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Abstract

Simulations, experiments and observatories are generat-
ing a deluge of scientific data. Even more staggering is the
ever growing application demand to process and assimilate
these datasets. Application users perform a range of data
operations, collaborate and share data in many novel ways.
The current storage landscape is struggling to keep up with
these trends in scientific data processing. Application users
pay the price due to over-crowded shared filesystems, or ex-
pensive storage area networks, or not enough local storage,
or high-latency archival or wide-area transfers.

In order to sustain and maximize I/O bandwidth rela-
tive to increasing CPU speeds, applications must take ad-
vantage of large amounts of intermediate commodity stor-
age, However, intermediate storage presents new chal-
lenges above and beyond the traditional distributed filesys-
tem paradigm: persistent scheduling, storage/CPU coallo-
cation, namespace management, lifetime management, and
novel application interfaces. In this paper, we describe ap-
plications that require intermediate storage management,
suggest several open research problems, and illustrate two
systems – Freeloader and Tactical Storage – that attack dif-
ferent aspects of these problems. 1

1 Introduction

Scientific applications have become increasingly data-
intensive [13]. State-of-the-art instruments and ultra-scale
supercomputers generate terabytes of data per day. As a
consequence, data storage and movement have become in-
creasingly important and bottleneck-prone. Despite being
equipped with layers of storage devices and application
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software, users often find the simple task of accessing data
painfully difficult, labor-intensive, and slow.

We propose that the current storage hierarchy (Fig-
ure 1) available to scientists lacks the combination of ca-
pacity, performance, and life-span management to support
accesses to large volumes of scientific data. Specifically,
each layer of the scientific computing storage hierarchy
caters to a subset of characteristics of scientific data pro-
duction/consumption:

• Parallel File Systems. Large capacity and high per-
formance is required to efficiently stage data from or
to main memory and utilize the fast-growing aggregate
compute power of today’s parallel computers. Par-
allel file systems provide both capacity and perfor-
mance, while also being widely used. However, due
to the shared nature of most large machines and the
data volumes, users are not allowed to hold their job
input/output data indefinitely in a parallel file system
scratch space. Typically, a purge policy requires users
to orchestrate transfers of their data out of the scratch
space within days of job completion. Therefore, paral-
lel file systems are mostly used for one-time data gen-
eration or consumption of to be run or running jobs.

• Mass Storage Systems. Users hesitate to discard their
data collected from instruments or simulations. Mass
storage provides the large capacity and long-term stor-
age space for safely archiving bulk datasets. Its ob-
vious limitation is the performance hit due to latency:
data has to be moved out for processing and tape ac-
cess, combined with long-distance data transfer in-
hibits efficient direct stream processing. Since scien-
tists may revisit the same datasets multiple times, dur-
ing the days and weeks after the experiment/simulation
that generated the data, they may have to move data
back and forth between their local storage and a mass
storage system, especially if they have very limited lo-
cal storage space.

• Distributed File Systems. Ultimately scientists ana-
lyze and visualize data at their home institution, often
far away from the experiment or computation site. File
servers, accessed through distributed file systems, are

1



Data Access Latency

Local Disks Parallel File
systems

SAN Archives WAN Storage

Storage Landscape

L
at

en
cy

 In
cr

ea
se

s

Intermediate
data cache 
exploits this 
area

Figure 1. Caching in the Storage Landscape
The x-axis denotes current technology options in today’s storage landscape. The y-axis denotes increasing latency. The
figure plots a symbolic curve, depicting an increase in data access latency as we move from tightly-coupled to loosely-
coupled storage. The figure denotes how intermediate storage caches can exploit the area under the curve for high-latency
repositories.

available at research institutes. They provide shared
file space, reasonable performance, and fault-tolerance
through regular backups. These systems, however, are
intended for ordinary files such as mails, documents,
and web pages, which do not demand either large ca-
pacity or high data access performance. Moreover,
users are often given limited quota on such systems,
making them unsuitable for bulk scientific data.

• Storage Appliances. Users may choose to own ded-
icated storage servers. In exchange for the quota-free
space availability, storage resources are often under-
utilized due to the bursty nature of scientific data pro-
cessing (as opposed to, for example, business or web
data hosted at typical storage servers). Plus, the cost of
purchasing and subsequently managing private storage
servers with the capacity to accommodate one’s peak
transient data needs often makes this solution out of
reach for individual scientists or research groups.

