpose distributed file system, FreeLoader is designed
to handle transient uses of bulk scientific data. It aggregates idle storage to host
datasets that are larger than workstations’ typical local disk space, and employs an
asymmetric striping technique to fully take advantage of local space and I/O band-
width at workstations that process data from FreeLoader space. Second, because
FreeLoader aggregates workstation storage where users also conduct their day-to-
day activities, it is vital to control the performance impact on donated nodes. As a
result, FreeLoader provides high-performance I/O using only donated idle storage
without adversely impacting the native workload on the donated machines. Finally,
FreeLoader derives several best practices from different classes of storage systems.
For instance, it adopts: desktop storage scavenging from P2P systems; data strip-
ing and parallel I/O from parllel file systems; and caching from cooperative caching
systems. It combines the aforementioned key strategies and several others to build
a collaborative caching system based on storage contributions and applies it to an
emerging problem space of bulk scientific data accesses and sharing.

This paper reports initial experimentation measuring the performance impact of
disk scavenging, which suggests that FreeLoader induces reasonable and containable
impact on a variety of native workloads. A prior publication addresses controlling
the impact on the benefactors native workload [Strickland et al. 2005].

The rest of the paper presents the design, implementation, and evaluation of our
FreeLoader prototype. Section 2 discusses related work. Section 3 presents the
overall architecture design of FreeLoader, and Section 4 gives more details on the
implementation of our FreeLoader prototype. Performance and impact experiment
results are discussed in Section 5. Section 6 concludes the paper.

2. RELATED WORK

Tens of networked and distributed file systems exist as shared storage (e.g., NFS
[Nowicki 1989]), LOCUS [Popek and Walker 1985], AFS [Howard 1988; Morris et al.
1986] , CODA [Satyanarayanan et al. 1990], etc.). These systems either use central-
ized servers (as in NFS) or a few distributed replicated file servers (as in CODA).
Several serverless file systems are designed to achieve higher availability and scala-
bility (e.g., Farsite [Adya et al. 2002] and Kosha [Butt et al. 2004]). However, all
the above systems serve as file systems and target general-purpose file system us-
age patterns. Additionally, GFS [Ghemawat et al. 2003] is a distributed file system
designed for data-intensive tasks, but is proprietary, uses dedicated disks, and is
specialized for Web searches. In contrast to these existing file systems, FreeLoader is
an open-source, lightweight, highly decentralized storage cache built on scavenged
disk spaces. It aims to host large replicated datasets for data-intensive science,
where concerns for file/directory management and concurrency control are much
less significant. Further, FreeLoader treats the aggregated scavenged space as a
cache, constantly uploding or evicting datasets based on client access patterns.

Parallel file systems (e.g., GPFS [Schmuck and Haskin 2002], Lustre [Clus-
ter File Systems, Inc. 2002], PVFS [Carns et al. 2000]), Frangipani [Thekkath et al.

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 7

Systems FS Cache Striping Scavenging WAN

FreeLoader No Yes Yes Yes No

Parallel file systems

GPFS, Lustre, PVFS, Frangipani+Petal Yes No Yes No No

Distributed file systems

Zebra Yes No Yes No No
NFS, AFS, Coda Yes No No No Yes

Google FS Yes No No No No
FARSITE Yes No No No No

IBP+exNode [Beck et al. 2002] No No Yes No Yes

P2P Storage

Kosha Yes No No Yes No
BitTorrent No No Yes No Yes

Gnutella, Kazaa, Freenet No No No Yes Yes
Squirrel No Yes No No No

Cooperative caching

xFS, GMS, hints No Yes No No No

Table I. Comparison with related file and storage systems. The column “FS” indi-
cates whether a system is designed to present general-purpose file system interfaces
and functionalities. The column “Cache” indicates whether the system is intended
to be used as a cache space, instead of whether the system uses caching (many of
them do emphasize caching for performance improvement). “Striping” denotes the
use of data striping. “Scavenging” indicates the use of space contributions either
in part or whole. The “WAN” column denotes use as wide-area storage.

1997] and Petal [Lee and Thekkath 1996], target large datasets, provide sustained
high I/O throughput, and are tightly integrated with supercomputers. Recently,
distributed logical disks [Frolund et al. 2003] are being built from a decentralized
collection of commodity storage appliances, extending ideas from Petal with repli-
cation, volume management and load balancing. Such systems handle replication
at a disk segment level and not at a dataset level. Aforementioned systems are
widely used by FreeLoader’s target users: scientists engaged in high performance
computing. FreeLoader applies parallel file system techniques, such as file strip-
ing and parallel I/O, in desktop storage settings, and complements these high-end
systems. By replicating datasets at scientists’ local sites, FreeLoader improves
data availability, facilitates local data sharing, and reduces the I/O and network
workload at those remote file systems. Meanwhile, by serving as a data cache,
FreeLoader achieves high space utilization and avoids wasting or fragmenting (due
to space quotas) its capacity. Also, while data striping has been widely adopted
in the above systems and certain distributed systems (e.g., Zebra [Hartman and
Ousterhout 1995]), it is usually done in a uniform or symmetric way with relatively
homogeneous settings of these systems. FreeLoader explores overlapping network
data transfer and local I/O with a novel asymmetric striping technique.

The striping and I/O bandwidth aggregation in FreeLoader is similar to systems
like Swift [Cabrera and Long 1991] that address the data rate mismatch between
application needs and storage systems through parallel I/O across the network.
However, our system is different in its attempt to provide a parallel I/O interface
across scavenged unreliable desktop storage that poses new opportunities and chal-

ACM Journal Name, Vol. V, No. N, June 2006.

8 · Sudharshan Vazhkudai et al.

lenges for striping. In addition, FreeLoader treats the entire scavenged space as a
cache unlike Swift, which is designed as a bandwidth aggregation system.

FreeLoader can be viewed as cooperative caching [Dahlin et al. 1994; Feeley
et al. 1995; Sarkar and Hartman 1996; Gadde et al. 1998] extended to another
layer: it pools secondary storage in a LAN environment to reduce access misses
that require wide-area data transfer from remote sources. However, a cooperative
cache is part of the storage hierarchy of every node, whereas FreeLoader space is
donated voluntarily and can be aggregated to enable the local desktop processing of
large datasets. Further, the primary goal of cooperative caches is to enable access
locality and sharing. The performance benefit is due to a hit in the local cache that
obviates the need for wide-area accesses. In FreeLoader, this performance gain,
however, is amplified manifold due to the parallel retrieval of the striped, in-cache
dataset.

Also related is Batch–Aware Distributed File System (BAD–FS [Bent et al.
2004]), which constructs a cooperative cache/scratch environment from storage
servers or appliances [Bent et al. 2002], specifically geared towards I/O inten-
sive batch workloads in a wide-area environment. While we can draw parallels
with FreeLoader in the sense of catering to data–intensive workloads and enabling
caching, we differ significantly in the sense that FreeLoader’s cache environment is
based on very loosely connected desktop storage as opposed to BAD-FS’s storage
appliances.

Finally, multiple large scale P2P [Crowcroft and Pratt 2002] systems exist (e.g.,
Gnutella [Markatos 2002], Kazaa [SHARMAN NETWORKS, Inc. 2005], Freenet
[Clarke et al. 2000] and BitTorrent [Cohen 2003]). PAST [Druschel and Rowstron
2001], CFS [Dabel et al. 2001], Ivy [Muthitacharoen et al. 2002] and OceanStore
[Kubiatowicz et al. 2000] facilitate wide-area distributed data storage by providing
persistence and reliability. The Shark distributed file system [Annapureddy et al.
2005] attempts to scale centralized (NFS–like) servers through the use of cooper-
ative caching and peer-to-peer distributed hash tables (DHTs [Ratnasamy et al.
2001]). Also akin to our approach is Squirrel [Iyer et al. 2002], a decentralized P2P
web cache, that exploits locality in web data object references by sharing desktop
browser caches.

There are two major differences between P2P systems and FreeLoader. First,
P2P systems are usually designed for WAN settings and emphasize scalable resource
and replica discovery, routing protocol, and consistency. In contrast, FreeLoader
focuses on aggregating space and bandwidth in a corporate LAN setting. It adopts
a certain degree of centralized control in data placement and replication, for better
data access performance. Second, P2P storage systems have usually been designed
for content sharing, while FreeLoader has additional goals of space aggregation and
bandwdith aggregation. BitTorrent and Shark aggregate bandwidth as well. Al-
though P2P systems can be deployed in LAN environments, individual worksta-
tions that have such a system installed still manage their own storage spaces. This
is also true for P2P web caching. In contrast, FreeLoader has total control over
scavenged space and can therefore aggregate space effectively to host large and hot
datasets: a workstation may host a dataset that its owner never downloads or uses,
or lose a dataset without its owner explicitly deleting it. Moreover, the access pat-

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 9

tern of scientific datasets [Otoo et al. 2004], differs significantly from that of P2P
file sharing systems [Gummadi et al. 2003], often designed toward multimedia data
consumption.

Table 1 compares FreeLoader with some of the related existing systems. In
summary, compared to existing systems, FreeLoader possesses a novel combination
of several techniques: it deploys space scavenging to aggregate storage resources
in non-dedicated commodity workstations in a LAN environment and performs
aggressive and asymmetric data striping for better data access performance. Instead
of being a general-purpose file system, it works as scratch/cache space to exploit
data access locality, as well as to enhance space utilization in data-intensive scientific
computing.

3. ARCHITECTURE

3.1 Assumptions

In this section, we highlight some of our design choices. Before we present
FreeLoader’s architecture, we first list below design issues regarding system scope
and assumptions.

