
Synergetic Resource Stealing: We Promise It Will Not Hurt Much

Vincent W. Freeh∗ Xiaosong Ma∗† Jonathan W. Strickland∗ Sudharshan S. Vazhkudai†

Abstract
A great many machines, from personal worksta-

tions to large clusters, are under utilized. Mean-
while, for the fear of slowing down the native tasks,
resource scavenging systems hesitate to aggres-
sively harness idle resources. We have developed a
quantitative approach for fine-grained scavenging
that can effectively utilizes very small slack periods
without adversely impacting the native workload,
and automatically adapts to changes in the native
workload’s resource consumption.

This paper envisions a generic framework, built
upon the above approach, that facilitates the shar-
ing of machines between a primary and a secondary
workloads, providing a unified view of the diverse
systems where idle resources are available. In such
a framework the primary workload performance is
bounded by a configurable slowdown factor (i.e.,
5%) and the secondary workload aggressively uti-
lizes the slack left by the primary workload. Thus
our proposed framework creates a novel resource-
sharing paradigm that results in greater resource
utilization without sacrificing the performance of
the primary workload.

1 Introduction
Many have noted that resources on desktop

workstations are largely unused. Well-known re-
source scavenging systems (e.g., Condor [7]) and
applications (e.g., SETI@home [1]) are designed
to take advantage of unused resources. Such re-
source scavenging is a boon because it is essentially

∗Department of Computer Science, North Car-
olina State University, Raleigh, NC, 27695-7534
{vwfreeh,jwstric2,xma}@ncsu.edu

†Computer Science and Mathematics Division, Oak Ridge
National Laboratory vazhkudaiss@ornl.gov

free. Meanwhile, such idle cycles from distributed
workstations combine to become significant com-
pute power on par with state-of-the-art supercom-
puters. From the workstation owners’ perspective,
however, one important pre-condition of donating
resources on their personal computers is that the
scavenging application will not significantly de-
grade the performance of their native workloads.

Such resource under-utilization problem is not
limited to personal workstations, but is pervasive
in today’s computing environment. For example,
consider a finance corporation that owns a server
that executes stock trades while the stock markets
are open. It has to be built for handling the peak
transaction capacity, which rarely occurs due to the
bursty nature of its real-time workload. It is very
desirable to concurrently execute a scavenger appli-
cation that could make use of the excessive capac-
ity of the server during non-peak periods. As an-
other example, consider a pharmaceutical company
that acquires a medium-size cluster for its R&D
staff that wants to get the most out of this machine:
people running quick biological database searches
and interactive visualization programs would like
to have online processing and fast responses, while
people running large batch simulations do not mind
their jobs taking longer to finish but would not want
to see such large jobs wait in the queue forever.

All the above scenarios boil down to the same
question: when the primary workload leaves a
significant amount of “slack” in a system, can
we sneak in a secondary workload without hurt-
ing the performance of the primary workload, yet
make progress on the secondary workload? Un-
der the desktop scavenging scenario, the worksta-
tion owners’ native workload is the primary, while

1



the guest scavenging application is the secondary
workload. Under the server and cluster scenarios,
the online/interactive tasks are primary, while the
offline/batch tasks are secondary.

There are no existing systems that aggressively
utilize these slack periods. First, priority schedul-
ing is not designed for such scavenging, so the im-
pact on the primary workload from a secondary
workload can be large. Next, while systems
that provide quality-of-service guarantees can limit
the impact of a scavenger, they are over-kill—
including requiring kernel modifications. Finally,
the current state of the art for impact control of
a scavenger application on a primary workload
tends to be over conservative. Foremost, peo-
ple have chosen to err on the safe side and pre-
vent the secondary from competing with the pri-
mary. For desktop resource stealing, the typical ap-
proach is the stop method, which only activates the
secondary when the screen saver is on, and stops
it when any user activity is detected, which sig-
nals the resource owner’s return. For server and
cluster environments, people use similar methods,
such as having a secondary task running only dur-
ing nights and weekends (when the primary work-
load is not active), or partitioning their systems to
have separate nodes allocated for interactive and
batch jobs. Though this assures no adverse im-
pact on primary workloads, it under utilizes the sys-
tem, especially when the primary is bursty, or when
the primary and secondary workloads are using re-
sources very differently and could have accommo-
dated each other well.