In this paper, we recognize the above mentioned inad-
equecy of storage support for scientific data, and envision
several solutions. In particular, we argue for the need for a
layer of intermediate storage or data caches that provides
longer-term storage than parallel file systems, larger capac-
ity than desktops and distributed file systems, better access
performance than mass storage, and smaller cost than ded-
icated storage servers. We discuss two novel approaches,
namely FreeLoader [27] and Tactical Storage [25] that ad-
dress the above issues in fundamentally different ways.
Such intermediate storage would utilize the distributed and

often existing storage fabric, and provide high performance
to support transient accesses to large datasets.

For instance, as suggested by Figure 1, intermediate stor-
age abstractions could reside anywhere between users and
high-latency sources such as archival or other wide-area
storage repositories. Depending on what constitutes their
composition, they can offer varied benefits beyond the obvi-
ous “performance impedance matching”. Intermediate stor-
age caches built from aggregating commodity workstation
storage such as FreeLoader offers low-cost storage at high-
speeds due to parallel I/O. In addition, it enables locality of
reference and cache behavior. Tactical Storage on the other
hand, allows the easy construction of complex storage ab-
stractions with relative ease without administrative support.
It exports the full filesystem interface of each participating
node into a larger file system for better space management
and coarse-grained parallelism.

While there are significant advantages to using interme-
diary storage caches, their use in scientific computing has
been gaining momentum only recently [8]. The world of
Web proxy caching [2, 12, 9] and Internet content distri-
bution [1] has long since exploited their use. In a similar
vein, the Internet Backplace Protocol (IBP [18]) provides a
low-level time limited allocation interface of storage extents
across a distributed system.

Construction of intermediate storage caches is not with-
out its challenges. First, given their potential use for tran-
sient data, the system should be able to adapt to dynamic
access patterns and resource availability. Second, these stor-
age systems should be able to support lifetime management
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for datasets. Third, and in many cases, storage is required to
be coscheduled with processing, which poses unique prob-
lems. Several other issues such as providing optimized I/O
interfaces and virtualized access compound the problem.

In this paper we explore the design space of these inter-
mediate storage caches; put forth and analyze several use
cases in data intensive HPC settings (Section 2) that de-
mand the need for sophisticated data management; derive
a few key functionality (Section 3) desired from intermedi-
ate caches; and describe and compare two instances, namely
FreeLoader and Tactical Storage (Section 4).

2 Use Cases for Intermediate Storage

In this section we put forth several scenarios and use
cases that call for the need for sophisticated data caches and
alternate data management approaches than what is avail-
able in the main stream currently.

Client-side caching: The use of client-side caching as
a means of expediting data access is well known (i.e. web
proxy caches and content distribution networks.) The sci-
entific computing world, however, lacks similar support for
powerful caching that utilizes distributed storage resources
to transparently accelerate accesses to remote data repos-
itories. Yet the need for such caching is becoming more
evident and urgent. First, local data processing is becoming
more prevalent due to ever increasing desktop capabilities
and convenience in terms of operating environments and vi-
sualization tools. Second, repeated wide-area downloads is
often not practical since they are stymied by several band-
width/latency issues and have to be specifically tuned for
optimal rates. As Gordon Bell, Jim Gray and Alex Szalay
put it in their recent article on Petascale Computational Sys-
tems, “it is not worthwhile to move large amounts of data
unless performing analysis, requiring more than 100,000
CPU cycles per byte of data” [5]. Third, large datasets are
usually shared since people within the same organization,
e.g., a research group or academic department, often times
have shared interest on certain datasets. A certain dataset is
of interest for a limited period, e.g., a few days or weeks.
It may be frequently re-visited during this period, often by
multiple coworkers in the collaboration. However, beyond
this processing duration, users normally choose not to retain
copies of the downloaded datasets locally. This suggests
that local-area, client-side caches can be very useful in hid-
ing latency, promoting data reuse by exploiting temporal lo-
cality and in providing more storage than what is available
for a desktop user. Further, one can imagine building more
sophisticated partial caching techiniques atop such client-
side caches that only hold a prefix of the dataset, while the
suffix is patched transparently.

Storage caches and checkpointing: Several high-end
applications run on thousands of processors, are high-

throughput, long running and checkpoint terabytes of data
as snapshots for recovery in the event of failure or system
crash. Checkpoint data is usually written once and “hope
to be never used” unless a failure occurs. Checkpointing
terabytes of data to conventional parallel file systems with
strict I/O semantics can be very time consuming. To appli-
cations, this is time spent away from useful computation.