Scalability: Our target storage resource management environment is intended
to support tens to thousands of workstations within an administrative domain,
handling data access requests from numerous clients as well.

Connectivity and Security: We assume a well connected corporate LAN set-
ting but not high–speed communication environments expected by parallel file sys-
tems. The implementation described in this paper does not provide any security
mechanisms. There are plenty of existing studies on secure distributed storage us-
ing untrusted components (e.g., [Adya et al. 2002]). Many of these mechanisms can
be leveraged by FreeLoader. We examine this cost in Section 5.2.2

Heterogeneity: User desktop workstations come in all flavors ranging from
operating system diversity to machine characteristics, CPU speeds, disk speeds,
network bandwidths to varying temporal loads. Our architecture will need to ac-
commodate such a diverse mix and exploit the performance differences therein.

Scientific Data Properties: FreeLoader is intended for accessing scientific
datasets, rather than general-purpose documents and data that people prefer to
store in secure, high-reliable file systems. As mentioned in Section 1, scientific
datasets are typically large, immutable, accessed in sequential manner, and almost
always with a primary copy archived in a remote storage system.

User Impact Control: FreeLoader is based on space contribution from indi-
vidual users and revolves around the premise that a user will ultimately withdraw
contribution if overly burdened. Thus, our design needs to reflect this guiding prin-
ciple with support for performance impact control, so that the slowdown incurred
by FreeLoader on space donors’ native workloads can be tuned.

Next we present the overall architecture of FreeLoader by describing its major
components.

3.2 FreeLoader Components

FreeLoader aggregates donated storage into a single storage system. The basic
architecture consists of two components. The management component maintains

ACM Journal Name, Vol. V, No. N, June 2006.

10 · Sudharshan Vazhkudai et al.

the metadata and performs high-level operations, such as replication and cache
replacement. The storage component consists of benefactor nodes that donate space
along with I/O and network bandwidth. Data storage and retrieval are initiated
by the client nodes that interact with managers and benefactors to access data. A
client node may or may not be a benefactor itself.

FreeLoader is a storage system, not a file system. It stores large, immutable
datasets by fragmenting them into smaller, equal-sized chunks called morsels, which
are scattered among the benefactors. This allows easy load balancing and striping
between benefactors for better overall throughput. The morsel size presents a
tradeoff between flexibility and overhead. Our preliminary experiments with 1MB
morsels have proven practical for FreeLoader managing hundreds of GBs to TBs of
space.

3.2.1 Management Component. The management component maintains meta-
data (such as dataset names) and performs lookup services to map a client-requested
dataset to morsels on benefactors. This component does not touch any data in the
dataset. Because the amount of metadata is significantly smaller than real data, the
management component can run on one or a handful of dedicated machines—this
fact is exploited in a similar way by Google FS, at a system scale of thousands of
nodes [Ghemawat et al. 2003]. Clients communicate with a manager node to obtain
morsel mapping, then directly contact the benefactors for morsel transfer.

Besides morsel location lookups, the management component stores client-specific
metadata for added functionality, such as per-morsel fingerprint checksums for in-
creased dataset integrity. Such services, including encryption and decryption, are
optional client-side filters that have little storage overhead at the management com-
ponent. Moreover, the computational costs are paid by clients (not benefactors)
who elect to use them.

For aggregating I/O bandwidth, FreeLoader adopts software striping [Hartman
and Ousterhout 1995] by distributing morsels to multiple benefactors. In addition
to aggregating disk and network transfer bandwidth, striping has one unique benefit
in FreeLoader: it lowers performance impact on benefactors by spreading out data
requests.

When distributing data to remote benefactors, FreeLoader adopts a simple round
robin striping approach, where stripe width is the number of benefactors that a
dataset is striped onto, and stripe size is the number of contiguous morsels assigned
to a benefactor in each round of striping. For each individual dataset, determin-
ing these two parameters in FreeLoader’s heterogeneous and dynamic settings is a
complex decision based on a set of factors: network connectivity of the client, free
space and bandwidth of available benefactors, reliability and native workload on
these benefactors, etc. Section 5 shows the impact of these striping parameters on
FreeLoader’s data access rates.

Moreover, the user who imports or creates a dataset is likely to visualize or ana-
lyze it most often. Recognizing this, we designed an asymmetric striping approach
that assigns more data to this benefactor workstation, to optimize its future ac-
cesses to the dataset by overlapping remote data retrieval and local I/O. Section
4.1 discusses striping in more detail.

Several other features, not presented at length in this paper, are currently under

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 11

development. In short, reliability and availability is addressed by recovery and
data replication mechanisms. Manager recovery is based on periodical metadata
checkpointing and fail-over techniques. Benefactor failures, including sudden death
(due to crashes) and reclaimed space (withdrawn by the benefactor), are handled
using a combination of cache replacement and replication mechanisms. To this
end, FreeLoader collects and uses data access patterns and benefactor performance
capabilities extensively.

3.2.2 Storage Component. The storage component, which runs on benefactor
nodes, manages all the morsels in the system. The primary function of this com-
ponent is servicing get and put morsel requests. Since FreeLoader stores read-only
datasets and accesses to scientific datasets have temporal locality [Otoo et al. 2004],
get requests will dominate traffic.

A benefactor node is an ordinary user machine that has donated certain idle
disk space and has installed the benefactor component of FreeLoader as a daemon
process, which services get/put morsel requests. The benefactors will also perform
several aggregate or meta operations at the direction of the manager. For example,
in the case of data relocation, the manager gives the source benefactor a list of
morsels to move out and their destination benefactors. The source benefactor
initiates the transfers and reports back to the manager.

FreeLoader makes no assumption on the availability of individual benefactor
nodes. Soft-state registration is performed by having each benefactor regularly
send heartbeat or “I’m alive” messages to the manager(s).

Another important task of the storage component is performance impact control
on benefactors’ native workload. Aside from servicing requests, the impact of the
daemon is negligible. When it comes to servicing morsels, the performance impact
depends on the bandwidth or request frequency, as well as on the native workload’s
resource usage pattern.

Typical impact control strategy for resource stealing systems is all-or-nothing : a
scavenger has all the resources at its disposal if there are no native tasks, and no
resources otherwise [Anderson et al. 2002; Litzkow et al. 1988]. Such a strategy is
not only overly conservative [Gupta et al. 2004; Novaes et al. 2005], but also in-
feasible for FreeLoader as it incurs intolerably long data access latencies whenever
benefactor owner activities are detected. Therefore FreeLoader is designed to have
the benefactor daemon’s data serving co-exist with native workloads, with active
control of the performance impact. FreeLoader contains impact to a pre-specified
threshold by performance impact benchmarking, real-time monitoring of the native
workload’s resource consumption, and throttling the benefactor daemon’s execu-
tion. Interested readers are referred to our paper [Strickland et al. 2005].

In this paper, we develop a high-level approach such as increasing the stripe
width to control benefactor impact. Stripe width increase naturally performs im-
pact control by reducing the per-benefactor data request size and complements
aforementioned local impact control.

This high-level impact control will further be complemented by benefactors’
local impact control, which is done by performance impact benchmarking, real-
time monitoring of the native workload’s resource consumption, and throttling the
FreeLoader daemon’s execution. This method can contain the actual performance

ACM Journal Name, Vol. V, No. N, June 2006.

12 · Sudharshan Vazhkudai et al.

MANAGER BENEFACTOR

 CLIENT FL_read()
 FL_close()
 FL_open()

 UDP

UDP

UDP/TCP

put()
get()

new()
free()

 OS

retrieve()
delete()

store()

reserve()
cancel()

APPLICATION

 FL_write()

Retrieve_dset_info()
Create_dset()

Fig. 3. Modules and interfaces in prototype

impact on native workloads within a pre-specified threshold. Interested readers are
referred to our paper discussing the benefactor-side performance impact control
[Strickland et al. 2005]. Section 5 demonstrates our empirical performance impact
study and control through striping.

4. PROTOTYPE DESIGN AND IMPLEMENTATION

Our FreeLoader proof-of-concept prototype implements major functionalities de-
scribed in Section 3. Figure 3 shows its main modules as well as the interfaces
between them. This prototype verifies the following rationales.

—Harnessing workstation storage delivers aggregate data retrieval rates at least
comparable to those currently possible accessing existing local higher-end storage
systems, and significantly higher than those accessing remote systems.

—Software striping delivers both high aggregate data access throughput and scala-
bility with regard to stripe width in a LAN environment. In particular, with our
asymmetric striping technique, a client can efficiently combine its network data
transfer with local disk I/O.

—Data serving activities exert a tolerable impact on workstation’s native workloads
and this impact is controllable by throttling the data transfer rates.

—The overhead of the FreeLoader framework, notwithstanding bulk data transfer,
is acceptably low and reduces as stripe width increases.

4.1 Manager Design and Implementation

The FreeLoader architecture and protocol design allows for multiple managers for
increased system performance and availability. It has been demonstrated by large

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 13

commercial distributed systems such as the Google File System that a single man-
ager can successfully provide metadata management and request distribution sup-
port for thousands of storage nodes [Ghemawat et al. 2003]. Our prototype im-
plementation is based on a single manager and we will focus on this simplification
in the rest of our discussion. The manager provides a set of services for storage
resource scavenging and data accesses: global free space management, space reser-
vation/cancellation, data striping and metadata serving in the process of dataset
store/retrieve operations. Below, we discuss these services at length.