In this paper, we argue for quantitative study of
workloads’ performance compatibility, and present
a generic performance impact control framework.
This framework characterizes a secondary work-
load’s impact an a variety of key resources on the
target system, and manipulates its execution dy-
namically based on the real-time monitoring of
the primary workload’s consumption of these re-
sources. It aims to maximize the secondary’s
throughput while restricting its performance im-
pact on the primary under a pre-specified and user-
configurable impact threshold.

The rest of the paper is organized as follows.
Section 2 introduces, as background, our design
of the Governor impact control system, which per-
forms aggressive resource scavenging on desktop
systems and has spurred the ideas in this paper.
Section 3 discusses design issues as well as open
problems related to a generic impact control frame-
work. Section 4 describes other related work.

2 Background: Governor
This section gives background information re-

garding the Governor1 impact control framework
we designed for desktop resource scavenging sys-
tems [10]. Concepts and methodologies developed
here will be extended for the generic workload im-
pact control framework proposed in this paper.

The goal of the Governor is to control the im-
pact (i.e., slowdown) the scavenger has on the na-
tive workload under a desired level, yet to maxi-
mize the throughput of the scavenger. Instead of
assigning scavenging processes low priority, and
relying on the operating system to schedule these
processes unfavorably, Governor throttles the inten-
siveness of resource scavenging by inserting sleep-
ing time between time intervals that a scavenging
process can execute. This reduces the demand on
resources and hence reduces the impact on the na-
tive workload. Governor performs fine-grained im-
pact control by choosing and adjusting the ratio be-
tween “run time” and “sleep time”. We define the
throttle level, β, to be trun/(trun + tsleep). β varies
from 0 to 1. β = 0 means the scavenger is not
running at all, while β = 1 means the scavenger is
running at full speed, without being slowed down.

How do we find the appropriate β for a given
impact level? First, we employ impact bench-
marking to characterize the effect of a scavenger
on major resource types. Since native workload
can be viewed as a combination of resource con-
sumption components, we establish a resource vec-
tor, R = (r1, r2, ..., rn), where each ri is a sys-
tem resource, such as CPU, memory, disk band-
width, network bandwidth, etc. We design a set

1Governor: A feedback device on a machine or engine that
is used to provide automatic control, as of speed, pressure, or
temperature. – dictionary.com

2



scavenger

system

resources

vectors

0. impact
benchmarking

1. monitor
resource activity

2. compute
overall

3. throttle
scavenger

Governor

User
target

Figure 1. Governor architecture
of micro-benchmarks that stress each individual re-
source in R. A scavenger is executed at various
throttle levels and the performance impact on the
micro-benchmark is recorded. Given enough data
points, we can estimate the function impacti(β).
Suppose Governor wants to restrict the maximum
impact on any resource to a target impact level, α.
The corresponding β to use in throttling the scav-
enger is determined as βi = impact−1

i (α).
Then, knowing how to restrict the scavenger for

a single-minded micro-benchmark, we need to de-
cide the appropriate throttle level for a complex,
and ever-changing native workload. Our solution
is to periodically monitor the native workload: for
resources that have native consumption above their
individual trigger level τi detected, we activate the
corresponding βi. When multiple resources have
their βs turned “on”, Governor chooses the most
restrictive one among them to be the overall throt-
tle level.

Figure 1 depicts the Governor framework in
working. Note that Step 0 is likely to be per-
formed when a scavenger is first installed in a do-
nated workstation, while Steps 1-3 are periodically
repeated whenever the scavenger is running. The
dotted arrow from inside the Governor box to the
“resource valve” shows that the Governor is able to
control resource consumption implicitly.

Our experiments have shown that Governor is
able to closely approximate a preset target impact
level, for both scavenging applications we tested
(one CPU- and one I/O-network-intensive). Com-
pared with the process priority based method, it has

wider range as well as much finer granularity in im-
pact control, and allows higher scavenging applica-
tion throughput when delivering the same amount
of impact on a mixed native workload, especially
for the non-CPU-intensive scavenger.

3 Discussion
Generalizing Governor First, we need to gen-
eralize the Governor to work for arbitrary pri-
mary and secondary workloads. For all of our tar-
get environments, including desktop resource steal-
ing/aggregation, high-end servers, and clusters, we
propose to have our impact control framework work
hand in glove with the job scheduling agent.