Meanwhile, existing reliability, availability, and service-
ability (RAS) approaches have not been able to fully ex-
ploit opportunities in the high-end system I/O stack, ranging
from applications I/O semantics to available hardware/data
redundancy. Overly conservative file system consistency
fails to efficiently overlap I/O with computation and forces
unnecessary inter-processor synchronization, while the lo-
cal disk storage or memory attached to individual nodes
on supercomputers and clusters has been largely ignored
in the I/O stack. For example, checkpoint data has var-
ied persistence requirements and access patterns, and can
benefit greatly from being stored at a peer-processors local
disk/memory, or a cache using an architecture that makes
them available through a relaxed, convenient I/O interface.
This offers enhanced scalability while reducing access la-
tency. Effectively utilizing these resources and opportuni-
ties will bring significant improvements to the availability
and performance of the I/O system in large-scale machines.

Localized Intermediate Results: In many scientific
fields, it is common to generate large amounts of data
through simulation, but only retain a selection of results that
are of sufficiently high quality. For example, when study-
ing molecular dynamics, one may use monte carlo methods
to generate an array of proposed transition paths between
conformations, but then only retain the lowest energy tran-
sition. Such outputs are similar to checkpoints in the sense
that they need not be organized for maximum persistence:
if lost, the outputs can simply be generated again. However,
they do have some aspects of permanent storage: they must
still be named and kept in a manner that later computations
(codes that rank the “quality” of a result) can locate, access,
and possibly extract data for a limited time after creation.

To support localized intermediate results, a storage sys-
tem must provide a large amount of space close to process-
ing units. It need not have the throughput of a parallel file
system, nor the reliability of an archival storage system, but
it must have the capacity of scratch space and the easy ad-
dressability of a distributed file system.

Staging, Offloading and Failovers: Modern supercom-
puter centers will have thousands of user jobs waiting to
be run, each with several orders of gigabytes or terabytes
of input data. These input data have to be either staged
on general-purpose parallel file systems for ready availabil-
ity once the job is scheduled or pulled from wide-area re-
sources or archival systems. In the former case, high-end
resources (such as storage and processors) are almost al-
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ways busy with long queues of pending requests; in the lat-
ter, the job is wasting invaluable allocation time, perform-
ing expensive I/O operations. Similar reasoning holds for
post processing data, which is required to be pulled quickly
out of the compute nodes. Due to end-resource unavailabil-
ity, data migrations can be temporarily staged in intermedi-
ate storage along the data pathway. The upshot is that, us-
ing conventional parallel file systems attached to supercom-
puters for staging input/output or checkpoint data (which
might be seldom used) may not always be a suitable option
for supercomputing facilities. This calls for new techniques
through the use of storage caches.

Further, data unavailability in the underlying file sys-
tems can often translate into expensive reconstruction from
archival storage or remote source copies, which incurs high
latency. A gigabyte dataset accessed from HPSS tape
archives [7] delivers a rate of 10MB/sec despite end re-
sources being connected through gigabit networks [17].
Such high latency is unacceptable to many applications. In
such cases, data failover to nearby storage caches that com-
plement general purpose file systems can be a very useful
technique masking failure.

Datacenter caches: Parallel file systems attached at
computing facilities are, in most cases, not intended to
be used as the long-term storage repositories for scientific
datasets. User data generated from a computation job is
typically purged from the scratch space within a short pe-
riod of time after the job is completed (typically hours to
days). Scientists’ common practice is to move the data to
mass storage systems, or their local data processing clus-
ters, or both. There is a current trend, however, for scien-
tific communities or an experimental facility to build shared
data centers. These data centers consist both mass storage
and parallel computing facilities that provide integrated data
storage, management, query, and processing services. Ex-
amples of such data centers include the Sloan Digital Sky
Survey (SDSS [20]), the Spallation Neutron Source (SNS
[6]) and Earth System Grid (ESG [3]), which allow scien-
tists to obtain high-performance interactive processing of
remotely hosted data with little or no hardware investment
and to avoid expensive wide-area data transfers.

With such data centers, where the bulk of data is kept
on tape archiving systems, the gap between the processor
speed and the I/O rates is even more dramatic. The I/O
performance is especially a concern when such data centers
support online data queries and visualization tasks through
data gateways or portals (e.g., SNS, ESG). To bridge this
performance gap, disk storage equipped at the data cen-
ter’s computing facility must be carefully used to cache hot
datasets and reduce tape I/O as much as possible. However,
achieving this requires automated tools, rich caching and
data aging techniques to dynamically stage data based on
portal-user data access patterns. SRM [21] addresses some

of these issues with caching. Such gateway data caches
allows facilities to optimally manage online storage while
also hiding the latency involved in accessing archival stor-
age. In addition, they allow for the data management infras-
tructure to stage an active window of datasets, comprising
of most recently used user data.

Aforementioned are a few data intensive operations in
HPC settings that require a novel data management layer
for efficient processing.