4.1.1 Metadata Management. The manager keeps track of space donations—
both available and occupied—at each benefactor, in number of morsels. A client
needs to make a space reservation with the manager before storing a dataset in
FreeLoader. This provides space guarantees before expensive data imports, and acts
as a serialization point for concurrency control between multiple client requests.

During a store or retrieve operation, the client obtains morsel distribution from
the manager. This information is organized as an array of {benefactor ID, morsel
ID} pairs, specifying for each morsel-sized block in the dataset, the benefactor
storing this block and the local morsel ID assigned by that benefactor. This format
allows for flexibility in striping data and future data relocation in case of benefactor
failures. Such metadata is cached in the manager’s memory and further backed up
in its secondary storage.

Also part of the manager metadata is information regarding namespace main-
tained as directory metadata. Datasets are stored into FreeLoader space by having
the clients specify the location/protocol of the remote primary copy (URI). The
URI is maintained by the manager as part of metadata for each dataset as its
identifying tag in the FreeLoader namespace.

4.1.2 Data Placement. The manager has to decide where to place each incoming
dataset. As mentioned in Section 3.2.1, software striping is adopted due to its
two-fold benefits in FreeLoader: increasing the client-side aggregate data access
bandwidth and reducing the benefactor-side performance impact.

Upon a store, the manager performs file striping across benefactors by choosing
a stripe width and size, as well as the subset of benefactors on which the dataset
will be placed. In this prototype, we have the client specify these two parameters
for a dataset to be stored, allowing easy experimentation on combinations of stripe
parameters.

Given a dataset with specified stripe width and stripe size, the manager uses a
striping algorithm to select a subset of benefactors to store it. An intelligent strip-
ing algorithm should manage space efficiently while also factoring in performance
capabilities of benefactors. We have implemented three data striping strategies:
round-robin to benefactors excluding the client that stores the dataset, predictive
that factors in capability differences between benefactors during striping, and asym-
metric that stripes (unevenly) to both benefactors and the client (called host client
of the dataset in question).

Round-Robin striping: Note that with software striping, “stripe width” may
differ with “the number of benefactors a dataset is striped onto” (we call these
benefactors the stripe node set of that dataset). The former refers to the number

ACM Journal Name, Vol. V, No. N, June 2006.

14 · Sudharshan Vazhkudai et al.

of benefactors the client will be transferring data to or from simultaneously. For
example, with a stripe width of 4, the first half of a dataset maybe striped onto
benefactors 1, 2, 3, and 4, while the second half striped onto benefactors 5, 6, 7,
and 8, without affecting the overall space requirement or the client perceived data
transfer rate.

However, for practical purposes, it helps to maintain a small stripe node set.
First, since benefactors are managed individually and may be down or very busy
at any time, as the stripe node set grows, the chance of a dataset missing part of
its morsels also grows significantly. Second, a larger stripe node set implies that
on average more datasets will be stored on each benefactor, increasing the cost
in metadata management due to data relocation when benefactors quit or reclaim
spaces from FreeLoader. In particular, a striping strategy that maximizes the stripe
node set size will have a large number of datasets locked and unavailable during such
data relocation processes. Such a strategy will also cause benefactors with higher
space contributions to be accessed more often, with a load proportional to space
contribution. Finally, having a large node set increases the overhead of adding,
migrating, or removing datasets, and increases the burden on the manager. This is
because a larger number of benefactors will be involved in metadata and file data
updates, with the startup overhead less amortized over communicating morsel-level
information.

Therefore, we first consider a striping strategy that would fix the stripe node
set size at a given stripe width. Below we demonstrate that even with this preset
stripe width and the simple round-robin striping strategy, to optimize where to
place specific stripe units in a heterogeneous environment is a difficult problem. In
FreeLoader’s target scenarios, benefactors come with varied space availability, and
an optimal placement algorithm should fit as many datasets as possible to these
benefactors.

This data placement optimization problem, which we call Stripe Fit, can be
formalized as follows. A sequence of n datasets D = d1, d2, ..., dn, where di is of
size si and requests a stripe width wi, arrive to be stored at a set of m benefactors
B = {b1, b2, . . . , bm}, where bi comes with an initial free space size fi. The problem
then is to stripe as long a prefix as possible of D to B. This is the point where
FreeLoader has to perform cache replacement. We show that a known NP-hard
problem, Minimum Bin Packing [Garey and Johnson 1979], can be reduced to the
off-line version of this Stripe Fit problem. Below is the proof.

Definition 4.1. Given a finite set U of items, a size su ∈ Z+ for each u ∈ U ,
and a positive integer bin capacity C, a solution to the Minimum Bin Packing

problem is a partition of U into the minimum number of disjoint sets U1, U2, ...,
Um, such that the sum of the item sizes in each Ui is C or less.

Definition 4.2. Given a sequence of n datasets D = d1, d2, ..., dn, a size sd

and a stripe width wd for each d ∈ D, a set of m disks K = {k1, k2, ..., km}, and
a capacity Sk for each k ∈ K, a solution to the Stripe Fit problem is a dataset
striping plan that maximize the length of D′, a prefix of D to store in K, such that
each dataset d in D′ is divided into wd equal partitions and stored in wd disks in
K, where the sum of dataset sizes in each k is Sk or less.

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 15

Theorem 4.1. The Minimum Bin Packing problem can be reduced to the Stripe
Fit problem.

Proof of Theorem 4.1. Given an instance of the Minimum Bin Packing prob-
lem, we show that this problem instance can be reduced in polynomial time into
an instance of the Stripe Fit problem.

A function f takes the input of the Minimum Bin Packing problem < U, C >,
and outputs a Stripe Fit problem < D, K >, where

—|K| = n = |U |, where for each k ∈ K, sk = C.

—D = d1, d2, ..., dn, dn+1, dn+2, ..., d2n. For i ∈ [1, n], sdi
= sui

, while for i ∈
[n + 1, 2n], sdi

= C.

—wdi
= 1, for all di ∈ D.

Essentially, f maps a Minimum Bin Packing problem to a Stripe Fit problem, by
creating n = |U | uniform-sized disks, and 2n datasets to be striped to these disks
with a stripe width of 1. The first n datasets have the same sizes as items in U ,
while the second n are “dummy datasets” who can each fill a bin of capacity C.

A function g takes the solution to the above Stripe Fit problem instance, l, where
l is the length of the maximum prefix of D that can be striped to K, and maps it
to m, the minimum number of bins that can accomodate U . A total of n disks are
used to store the first l datasets in D, where the last l − n datasets in this prefix
are all “dummy datasets” of size C, the uniform disk capacity. Therefore, the first
n datasets occupy n − (l − n) = 2n − l disks, and m = g(l, n) = 2n − l. Note that
n ≤ l ≤ 2n.

m is the mininum number of bins that can hold U . Otherwise, there exists
m′ < m, and a partition of U to fit in m′ bins. Since this partition also gives
a striping plan of d1, d2, ..., dn to m′ disks with capacity C using a stripe width
of 1, by substituting the striping plan of the first n datasets in the Stripe Fit
problem solution above, one can store m − m′ more (dummy) datasets from D in
K, contradicting with that l is the optimal answer.

It is easy to see that both f and g can be computed in polynomial time.

The above shows that the offline complexity for finding an solution that optimizes
space utilization while forcing each dataset to be striped onto a preset number
of benefactors. FreeLoader has to make on-the-fly decisions as datasets arrive.
Therefore we relaxed the requirement that the size of the stripe node set has to
equal the stripe width, and designed a greedy algorithm to maximize the use of
available space.

With this greedy algorithm, the manager sorts the benefactors by their current
free space sizes. Each dataset, di, is striped to the top wi benefactors on the
sorted list. If a dataset is too large to be accommodated at any wi benefactors,
the above sorting and striping are repeated for the overflow part. If there does
not exist enough benefactors with available space to sustain the stripe width wi,
we decrement the stripe width to wi − 1, and repeat the process until the entire
dataset is stored. This way, we automatically perform load balancing between
benefactors, ensure that each dataset is accessed simultaneously from no more than
wi benefactors, and control the stripe node set size with each dataset.

ACM Journal Name, Vol. V, No. N, June 2006.

16 · Sudharshan Vazhkudai et al.

Predictive Striping: While our greedy round-robin striping adapts to varying
space availability on the benefactors, it does not factor in the potential hetero-
geniety in the participating benefactor nodes. For instance, the benefactors can
have varying connectivity (GigE, 100Mb/sec, etc.), different I/O rates, processing
speeds, transient loads, resulting in disparate morsel serving rates. To address
and exploit this rate difference, we build a predictive striping strategy. With this
technique, the morsel distribution per benefactor is commensurate to its predicted
transfer rate, decided based on a previous history of benefactor-to-client morsel
transfers. Thus, depending on previous transfer rates, faster benefactors will get
assigned larger portions of data and vice-versa.

To obtain a rate estimate, benefactors log and update the manager on their
transfer rate to the client. The manager can use this history and derive an average or
last observed throughput as morsel delivery estimate. The manager chooses a width
of nodes, w, based on space availability and morsel delivery rates. It then generates
a morsel distribution map, dividing the dataset into morsels, corresponding to w
benefactors. Each benefactor, i, 1 ≤ i ≤ w, has an estimated morsel transfer rate of
Bi to the client. In theory then, the aggregate bandwidth achievable by the client
for the entire download is:

A =

w∑

i=1

Bi,

where A is the aggregate throughput and Bi is the estimated morsel transfer rate
per benefactor.