Because Governor does not control the primary
workload and considers all non-secondary activity
to be primary, the Governor implicitly handles ar-
bitrary primary workloads of any number of pro-
cesses. The straightforward method for controlling
multiple secondary workloads is to run them se-
quentially, not concurrently. This way the individ-
ual β vectors of each secondary are used instead of
a composite vector determined by the set of secon-
daries concurrently executing. Therefore, we sim-
ply need to repeat the impact benchmarking pro-
cess for each secondary application to obtain their
β vector. After such per-application key param-
eters are obtained, Governor can apply the auto-
matic and adaptive process throttling individually
for these applications.

A more challenging task here is to characterize
ad hoc secondary tasks. Static, a priori impact
benchmarking is adequate for resource scavenging
systems with uniform and predictable resource us-
age pattern, such as SETI@home and a few dis-
tributed storage aggregation systems. This bench-
marking can be performed naturally as a part of
the system’s installation process on a donated com-
puter. On the other hand, systems like Condor or
a general server/cluster environment will have un-
known secondary jobs come and go. An attractive
solution is to have a short diagnostic benchmark-
ing stage before scheduling a secondary job. For
a long-running or irregular job, this stage is en-
tered periodically to update its impact characteris-
tics (i.e., the β vector). The job migration facilities

3



supported by systems such as Condor works per-
fectly together with this dynamic and adaptive im-
pact benchmarking scheme.

Finally, although Governor can characterize a
given secondary workload’s performance impact on
a given primary workload, and throttle the sec-
ondary to bound this impact by a target threshold,
we need to take one step further to better coor-
dinate resource sharing between the primary and
the secondary workloads. For example, to maxi-
mize overall system resource utilization on a clus-
ter, we want to avoid scheduling two CPU-intensive
workloads head on where they compete for the re-
source. Instead, a CPU-intensive secondary work-
load prefers to be placed on the nodes where the
workloads resource usage is complementary, i.e.,
not CPU-intensive. Similarly, in a storage space
scavenging system, the storage manager prefers to
place the “hottest” data on personal workstations
where the average I/O and network upload traffic is
low.

Here we introduce the concept of “performance
compatibility”. One primary and one secondary
workloads are considered performance compatible
if the secondary does not have a high impact on
the primary. In general, a pair of workloads will
not be performance compatible, if the primary hap-
pens to stress one or more resources on which the
secondary shows heavy impact. This compatibil-
ity can be quantified by the throttle level curve for
the secondary to restrict its impact on the primary
at various target levels. With workloads’ pairwise
compatibility quantified, the job/data scheduler can
perform intelligent “matchmaking”: it sends sec-
ondary tasks to the places where they will be less
annoying and have more space to safely consume
more resources. This global optimization can be re-
duced to a vertex matching problem on a weighted
bipartite graph.

Dynamic Impact Measurement In evaluating
Governor’s impact control performance, we per-
formed external experiments to measure the im-
pact that the primary workload actually suffered
by comparing the execution time or throughput of
the primary workload executing solo versus that

when sharing resources with a secondary workload
at various throttling levels. Although the Gover-
nor has successfully bounded the overall perfor-
mance impact in several cases, our straightforward
techniques may not work for any arbitrary environ-
ments or secondary workload. Therefore, we look
for an on-line, dynamic feedback mechanism that
measures the performance degradation of the pri-
mary workload.

The major challenge in measuring actual impact
is how to determine the slowdown of an ad hoc
workload as it executes. A possible solution is to
extend our workload monitoring facility to work to-
gether with the secondary workload’s throttling in
collecting and calculating statistics to infer the na-
tive workload’s throughput change. Metrics such as
the instruction count per time unit will be more suit-
able for this purpose. For instance, if we find a pri-
mary workload as an average instruction through-
put of t0 during a large number of monitoring in-
tervals without an concurrent secondary, and an av-
erage instruction throughput of t1 during intervals
sharing resources with a secondary, we can roughly
derive the actual performance impact. This infor-
mation can provide crucial feedback to the impact
control framework for its self-adjusting.

Connecting Objective Impact with User-
Perceived Impact Our discussion so far has been
focused on objective performance impact, which
does not directly translate into resource or primary
workload owner perceived impact. The latter is a
complex issue involving many factors besides the
slowdown ratio, such as the lengths, interactive
nature, frequency of the primary tasks, as well
as the resource or workload owners’ sensitivity
and personality. Eventually, it is the primary
workload owners (no matter whether they also own
the computing resources) who decide whether a
second workload is getting into their way.