3 Desired Functionality of Caches

Several of the above usecases suggest the following de-
sired functionality in intermediate storage systems.

Scalability of Performance and Capacity: Distributed
storage caches must be prepared to deal with the unlimited
I/O appetite of scientific appcliations as well as interact with
high performance parallel file systems and large capacity of
archival storage systems. Because such caches will typi-
cally be constructed from commodity hardware, the soft-
ware structure must permit expansion of both throughput
and capacity by the incremental addition of new nodes.

Ability to reserve and allocate space: Users need to
reserve and allocate space in the storage system so they can
upload or download data in the future. The ability to reserve
space has a two-fold benefit. First, it allows users to perform
advance planning and scheduling for the concerted use of
available resources. Second, it helps the storage system to
confirm user intent to use the allocated space. It is thus
desirable for a storage system to provide such capabilities
to handle dynamic user access patterns.

Transient data with temporal validity: A common
thread in many of the usecases put forth earlier is the need to
manage transient data. Increasingly, users wish to download
and analyze large datasets for limited durations of time. Or,
data is required to be staged in a storage system at a com-
puter center until it is pulled for processing. Or, checkpoint
data is required to be maintained until job completion. This
suggests that associating temporal validity to datasets and
providing related mechanisms to operate on them can be
very useful for the underlying storage system to offer.

Relaxed POSIX I/O semantics: Data intensive I/O in
HPC settings manipulate terabytes of data and include op-
erations such as staging, checkpointing, prefetching, etc. In
many cases, they do not require strict POSIX semantics, but
often have to deal with the legacy of file system implemen-
tations. For instance, checkpoint operations are write once
and hope to be never read. However, applications often
checkpoint terabytes of data for recovery purposes. Can the
performance of several such operations be improved using
relaxed POSIX or optimized read/write semantics?

Application-specific optimizations: Exploiting com-
monly observed data access patterns in HPC settings and
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optimizing storage system behavior can be beneficial. For
instance, several data intensive applications perform large,
sequential I/O reads; can the storage system exploit such
scientific data properties of applications for better perfor-
mance?

Virtualizing storage access: User applications often
desire seamless, transparent mechanisms to access dis-
parate storage entities available to them so I/O accesses
can progress smoothly. For instance, automatically access-
ing caches or archives from file systems can be a useful
prefetching or recovery strategy. Thus, virtualizing access
to these storage resources is highly desired in HPC settings.

Easy-to-use interfaces: Aforementioned features are
some of those desired in storage systems for data intensive
applications. However, if they are not packaged as easy-
to-use interfaces that users/applications are familiar with,
they are not of much use. For instance, applications can
remain oblivious to how underlying storage systems are
constructed (distributed or centralized; commodity or dedi-
cated) or store datasets (single file objects or striped) as long
as they can be accessed using regular file I/O mechanisms.
Further, it is essential for storage systems to be wide-area
accessible, and hence agnostic to various protocols. Thus,
it is essential to provide regular I/O interfaces. Also, with
the proliferation of MPI-IO [11, 14, 16, 19, 4] for scientific
applications, it would be beneficial for new storage abstrac-
tions to interface to the same.

4 Case Studies in Intermediate Storage

In this section, we give an overview of two systems –
Freeloader and Tactical Storage – that address some of the

challenges we have outlined for intermediate storage.

4.1 FreeLoader: Desktop Storage Caching

FreeLoader [27] is a distributed storage framework, (Fig-
ure 2), that provides abundant, high-performance site-local
storage for scientific datasets with very little additional ex-
pense, by aggregating idle desktop storage resources. It
is a near-the-client network data cache that aggregates do-
nated storage from collaborating user workstations into a
single storage cache. FreeLoader aims to aggregate both
distributed storage resources and I/O as well as network
bandwidth. Workstation owners within a local area net-
work donate unused disk space, and FreeLoader stripes
datasets onto multiple such workstations to enhance data
access rates. It stores large, immutable datasets by frag-
menting them into smaller, equal-sized chunks (morsels),
which are scattered among the storage nodes. This enables
each researcher in the group to process the raw datasets as
if they reside on a high-performance shared file system, in-
creasing collaboration and reducing expensive downloading
operations.

Within each FreeLoader instance, a dedicated manager
node maintains metadata such as node status, chunk distri-
bution, and dataset attributes including the primary copy lo-
cation (URI and, if necessary, authentication related meta-
data). A participating workstation may be a storage node
that donates disk space along with I/O and network band-
width, or a client node that stores/retrieves data from the
FreeLoader space, or both. Data storage and retrieval are
initiated by the client via the manager, while the actual
transfer of data chunks occur directly between the storage
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A tactical storage system is composed of a collection of low level file servers that export a secure filesystem interface. One or
more servers can be joined together into higher level abstractions and joined to legacy applications via user-level adapters.

nodes and the client.