Assuming the client is capable of handling the bandwidth surplus, morsel dis-
tributions are calculated as follows. For each benefactor i, 1 ≤ i ≤ w, and for a
dataset size, S, the number of morsels per node is:

si =
BiS

A
,

where si is the number of morsels per benefactor. Thus, the number of morsels per
benefactor is commensurate to its transfer rate and its ratio of contribution to the
achievable aggregate bandwidth. Faster benefactors are assigned to deliver bigger
portions of the dataset, while slower benefactors are assigned smaller pieces.

Asymmetric Striping: The above striping technique does not exploit the ca-
pabilities and access patterns of the host client that imported the dataset. In
reality, the owner of the host client workstation is likely to access it first and more
frequently afterward. In addition, workstations that are used to performing bulk
scientific data processing (visualization and/or analysis) tend to have higher con-
figurations in memory size, bus bandwidth, network interface, and disk space. To
better utilize the resources of the host client of each dataset stored in FreeLoader,
we have developed an asymmetric data placement strategy that, in addition to
striping data on a width of wi benefactors (as in round-robin), also treats the local
downloading client as a benefactor by placing part of the dataset locally.

This approach serves two purposes. First, it aggregates throughput from the
width of benefactors as well as overlap that with local disk I/O. The upshot is a
potential throughput gain that is substantially larger than either storing the dataset
locally or on a width of benefactors in isolation. Second, with a predisposition

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 17

towards host clients while placing datasets, overall network traffic can be reduced
due to the aforementioned access locality.

Thematic to this approach, however, is the local:remote data ratio. This ratio
determines how many morsels will be stored locally and remotely (on the wi remote
benefactors) respectively in each stripe cycle. We have confirmed that the optimal
ratio to obtain good data retrieval performance roughly corresponds to the local I/O
rate and aggregate network transfer rate from the remote benefactors. However, the
local:remote data ratio is subject to capacity constraints as well. We approach this
in our implementation with a two-phase technique. First, we determine the optimal
ratio, check whether the host client has enough donated space to accommodate
such data locally, and adjust the ratio if there is not sufficient local space. For
data striped to the other benefactors, we use the round-robin striping process as
described above. With a given local:remote ratio, the local morsels are distributed
uniformly with remote morsels, so that local I/O requests are scattered between
benefactor accesses.

Another aspect to consider with asymmetric striping is the cost it incurs on
other clients: while a prejudice in data placement works to the advantage of the
host client, it may create load imbalance when the dataset is accessed by another
client. Our results (see Section 5.2) show that this cost is not significant. Moreover,
asymmetric striping is implemented as a user option, which is set when the dataset
is first stored in FreeLoader depending on anticipated access pattern. For example,
a scientist may turn asymmetric striping on when importing simulation results that
she expects to study alone, and turn it off when importing a biological sequence
database against which all group members routinely perform searches.

4.2 Benefactor Design and Implementation

The benefactor is a user-level daemon consisting of four major components: a
communication library, a scavenger device, a morsel service layer and a monitoring
layer. Figure 3 highlights a few APIs for each of the components.

A reliable communication library, built atop UDP, services requests, and transfers
metadata and other status information between nodes. UDP, with its low overhead,
is better positioned to serve these short and transient messages. Message types and
their associated handlers are registered with the library. Upon receiving a message,
an associated handler is invoked.

The scavenger device component manages metadata that maps datasets and their
morsels onto local files. It keeps track of local free space using a bitmap. Morsels
from the same dataset are stored in order in a single file, which reduces seek time
considering the prevailing sequential accessing pattern in scientific data processing.

The morsel service layer transfers raw data to and from the benefactor, through
the get and put interfaces, as shown in Figure 3. It also performs support operations
such as local space allocation (new) and release (free). We choose to transfer morsels
using TCP, because bulk transfers benefit from the reliability and congestion/flow
control mechanisms that TCP has to offer. In one dataset store/retrieve operation,
the TCP connections between the client and appropriate benefactors are cached
and re-used for subsequent morsel transfers. Thus, only the first morsel transferred
incurs a slow-start phase in TCP.

In addition, the morsel service layer also provides an import interface with which

ACM Journal Name, Vol. V, No. N, June 2006.

18 · Sudharshan Vazhkudai et al.

benefactors upload datasets from remote sources using the location/protocol men-
tioned in the URI. The client, after obtaining morsel maps from the manager, uses
this interface to specify the URI from which to import the dataset, to a stripe width
of benefactors. Our current implementation supports imports through several pro-
tocols such as wget and hsi.

The monitor layer, currently only supported under Linux, is used in performance
impact control. Using the /proc file system, it observes changes in usage of the CPU,
memory, network, and disk. Such real-time information can help the benefactor
throttle its data service rate and “yield” to native workloads, as suggested by
results in Section 5.

4.3 Client Design and Implementation

The major goal of the client component is to efficiently parallelize data transfers
across benefactors. In this paper, we focus our discussions on dataset retrieval
performance because datasets stored in FreeLoader are write-once-read-many, and
the storing speed is often bound by retrieval rates from remote data sources (such
as using FTP).

4.3.1 Client-side Buffer Management and Data Access Interfaces. Data re-
trieved from FreeLoader is either stored on the client’s disks or stream processed by
a program. Both local processing tasks benefit from assembling morsels retrieved
into long, sequential segments. We use an efficient buffering strategy to overlap
data transfers from multiple benefactors, overlap network data transfer with local
processing, and perform data assembling. The client requests morsels from bene-
factors, and maintains a fixed buffer pool of size at least wi × (si + 1) morsels.
This way, a generalized double buffering scheme allows network and I/O activi-
ties to proceed in parallel. We implemented a pair of nonblocking morsel retrieval
interfaces, getMorsel and waitAny, to enable the client to multiplex efficiently be-
tween benefactors and maintain wi outstanding morsel requests. The morsel buffer
pool is shared between these wi TCP connections through a cyclic queue, allowing
benefactors to proceed at different speeds. The client outputs filled morsel buffers
for local processing between sending morsel requests and performing waitAny. It
promotes sequential processing by waiting for filled morsels in the buffer pool to
form contiguous blocks (i.e., without “holes”).

Besides whole-file gets and puts between the FreeLoader space and a client’s pri-
vate disk space, we have implemented a client wrapper library for standard I/O
function calls (e.g., open, close, read, write) in C, as a prelude to a kernel file
system module. Such interfaces are especially useful when users use FreeLoader
as a transparent scratch space of large datasets that do not fit into their work-
stations’ local storage. This library creates familiar interfaces for client programs
to access datasets stored in FreeLoader. The open call’s semantic is interesting in
that it sets the stage for subsequent reads/writes by querying the manager for a
dataset’s morsel distribution information. The read and write calls are translated
into FreeLoader morsel transfer operations, with additional processing such as data
trimming and concatenation. The close call performs cleanup. Section 5.3 demon-
strates a widely-used application using these interfaces in processing a biological
sequence database stored in FreeLoader.

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 19

4.3.2 Client-side Filters. Storing and sharing scientific data within administra-
tion boundaries seldom raise much security or data integrity concern. However, in
certain cases clients might require some security features to provide additional pro-
tection to their data on untrusted workstations. To address this, we implemented
several features such as data checksumming and encryption as client-side filters in
our FreeLoader prototype. These are supported as optional features that can be
enabled by clients who are willing to pay the additional cost involved with the filter.
Note that these filters do not add any computation burden to the benefactors, and
require only very limited extra storage at the manager in terms of metadata on
checksums and encryption keys.

For checksumming, the client computes per-morsel checksums and store them as
a part of dataset metadata with the manager. Currently checksums are calculated
for each morsel as a 128-bit value using the MD5 message-digest algorithm [Rivest
1992]. Since we choose morsel sizes at the MB level, this only takes an additional
space of 8 bytes per morsel. For very large datasets, morsels can be further com-
bined to reduce this cost. Upon subsequent morsel retrieval, new checksum values
are generated and compared with the values from the manager.

For encryption, morsels are encrypted using DES encryption. A 64-bit key is
generated and stored along with dataset metadata prior to a morsel put. Upon
retrieving a dataset, authorized clients decrypt morsels using the same key.

In our target scenarios, datasets are write-once-read-many. Therefore, we use our
prototype to verify the impact of performing such additional client-side operations
on the client data retrieval rates (as before). For both filters, the computation is
overlapped with data communication to pipeline morsel retrieval with checksum
verification or decryption. There is little CPU contention and the cost depends on
how expensive the filter computation is. Our results (discussed in Section 5.2.2)
demonstrate mixed results: the reduction in retrieval rates is very small for decryp-
tion, but significant for checksum verification.

5. RESULTS

This section presents results of our prototype implementation in three parts: client-
side perceived FreeLoader data access performance, running an example application
which streams data from FreeLoader space, and the performance impact that a
benefactor daemon places on a donated machine.

5.1 Testbed Configuration

Our testbed (Figure 4) depicts a scientist’s HPC research environment with a power-
ful, well-connected local client machine, with access to parallel/archival file systems
and high-speed data movement tools. We installed the FreeLoader storage cache
in this setting as shown in Figure 4 to study its use by a researcher in his HPC
setting. Our testbed spreads across both Oak Ridge National Laboratory (ORNL)
and North Carolina State University (NCSU), and comprises of the following: (1)
FreeLoader cloud at ORNL: Aggregate storage of 400GB, 15 benefactors (donat-
ing 7-60GBs each) and one manager. Benefactor configuration: Dual Pentium III,
Linux 2.4.20-8 kernel and 100 Mb/sec Ethernet. The benefactor configuration is
intended to portray the worst case scenario and study FreeLoader performance in
the face of sub-optimal configurations. (2) The PVFS [Carns et al. 2000] parallel

ACM Journal Name, Vol. V, No. N, June 2006.