An investigation very closely related to ours was
by Gupta et al. [5], which studied real work-
station owners’ discomfort from impacted perfor-
mance when resource scavenging applications run
on their computers. In this project, testers rate the
discomfort they experienced in carrying out a va-

4



riety of daily tasks such editing PowerPoint docu-
ments and playing video games, with different re-
source scavenging benchmarks running in the back-
ground. The feedback data show that a significant
amount of CPU, memory, and disk I/O resources
can be scavenged often without causing obvious
user discomfort.

We believe that there is a positive correlation
between the objective performance impact and the
subjective user discomfort. Therefore, the user in-
terfaces used in Gupta et al.’s study could be com-
bined into our framework, as a bridge to connect
objective performance impact control and subjec-
tive impact feedback. When a primary workload
owner or system administrator scrolls an “impact
bar” to ask for lower impact, the impact benchmark
and workload monitoring facilities in our frame-
work can adjust the secondary workload’s throttle
level in a case-by-case manner.

4 Other Related Work
Besides systems that stop the secondary work-

load altogether upon the activation of primary
workload (e.g., Condor [7] and SETI@Home [1]),
a couple of resource scavenging system adopt
priority-based approaches [6, 9]. Such approaches
are best-effort, limited to cycle stealing scaveng-
ing systems, platform dependent, less powerful
in impact control then the Governor. One addi-
tional approach to containing resource consump-
tion for scavenging applications is through the use
of virtual machines [4, 8]. While virtual machines
are well known for sophisticated resource isola-
tion through partitioning [2], concurrent execution,
etc., they may also result in unsatisfactory perfor-
mance, heavyweight implementations, and lack of
performance guarantees [3]. Compared to these ex-
isting approaches, our proposed process-throttling
method is lightweight, operates at user level, per-
forms full-range and fine-grained impact control,
and does not require the modification of either the
scavenger programs or the operating system.

In addition, many studies have been done on
job coscheduling in parallel or distributed environ-
ments (e.g., [11]). Although existing work also an-
alyzes the different workloads’ resource usage pat-

terns and optimize the system’s overall resource
utilization, our proposed framework is unique in
the sense that it controls the interference between
workloads in a quantitative manner, similar to what
people have been doing to ensure QoS.
References
[1] Seti@home: The search for extraterrestrial intelli-

gence. http://setiathome.ssl.berkeley.edu/.
[2] Planetlab: An open platform for developing, de-

ploying and accessing planetary-scale services.
http://www.planet-lab.org, 2005.

[3] P. Barham, B. Dragovic, K. Frase, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proceedings of SOSP’03, October 2003.

[4] A. Chien, B. Calder, S. Elbert, and K. Bhatia. En-
tropia: Architecture and performance of an enter-
prise desktop grid system. Journal of Parallel and
Distributed Computing, 63(5), 2003.

[5] A. Gupta, B. Lin, and P. Dinda. Measuring and
understanding user comfort with resource borrow-
ing. In Proceedings of the 13th IEEE Inter-
national Symposium on High Performance Dis-
tributed Computing, 2004.

[6] P. Krueger and R. Chawla. The stealth distributed
scheduler. In Proceedings of the IEEE Interna-
tional Conference on Distributed Computing Sys-
tems, pages 336–343, 1991.

[7] M. Litzkow, M. Livny, and M. Mutka. Condor - a
hunter of idle workstations. In Proceedings of the
8th International Conference on Distributed Com-
puting Systems, 1988.

[8] R. Novaes, P. Roisenberg, R. Scheer, C. North-
fleet, J. Jornada, and W. Cirne. Non-dedicated
distributed environment: A solution for safe and
continuous exploitation of idle cycles. In Proceed-
ings of the Workshop on Adaptive Grid Middle-
ware, 2003.

[9] K.D. Ryu, J.K. Hollingsworth, and P.J. Keleher.
Efficient network and I/O throttling for fine-grain
cycle stealing. In Proceedings of Supercomput-
ing’01, 2001.

[10] J. Strickland, V. Freeh, X. Ma, and S. Vazhku-
dai. Governor: Autonomic throttling for aggres-
sive idle resource scavenging. Submitted for publi-
cation, http://www.csc.ncsu.edu/faculty/freeh/-
governor.pdf.

[11] Y. Zhang, A. Sivasubramaniam, J. Moreira, and
H. Franke. Impact of workload and system param-
eters on next generation cluster scheduling mech-
anisms. IEEE Trans. Parallel Distrib. Syst., 12(9),
2001.

5