20 · Sudharshan Vazhkudai et al.

Wide-area GridFTP access

GridFTP access
1MB TCP buffers
4 parallel streams

hsi access

Parallel “get()”

FreeLoader
Storage Space

P VFS
HPSS

Archives

Client Machine
1 Gb/sec Ethernet
Linux 2.4.21, AMD

Gb subnet

Gb switch

ORNL Testbed

NCSU Testbed

NFS

Fig. 4. FreeLoader testbed

FreeLoader 15 Benefactors, 1 Manager and 1 client

(Data set size) 256MB to 64GB

(Morsel size) 1MB

(Stripe size) 1MB, 2MB, 4MB, 8MB, 16MB, 32MB

(Stripe Width) 1, 2, 4, 6, 8, 9, 10, 12

PVFS GridFTP, GSI authent., 1MB TCP buffer

NFS GridFTP, GSI authent., 1MB TCP buffer

HPSS hsi with DCE authentication

(Hot) Data maintained in disk caches at HPSS

(Cold) Fetch forced from tape at HPSS

NCBI wget from http://www.ncbi.nlm.nih.gov

Table II. Throughput test setup

file system on the ORNL TeraGrid Linux cluster outside ORNL firewall with sev-
eral terabytes of storage (accessed through GridFTP [Bester et al. 1999]).(3) The
HPSS [Coyne and Watson 1995] archival storage system at ORNL with 365PB of
tape storage and several hundreds of gigabytes of high-speed disk caches (accessed
through hierarchical storage interface (hsi) client). (4) The NFS shared file system
at the NCSU HPC center’s blade cluster (accessed through GridFTP). (5) A client
machine at ORNL: Dual AMD Opteron, Linux 2.4.21 and GigE. The client is at
most five hops away from any of the benefactor nodes in the FreeLoader cloud, the
PVFS and the HPSS. This machine runs the FreeLoader client component. The
client machine also uses tools such as globus url copy [Bester et al. 1999] to access
the GridFTP server at the PVFS, hierarchical storage interface (hsi) client access
to HPSS and FreeLoader parallel retrieve client. (6) A gigabit subnet at ORNL
to which the FreeLoader storage cloud, PVFS, HPSS and the client machine are
connected, which is in turn connected to an OC-12 link for external connectivity.

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 21

5.2 FreeLoader Data Retrieval Performance

First, we analyze the performance of the FreeLoader storage cloud and compare it
against alternative data sources (NFS, PVFS, HPSS and Internet scientific repos-
itories [ncbi 2005]) frequently used by scientists. We conducted several transfers
experiments over a week (see summary in Table II) and report average results.All
data retrieval performance is measured from the client box. For FreeLoader, we
tested different striping techniques and several combinations of stripe sizes and
stripe widths. For PVFS and NFS, we used GridFTP with tuned TCP buffer set-
tings and parallel streams to account for the “wizard-gap.” For HPSS, we tested
both “hot” and “cold” accesses to factor in the disk cache effect. Each file transfer
was repeated several times and our results show the average.

Figure 5 compares the “best of class” performance using FreeLoader and
other data sources. Figure 5 uses asymmetric striping (client + 8 benefac-
tors) for FreeLoader. With asymmetric striping, we used a 3:8 morsel ratio for
client:benefactors—i.e., three morsels on the client and one morsel on each of the
eight benefactors in every stripe cycle. For all dataset sizes, FreeLoader performs
better than GridFTP-based PVFS and hsi-based HPSS “cold” accesses. We ob-
served up to a threefold throughput advantage with FreeLoader for larger datasets
and a much higher difference for smaller datasets (2GB or less). This is because,
both PVFS and HPSS are highly optimized for bulk data transfers. FreeLoader’s
performance was comparable to HPSS “hot” accesses. HPSS hot access simu-
lates a near optimal throughput obtained due to transfers entirely from high-speed
disk caches, on a gigabit subnet by two GigE connected entities (the client and
HPSS). However, the majority of HPC users do not have access to on-site HPSS,
and HPSS’s disk cache is shared by a much larger group of users than a typical
FreeLoader instance will have. FreeLoader matches such a GigE-transfer by ag-
gregating throughput from low-end individual benefactors. Not surprisingly, when
compared to remote data sources, such as the NFS at NCSU and the NCBI website,
FreeLoader has a over an order of magnitude throughput advantage.

These results show that, in addition to benefits such as space aggregation and
data sharing, FreeLoader has significant performance advantages. By utilizing col-
lective workstation storage in a networked environment, which is likely to be used
by a much smaller group of users compared to file/archival systems attached to
large clusters or web servers, FreeLoader can become an attractive alternative to
scientists in storing and accessing their datasets.

5.2.1 Effect of Striping on FreeLoader Performance. With reference to striping,
two things are of interest—stripe size and width. Stripe size delves into how many
morsels are stored/retrieved to/from each benefactor, while stripe width deals with
the number of benefactors across which the striping is performed. We study these
two variables for several data set sizes. Figures 6(a) and 6(b) depict the effect
of varying stripe sizes for different dataset sizes, with the stripe width fixed at 4
and 2 benefactors. They show no substantial throughput improvements in varying
stripe sizes. This result can be instrumental in choosing suitable buffer sizes at the
client end for assembling striped data. For instance, the client allocates a buffer
of size stripewidth × (stripesize + 1) morsels in retrieving data, as discussed in
Section 4.3). A smaller stripe size means smaller client-side memory requirement.

ACM Journal Name, Vol. V, No. N, June 2006.

22 · Sudharshan Vazhkudai et al.

0

20

40

60

80

100

120

512MB 4GB 32GB 64GB

Dataset Size

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

FreeLoader PVFS HPSS-Hot HPSS-Cold RemoteNFS wget-ncbi

Fig. 5. ”Best of class” comparison of data retrieval throughput, with 95% confidence
ranges. FreeLoader throughput is an asymmetric striping on eight benefactors. wget-
ncbi datasets were unavailable for larger sizes. In the rest of experiments, FreeLoader’s
performance variance is similar to that depicted in this figure and error bars are omitted.

Figure 7 denotes the effect of varying the stripe width for different data sizes,
with the stripe size fixed at 1MB morsel. By increasing the stripe width, we see
almost a linear throughput improvement until the client reaches saturation, due to
better utilization of the residual bandwidth available at the client and extra I/O
bandwidth. In these experiments, we noticed that the client machine saturates
around 12 benefactors for all dataset sizes and stripe sizes. Thus, adding more
benefactors—from then on—offers no further gain.

To study the effect of a heterogeneous set of benefactors on client perceived
throughput, we assemble a mix of donor nodes with 100Mb/sec and 1Gb/sec Eth-
ernet connectivity. Our test comprised a round-robin striping of a 1GB dataset
across a width of nodes ranging from an entirely homogeneous mix (all Gb/sec ma-
chines) to the gradual induction of one of more 100Mb/sec machines. Previously,
in Figure 7, we studied a homogeneous mix comprising entirely of 100Mb/sec bene-
factors and observed that, for our testbed, the client throughput saturated between
10 and 12 nodes. In this experiment (Figure 8 Round-robin striping), we start with
all Gb/sec benefactors and observe that just three of those nodes (ratio 0:3 means
no 100Mb/sec nodes) are sufficient to saturate the client. However, in a realistic
setting, a given dataset cannot always be striped across all Gb/sec benefactors for
the following reasons. First, Gb/sec nodes may not always be available and even
when available, may not have enough space. Second, striping every dataset on
well-connected nodes only, would introduce load imbalance. Third, a smaller stripe
width might render larger portions of a dataset unavailable in case of node failure,
which can be a recurring event in a desktop scavenging setting.

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 23

Benefactor ID Connectivity Morsel-serving Rate (MB/sec)

1 Gb/sec 17.64

2 Gb/sec 34.4

3 Gb/sec 44.11

4 100Mb/sec 10.07

5 100Mb/sec 10.07

6 100Mb/sec 10.59

7 100Mb/sec 10.59

8 100Mb/sec 10.06

9 100Mb/sec 10.59

10 100Mb/sec 11.17

11 100Mb/sec 10.5

12 100Mb/sec 11.1

Table III. Benchmark throughput, average in MB/s, for different benefactors for 1GB
transfers

For these reasons, we study widening the stripe width and the induction of more
benefactors in Figure 8. A larger stripe width, as we will illustrate later, has the
desired effect of reducing the impact on participating nodes. We found that intro-
ducing another Gb/sec node only contibuted to a reduction in throughput due to
client saturation. Adding 100Mb/sec nodes, however, has an interesting effect. A
1:3 (one 100Mb/sec node and 3 Gb/sec nodes) mix results in a substantial dip in
client throughput. This can be attributed to the fact that a simple round robin
striping across a 1:3 mix, results in an equal distribution of morsels across the bene-
factors and does not factor in their different capabilities. Faster benefactors finish
serving morsels to the client much earlier than their slower (100Mb/sec) counter-
parts and are idle, waiting on them to finish. However, as we gradually induct more
100Mb/sec nodes, the client throughput progressively increases until saturation as
observed at a 7:3 ratio. This test suggests that data placement techniques factoring
in client and benefactor heterogeniety can significantly improve client throughput
and better utilize available nodes.

Our next test comprised factoring in benefactor heterogeniety, namely their con-
nectivity. We use each benefactor’s morsel serving rate as a distinguishing element
in the data striping policy. To this end, we benchmarked each benefactor’s morsel
serving rate to the client using a training set of several 1GB transfers. Results
are summaried in Table III. We then used these benchmark numbers from each
benefactor as a measure of the rate they can deliver. Consequently, we place on
each benefactor morsels, commensurate to this predicted throughput. Figure 8,
Predictive striping, summarizes our results. From the graph, we can see how the
striping strategy can maintain a desired width and yet stripe morsels based on de-
livery rates. Assuming space is no object, a 1:3 mix in this case, will stripe 162,
324, 419 and 95 morsels on the first four benefactors in Tabel III, as opposed to 250
morsels on each (as in round-robin). Since slower benefactors get assigned smaller
number of morsels, faster benefactors are used judiciously for morsel delivery rather
than waiting on slower benefactors to finish. Such a distribution can help exploit
the capability differences between the benefactors and aid in stricking a balance

ACM Journal Name, Vol. V, No. N, June 2006.

24 · Sudharshan Vazhkudai et al.

0

5

10

15

20

25

30

35

40

256MB 512MB 1GB 2GB

File Size

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

1MB 2MB 4MB 8MB 16MB 32MB

(a) Stripe size variation (stripe width=4
benefactors)

0

5

10

15

20

25

30

35

40

256MB 512MB 1GB 2GB

File Size

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

1MB 2MB 4MB 8MB 16MB 32MB

(b) Stripe size variation (stripe width=2
benefactors)

Fig. 6. Stripe Size Variation

between spreading the load and achieving better throughput.
Asymmetric striping is another form of exploiting heterogeniety between client

and benefactor configurations. In the following discussion on asymmetric striping,
we refer to the client uploading the dataset into FreeLoader space as the “host”
client and all other clients accessing the datasets as “other” clients. Figure 9(a) and
9(b) show the effect of asymmetric striping in retrieving a 16GB dataset striped
to the host client and 8 remote benefactors, with a GigE- and 100Mb/s-connection
machine as the host client respectively. The x axis shows varying local:remote data
ratio (sizel : sizer). Obviously, the ratio 0:8 stands for round-robin striping on
benefactors only, with throughput thptr. Similarly, the ratio 1:0 stands for local
I/O only, with throughput thptl. To evaluate how well local-area network data
accesses can be overlapped with local I/O, we plot in the figures using dotted line
a simple model for the host client’s overall throughput:

thptoverall = (sizel + sizer)/Max(
sizel

thptl
,
sizer

thptr
).

In addition, we show data retrieval throughput measured from the host client and
two other clients that do not store any parts of the dataset, again with GigE and
100Mb/s interface respectively.

In both settings, the host client’s dataset access rate follows the trend of the ide-
alized model, achieving nice overlap between remote data access and local I/O. The
measured access rate does reach the peak value slightly earlier than the model, most
likely due to better file system prefetching effect when the local I/O requests are
slowed down by the host client’s handling remote accesses. The GigE and 100Mb/s
host clients need very different optimal local:remote ratio, which can be derived
approximately at store time using our throughput model, or with a diagnostic test
similar to these experiments when a workstation joins FreeLoader. In particular,
in both cases the peak throughput with asymmetric striping is significantly higher
than the local I/O rate, motivating the use of FreeLoader even when users do have
enough local disk space, for higher access rates.

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 25

0

20

40

60

80

100

256MB 512MB 1GB 2GB

Dataset Size

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

1 Benef 2 Benef 4 Benef 6 Benef

8 Benef 10 Benef 12 Benef

Fig. 7. Stripe width variation with round-robin striping

0

20
40

60

80
100

120

0:3 1:3 2:3 3:3 4:3 5:3 6:3 7:3 8:3 9:3

Ratio of FastE vs GigE (10/100:GigE)

T
h

ro
u

g
h

p
u

t (
M

B
/s

)

Round-Robin

Predictive

Fig. 8. Effect of a heterogeneous mix of benefactors on client throughput.

(a) Asymmetric striping with GigE host
client for 16GB dataset

(b) Asymmetric striping with 100Mb/s
host client for 16GB dataset

Fig. 9. FreeLoader asymmetric striping results

ACM Journal Name, Vol. V, No. N, June 2006.

26 · Sudharshan Vazhkudai et al.

0

10

20

30

40

50

60

70

80

256MB 512MB 1GB 2GB

Dataset Size

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

No Filters Encrypt/Decrypt Filter Checksum Filter

Fig. 10. FreeLoader Client throughput with and without checksum and en-
crypt/decrypt filters

When it comes to other clients, accessing datasets optimally-placed for host
clients, the two settings show different impact of asymmetric striping. For the
client with 100Mb/s interface, its bottleneck is the network connection and its ac-
cess rate remains flat despite the biased data distribution on benefactors (flat line
on both Figures 9(a) and 9(b)). The GigE client, however, benefits from the GigE
host client serving more data and shows a similar rate curve as the host client
(Figure 9(a)). On the other hand, it experiences severe throughput drop as more
data gets stored on the 100Mb/s host client (Figure 9(b)). The above behavior is
not surprising since all the other benefactors in this case have 100Mb/s connec-
tion. In summary, the positive or negative impact asymmetric striping incurs on a
“3rd party” client depends on the client’s and the benefactors’ configuration, but
is predictable. At the store time of a dataset, these factors could be evaluated in
conjunction with the expected access pattern for an optimized striping plan.

5.2.2 Client-side Filters. Figure 10 compares the client throughput with and
without the checksum verification and decryption filters for a variety of dataset
sizes. As mentioned earlier, we are primarily concerned with the impact on client re-
trieval rates due to the use of these filters since gets dominate puts in the FreeLoader
target environment. Results denote that the impact is up to 4% and 68% reduction
in client throughput due to decryption and checksum verifications respectively. The
68% decrease in overall client perceived throughput related to block checksum ver-
ification comes from the inherent costs attributed to the MD5 algorithm itself. To
verify this, we observed that checksumming a dataset streamed from the FreeLoader
space is only 16% more expensive than memory-to-memory checksumming and is
30% cheaper compared to checksumming the same file residing on the client’s local
disk.

Further, this cost is only paid by clients who elect to use these services and these
filters do not burden the FreeLoader framework but for storing the limited amount
of additional metadata.

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 27

Stripe width
Local NFS 1 2 4

Throughput (MB/s) 1.71 1.75 1.71 1.82 1.84

Table IV. Overall throughput, in MB/s, for formatdb to process a 1GB sequence database

5.3 Sample Application

Besides client APIs for storing/retrieving entire datasets, we have also implemented
a small subset of file system interfaces to access datasets in FreeLoader space.
This allows us to stream-process data cached by FreeLoader. We evaluate this
FreeLoader service by running a data-intensive application: formatdb from the
NCBI BLAST toolkit, which preprocesses a raw biological sequence database to
create a set of sequence and index files. These output files are used in subsequent
sequence alignment searches. Since the input raw database is normally larger than
all the formatdb output files combined, and can be formatted in different ways, it is
the ideal type of data that users may want to cache/share in the FreeLoader space.

Table IV shows formatdb execution time with three input data sources: local
file-system, network file-system (NFS), and FreeLoader. For FreeLoader, we tested
stripe widths of 1, 2, and 4. This example is a proof-of-concept; it shows that an
application can transparently use FreeLoader and receive some benefit. The overall
throughput demanded by formatdb is small. However, because it comes in bursts,
the performance increases as we stripe across benefactors. With one benefactor,
FreeLoader performs about the same as the local file-system and 2% slower than
NFS. With 4 benefactors, FreeLoader is 5% faster than NFS.

However, performance wise, formatdb is not an ideal application for FreeLoader,
since it performs most of its input through the fgetc interface. This incurs high
overhead, as FreeLoader has to perform morsel buffer look up for almost every
byte read in. Therefore, this experiment allows us to observe the upper bound of
FreeLoader’s internal overhead.

5.4 Performance Impact on Benefactor Nodes

We have shown that FreeLoader can be an attractive storage choice from clients’
view point. What about from space donors’ view point? This section evaluates the
performance impact on benefactors’ native workloads, by measuring the slowdown
factor of three typical types of activities: computation, network, and disk, caused
by morsel-serving. In each test, a benchmarking client requests morsels at various
rates, from 0 morsels per second to the maximum sustainable bandwidth (which
varies depending on user workload). Tests were conducted on a benefactor node
that represents an “average” desktop machine, not too powerful or too weak, with
a 2.8GHz Pentium 4, a SATA disk, 512MB of memory, and a 100Mb/s network
connection. Results show averages and 95% confidence intervals from multiple
runs.

For the computation impact test, we performed two tests: (1) the EP application
from the NAS benchmark,2 and (2) a Linux kernel compile. The latter is not

2http://www.nas.nasa.gov/Software/NPB/

ACM Journal Name, Vol. V, No. N, June 2006.

28 · Sudharshan Vazhkudai et al.

0.8

0.9

1

1.1

1.2

1.3

1.4

0 1 2 3 4 5 6 7 8 9 10
Request rate (MB/s)

NAS-EP Compile
N

o
rm

al
iz

ed
 t

im
e

(a) Computation

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0 1 2 3 4 5 6 7 8 9
Request rate (MB/s)

N
o

rm
al

iz
ed

 t
im

e

1KB page 10KB page

20KB page 30KB page

8.57±1.91

(b) Network

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7
Request rate (MB/s)

write read

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(c) Disk

Fig. 11. Benefactor impact results

completely CPU-bound, but represents typical computation-intensive user tasks.
Figure 11(a) shows their normalized execution time as the benefactor servicing
load increases. In general, the impact is low. Even when serving morsels at full
speed, EP is slowed down by 14% and compilation by 21%, compared to without
FreeLoader benefactor running. Currently, we are unable to explain the anomalous
behavior of “compile” at 1MB/s.

Our network activity test simulates a user downloading several different sized web
pages from different servers, located from 3 to 19 hops away from the benefactor.
Consequently, the latency to fetch each page varies depending on the size and
location of the server. Each page was requested using wget hundreds of times back
to back, to make it (hopefully) cached by the web server but not by the web client
on the benefactor. Figure 11(b) shows very small to moderate impact on these
downloads, depending on the page size and location. With the exception of one
data point, the latency increase is at most 37%, and for loads of 6MB/s or less, 23%.
The exception occurs for a large, remote file (19 hops) and only near the maximum
sustainable benefactor load. The benefactor’s data serving is not impacted much,
because it stresses the uploading rather than downloading network bandwidth.

Our disk activity test simulates a user reading/writing a 1GB file. We flush
the memory when necessary to remove the file-system cache effect. While desktop
users do not typically read/write such large files, it stresses I/O and delivers a

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 29

worst-case contention at the disk when the native workload is reading un-cached
data. Figure 11(c) shows a steady decrease in the user disk read throughput, until
20% of its original throughput when the morsel request rate is 4MB/s. Meanwhile,
the maximum sustainable throughput at the FreeLoader benefactor side is less than
5MB/s. On the other hand, the user write throughput stays constant under any
load, with a maximum FreeLoader benefactor bandwidth of slightly more than
9MB/s. This asymmetry is because the OS delays and combines write requests.
Compared to blocking read operations, writes are more resilient to concurrent disk
activities.

In summary, Figure 11 shows that FreeLoader’s performance impact on typical
native workloads is fairly low. More importantly, it reveals that in most cases,
its performance impact grows smoothly with the morsel request rate, allowing
FreeLoader to actively perform impact control, as demonstrated below.

Recognizing that I/O contention brings the highest performance impact, and that
users are mostly affected in interactive tasks, we built an I/O intensive composite
workload to simulate interactive user activities with intervals. A static idle period
of 1-3 seconds was set between executing the following operations: 1) Writing 25
MB of randomly-generated data to files in a specific directory. This simulates
UN-zipping a downloaded file into a local directory. 2) Browsing arbitrary system
directories in search of a file. 3) Compressing the written data from the first part
of the simulation with bzip into a file and transferring this file across the network
to a data repository. 4) Browsing a few more local directories. 5) Finally removing
all data files from the beginning of the simulation. The following operations were
executed in a tight loop a few times, taking a total of 115 seconds without any
other concurrent user workload on our chosen benefactor.

We ran the above composite workload on one of the benefactors concurrently with
the client’s retrieval of a 2GB dataset. This will impact both the composite na-
tive workload and the client’s perceived aggregate data access throughput. Figure
12 depicts such an impact from both sides with varying stripe width (asymmetric
striping is not used in this test). At the benefactor, it shows the percentage of slow-
down compared with the time to completion of the composite native workload when
executed alone (115 seconds). At the client, it shows the percentage of throughput
loss compared with the client aggregate data retrieval throughput using the corre-
sponding stripe width without the composite workload on any of the benefactors. As
stripe width increases, the benefactor side impact goes down steadily. From stripe
width 1 to 2, the data retrieval time is longer than the composite workload, and the
decrease in benefactor impact comes from reduced data request rate from the client.
Beyond that point, another factor comes into play due to increased stripe width:
the total dataset retrieval time keeps decreasing, so that the endurance of perfor-
mance impact on the native workload is shortened. This factor also contributes to
the growth of client-side impact, as larger portions of the retrieval is affected by the
slowed-down benefactor. This effect is overcome when the stripe width increases
to over 6. Meanwhile, the absolute client aggregate throughput grows steadily as
stripe width increases as plotted in the secondary y axis in Figure 12. This shows
that striping serves as a means both to aggregate benefactor bandwidth and impact
control. Again, more aggressive impact control can be performed at the benefactors

ACM Journal Name, Vol. V, No. N, June 2006.

30 · Sudharshan Vazhkudai et al.

Fig. 12. High-level benefactor impact control by increasing the striping width. Primary
y-axis plots benefactor slow down and client throughput loss ratio. Secondary y-axis plots
actual client throughput.

[Strickland et al. 2005].

6. CONCLUSIONS

This paper demonstrates the design of the FreeLoader storage aggregation frame-
work. Our experiment results show that FreeLoader is an attractive storage alterna-
tive for scientists to cache and share their datasets locally, with good performance
and low, controllable performance impact on storage resource donors. Based on
our prototype and experiments, we verified the following rationales.

Our novel framework for aggregating idle, existing commodity storage resources
complements high-end storage systems in caching large scientific datasets. The
framework presents a scalable, layered architecture, comprising of benefactors,
steered by managers, offering services such as reliability, performance and load
balancing. We have presented a desktop storage scavenging system, FreeLoader,
to construct a low-cost aggregate/shared storage cache that addresses growing ap-
plication data demands. FreeLoader can be used for a variety of typical desktop
processing, visualizations, diskless checkpointing, software update distribution and
even incremental backups (albeit not without some quality of service) [Cox et al.
2002].

We validated distributed software striping in FreeLoader, and developed novel ap-
proaches to perform asymmetric data placement in order to optimize client achiev-
able throughput. Based on this, we infer that FreeLoader can deliver high data
retrieval rates for a low-cost scavenged storage, comparable to parallel and mass
storage systems. We observed up to a threefold increase in throughput when com-
pared against PVFS and HPSS cold accesses. Further, striping serves as an excellent
technique to aggregate parallel I/O and balance the load among the benefactors.
We observed, up to almost 10MB/sec speedup on retrievals with the addition of
”one more benefactor” until client saturation.

The management overhead in maintaining/retrieving meta data, morsel distri-
bution maps, etc., is significantly low. However, we suspect that with replication,
reliability and security, the overhead will increase. Further, we have shown that

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 31

additional features such as data encryptions and data integrity can be added as
filters for clients willing to pay the cost, without penalizing other clients.

Finally, we measured the performance impact of storage scavenging on space
donors’ native workloads. We observed that the impact on the benefactor’s native
workload is minimal and throttling can help reduce it further. With CPU inten-
sive operations afflicted by less than 1.5%, network latency less than 25% on Web
transfers and typical user operations witnessing little to no impact, FreeLoader can
offer substantial rewards for a low-cost storage system.

7. ACKNOWLEDGMENT

This work is supported in part by an IBM UPP award, the U.S. Department of
Energy under contract No. DE-AC05-00OR2275 with UT-Battelle, LLC and Xi-
aosong Ma’s joint appointment between NCSU and ORNL. The authors thank: Al
Geist for supporting Nandan Tammineedi during the summer of 2004 through the
HERE program at ORNL; Greg Pike, Stan White, John Cobb, Jamison Daniel,
David Jung, Kasidit Chanchio, John Mugler, Jens Schwidder, Geoffroy Vallee and
Ravi Madduri for helping with the testbed setup; and David Lowenthal for several
useful comments on the paper.

REFERENCES

Adya, A., Bolosky, W., Castro, M., Chaiken, R., Cermak, G., J.Douceur, Howell, J.,
Lorch, J., Theimer, M., and Wattenhofer, R. 2002. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation (Boston). Vol. 36. 1–14.

Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., and Werthimer, D. 2002. SETI@home:
an experiment in public-resource computing. Communications of the ACM 45, 11, 56–61.

Annapureddy, S., Freedman, M. J., and Mazieres, D. 2005. Shark: Scaling file servers via
cooperative caching. In Proceedings of 2nd USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI’05) (Boston). 129–142.

Avery, P. and Foster, I. 2001. The griphyn project: Towards petascale virtual data grids. Tech.
Rep. Technical Report GriPhyn-2001-15, http://www.griphyn.org.

Bair, R., Diachin, L., Kent, S., Michaels, G., Mezzacappa, T., Mount, R., Pordes, R.,
Rahn, L., Shoshani, A., Stevens, R., and Williams, D. 2004. Planning ascr/office of science
data-management strategy. In Department of Energy Office of Science Data Management
Workshop (Menlo Park).

Beck, M., Moore, T., and Plank, J. 2002. An end-to-end approach to globally scalable network
storage. In Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (Pittsburgh). Vol. 32. 339–346.

Bent, J., Thain, D., Arpaci-Dusseau, A., Arpaci-Dusseau, R., and Livny, M. 2004. Explicit
control in a batch aware distributed file system. In Proceedings of the First USENIX/ACM
Conference on Networked Systems Design and Implementation (San Francisco). 365–378.

Bent, J., Venkataramani, V., Leroy, N., Roy, A., Stanley, J., Arpaci-Dusseau, A., Arpaci-

Dusseau, R., and Livny, M. 2002. Flexibility, manageability, and performance in a grid storage
appliance. In Proceedings of the 11th High Performance Distributed Computing Symposium
(Edinburgh). 3–12.

Bester, J., Foster, I., Kesselman, C., Tedesco, J., and Tuecke, S. 1999. GASS: A data
movement and access service for wide area computing systems. In Proceedings of the Sixth
Workshop on I/O in Parallel and Distributed Systems (Atlanta). 78–88.

Butt, A., Johnson, T., Zheng, Y., and Hu, Y. 2004. Kosha: A peer-to-peer enhancement for
the network file system. In Proceedings of the 2004 ACM/IEEE conference on Supercomputing
(Pittsburgh). 51.

ACM Journal Name, Vol. V, No. N, June 2006.

32 · Sudharshan Vazhkudai et al.

Cabrera, L.-F. and Long, D. D. E. 1991. SWIFT: Using Distributed Disk Striping To Provide

High I/O Data Rates. Computing Systems 4, 4, 405–436.

Carns, P., III, W. L., Ross, R., and Thakur, R. 2000. PVFS: A Parallel File System For Linux
Clusters. In Proceedings of the 4th Annual Linux Showcase and Conference (Atlanta). 317–327.

Chien, A., Calder, B., Elbert, S., and Bhatia, K. 2003. Entropia: Architecture and per-
formance of an enterprise desktop grid system. Journal of Parallel and Distributed Comput-
ing 63, 5, 597–610.

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. 2000. Freenet: A distributed anonymous
information storage and retrieval system. In Proceedings of the ICSI Workshop on Design Issues
in Anonymity and Unobservability (Berkeley). Number 2009. 46–66.

Cluster File Systems, Inc. 2002. Lustre: A scalable, high-performance file system.
http://www.lustre.org/docs/whitepaper.pdf.

Cohen, B. 2003. Incentives build robustness in bittorrent. In First Workshop on Economics of
Peer-to-Peer Systems (Berkeley). 251–260.

Cox, L., Murray, C., and Noble, B. 2002. Pastiche: Making backup cheap and easy. In
Proceedings of the OSDI (Boston). 285–298.

Coyne, R. and Watson, R. 1995. The parallel i/o architecture of the high-performance storage
system (hpss). In Proceedings of the IEEE MSS Symposium (Monterey). 27–44.

Crowcroft, J. and Pratt, I. 2002. Peer to Peer: peering into the future. In NETWORKING
Tutorials. 1–19.

Dabel, F., Kaashoek, M., Karger, D., Morris, R., and Stoica, I. 2001. Wide-area cooperative
storage with cfs. In Proceedings of the SOSP (Chateau Lake Louise). 202–215.

Dahlin, M., Wang, R., Anderson, T. E., and Patterson, D. A. 1994. Cooperative caching:
Using remote client memory to improve file system performance. In Operating Systems Design
and Implementation (Monterey). 267–280.

Douceur, J. and Bolosky, W. 1999. A large-scale study of file-system contents. In Proceedings
of SIGMETRICS (Atlanta). 59–70.

Druschel, P. and Rowstron, A. 2001. Storage management and caching in PAST, a large-

scale, persistent peer-to-peer storage utility. In Proceedings of the 18th ACM Symposium on
Operating System Principles (Chateau Lake Louise). 188–201.

Feeley, M. J., Morgan, W. E., Pighin, F. H., Karlin, A. R., Levy, H. M., and Thekkath,

C. A. 1995. Implementing global memory management in a workstation cluster. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles (Copper Mtn.). 129–140.

Frolund, S., Merchant, A., Saito, Y., Spence, S., and Veitch, A. 2003. Fab: enterprise
storage systems on a shoestring. In Proceedings of the Hot Topics in Operating System (Lihue
HI). 133–138.

Gadde, S., Chase, J., and Rabinovich, M. 1998. A taste of crispy squid. In Proceedings of the
Workshop on Internet Server Performance (Madison). 129–136.

Garey, M. and Johnson, D. 1979. Computers and Intractability: A guide to the theory of
NP-completeness, 4 ed. W. H. Freeman and Company.

Ghemawat, S., Gobioff, H., and Leung, S. 2003. The Google file system. In Proceedings of the
19th Symposium on Operating Systems Principles (Lake George). 29–43.

Gray, J., Liu, D., Nieto-Santisteban, M., Szalay, A., Heber, G., and DeWitt, D. 2005.
Scientific data management in the coming decade. Tech. Rep. MSR-TR-2005-10, Microsoft.

Gray, J. and Szalay, A. S. 2003. Scientific Data Federation. In The Grid 2: Blueprint for a
New Computing Infrastructure, I. Foster and C. Kesselman, Eds. 95–108.

Gummadi, P., Dunn, R., Saroiu, S., Gribble, S., Levy, H., and Zahorjan, J. 2003. Measure-
ment, modeling, and analysis of a peer-to-peer file-sharing workload. In Proceedings of the 19th
Symposium on Operating Systems Principles (Lake George). 314–329.

Gupta, A., Lin, B., and Dinda, P. 2004. Measuring and understanding user comfort with resource
borrowing. In Proceedings of the 13th IEEE International Symposium on High Performance
Distributed Computing (Honolulu). Vol. 00. 214–224.

ACM Journal Name, Vol. V, No. N, June 2006.

Constructing Collaborative Desktop Storage Caches for Large Scientific Datasets · 33

Hartman, J. and Ousterhout, J. 1995. The Zebra striped network file system. ACM Transac-

tions on Computer Systems 13, 3, 274–310.

Howard, J. H. 1988. An overview of the andrew file system. In Proceedings of the USENIX
Winter Technical Conference (Dallas). 23–26.

Iamnitchi, A., Ripeanu, M., and Foster, I. 2004. Small-world file-sharing communities. In
INFOCOM ’04 (Hong Kong). Vol. 2. 952–963.

Iyer, S., Rowstron, A., and Druschel, P. 2002. Squirrel: a decentralized peer-to-peer web
cache. In Proceedings of the 21st ACM Symposium on Principles of Distributed Computing
(Monterey). 213–222.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R.,
Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. 2000. Oceanstore:
An architecture for global-scale persistent storage. In the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems (Cambridge MA).
Vol. 28. 190–201.

Lee, E. and Thekkath, C. 1996. Petal: Distributed virtual disks. In Proceedings of the 7th
International Conference on Architectural Support for Programming Languages and Operating
Systems (Cambridge MA). 84–92.

Lee, J., Ma, X., Ross, R., Thakur, R., and Winslett, M. 2004. RFS: Efficient and flexible
remote file access for MPI-IO. In Proceedings of the IEEE International Conference on Cluster
Computing (San Diego). 71–81.

Lee, J., Ma, X., Winslett, M., and Yu, S. 2002. Active buffering plus compressed migration:
An integrated solution to parallel simulations’ data transport needs. In Proceedings of the 16th
ACM International Conference on Supercomputing (New York). 156–166.

Litzkow, M., Livny, M., and Mutka, M. 1988. Condor - a hunter of idle workstations. In
Proceedings of the 8th International Conference on Distributed Computing Systems (San Jose).
104–111.

Markatos, E. 2002. Tracing a large-scale peer to peer system: An hour in the life of gnutella. In
Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the
Grid (Berlin). 65–74.

Morris, J. H., M.Satyanarayanan, Conner, M., Howard, J., Rosenthal, D., and Smith,

F. 1986. Andrew: A distributed personal computing environment. Communications of the

ACM 29, 3, 184–201.

Muthitacharoen, A., Morris, R., Gil, T., and Chen, B. 2002. Ivy: A read/write peer-to-peer
file system. In Proceedings of the OSDI (Boston). 31–44.

ncbi 2005. National center for biotechnology information. http://www.ncbi.nlm.nih.gov/.

Novaes, R., Roisenberg, P., Scheer, R., Northfleet, C., Jornada, J., and Cirne, W. 2005.
Non-dedicated distributed environment: A solution for safe and continuous exploitation of idle
cycles. Scalable Computing: Practice and Experience 6, 3, 107–115.

Nowicki, B. 1989. NFS: Network File System Protocol Specification. Network Working Group
RFC1094.

Otoo, E. J., Rotem, D., and Romosan, A. 2004. Optimal file-bundle caching algorithms for
data-grids. In Proceedings of the 2004 ACM/IEEE conference on Supercomputing (Pittsburgh).
6.

Popek, G. and Walker, B. J. 1985. The LOCUS Distributed System Architecture. MIT Press.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S. 2001. A scalable
content-addressable network. In Proceedings of the ACM SIGCOMM (San Diego). 161–172.

Rivest, R. 1992. The MD5 Message-Digest Algorithm. Network Working Group RFC1321.

Sarkar, P. and Hartman, J. 1996. Efficient cooperative caching using hints. In Proceedings of
the 2nd ACM Symposium on Operating Systems Design and Implementation (OSDI) (Seattle).
35–46.

Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E., Siegel, E. H., and Steere,

D. C. 1990. Coda: A highly available file system for a distributed workstation environment.
ACM Transactions on Computer Systems 39, 4, 447–459.

ACM Journal Name, Vol. V, No. N, June 2006.

34 · Sudharshan Vazhkudai et al.

Schmuck, F. and Haskin, R. 2002. GPFS: a shared-disk file system for large computing clus-

ters. In Proceedings of the First Conference on File and Storage Technologies (Monterey).
Number 19. 231–244.

SHARMAN NETWORKS, Inc. 2005. The kazaa media desktop. http://www.kazaa.com.

Strickland, J., Freeh, V., Ma, X., and Vazhkudai, S. 2005. Governor: Autonomic throttling for
aggressive idle resource scavenging. In Proceedings of the 2nd IEEE International Conference
on Autonomic Computing (Seattle). 64–75.

Szalay, A. and Gray, J. 2001. The world-wide telescope. Science 293, 14, 2037–2040.

The Astrophysical Research Consortium. 2005. Sloan digital sky survey project book.
http://www.astro.princeton.edu/PBOOK/welcome.htm.

Thekkath, C., Mann, T., and Lee, E. 1997. Frangipani: A scalable distributed file system.
In Proceedings of the 16th Symposium on Operating Systems Principles (Saint-Malo). Vol. 31.
224–237.

Vazhkudai, S. and Schopf, J. 2003. Using regression techniques to predict large data transfers.
High Performance Computing Applications - Special Issue on Grid Computing: Infrastructure
and Applications 17, 3, 249–268.

ACM Journal Name, Vol. V, No. N, June 2006.