FreeLoader is a storage system and not a filesystem.
However, it provides I/O interfaces such as open, read,
write and close for applications to access data from the
storage cloud. The read and write calls are translated
into FreeLoader chunk transfer operations, with addi-
tional processing such as data trimming and concatenation.
FreeLoader I/O is optimized for reading large, sequential
datasets and achieves upto a three-fold increase in through-
put compared to several storage systems. With this basic
infrastructure and relaxed I/O interfaces, FreeLoader can be
used as a client-side cache to which users can read and write
large datasets using standard file interfaces.

FreeLoader treats the entire aggregated space as a cache
by performing cache replacement and evictions to create
room for new, in-coming datasets. Cache eviction is at the
granularity of datasets using LRU and within datasets, at
the granularity of chunks. Since FreeLoader is optimized
for sequential accesses, chunks within a dataset are evicted
from the tail. Therefore, if only part of a dataset needs to be
evicted, a prefix of that dataset will still remain in the cache
for subsequent accesses.

FreeLoader also provides sophisticated prefix caching
strategies [17]. By overlapping in-cache data access with
data retrieval directly from the primary copies, prefix
caching helps in maximizing space utilization and increas-
ing cache hit ratio by offering a virtual cache that appears
to be larger than the physically available cache space. Com-
pared to caching entire datasets, users enjoy higher hit rate
without suffering degraded data retrieval performance while
accessing cached datasets. To this end, FreeLoader has
built-in techniques to fetch partial pieces of data seam-
lessly from remote storage repositories, thus providing vir-

tualized storage access. With such rich caching semantics,
FreeLoader can be used for transient data with certain tem-
poral validity. This is a particularly useful feature when it
comes to being used as datacenter caches or for staging and
offloading datasets in a supercomputer center.

With its distributed nature, parallel I/O across a net-
work of workstations, application-specific optimizations
and caching, FreeLoader is strategically poised for use for a
variety of HPC scenarios.

4.2 The Tactical Storage System

The Tactical Storage System (TSS) [25] is designed to
maximize the ability of the end user to construct and con-
figure complex distributed storage systems without requir-
ing administrator intervention. The key property of a TSS is
that it separates control over resources (the raw storage and
networking capacity) from control over abstractions (the
organization of resources). This permits end users to con-
struct and access complex storage structures over the wide
area without requiring an interaction with the administrator
each time a new configuration or activity is needed. We call
this tactical because it permits the user to harness storage in
arbitrary locations for the short-lived needs of remote com-
putation.

Figure 3 shows the primary structures of a TSS. The
foundation is an array of user-level file servers that may
be deployed on any collection of conventional machines.
These machines need not have any specialized roles. For
example, at the University of Notre Dame, a standing col-
lection of 200 file servers is deployed across a wide array
of personal workstations, classroom labs, and computing
clusters. Each server exports a Unix-like I/O interface with
a flexible security interface, allowing for the owner of the
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storage to control who may access the storage, and how
much space and bandwidth they may consume. More re-
cent work allows external users to request guaranteed space
allocations [24] within the space allotted to a file server and
to execute remote code in a secure identity box [23] in the
manner of active storage.

The security mechanism of a TSS allows users to be au-
thenticated by a variety of techniques including simple host-
names, Kerberos [22], and the Grid Security Infrastructure
(GSI) [10]. Authorization is achieved through per-directory
ACLs in a manner similar to that of AFS. The appropriate
mechanism may be chosen at run-time based on the needs
of the application: a given server may allow access to a few
trusted hosts based solely on network address, while also
allowing access to remote users with stronger credentials.
In addition, distributed ACLs allow access controls on one
file server to refer to groups defined on another [15].

Above these file servers, end users may construct a vari-
ety of abstractions. Each abstraction is implemented using
the available file server interface, and requires no particular
cooperation with the storage provider beyond conformance
to the local security policy. The simplest abstraction is a
central file system (CFS) which gives an external user a di-
rect view of a remote filesystem. This is roughly analo-
gous to providing an implementation of secure wide-area
NFS. Multiple file servers may be tied into a distributed
shared filesystem (DSFS), which allows for the construc-
tion of arbitrarily large filesystems. One file server is used
as a central directory server, which contains pointers to files
scattered across the remaining disks. Multiple file servers
may also be tied into a distributed shared database (DSDB),
which relies on a central database server to index the loca-
tions and properties of file objects scattered around the re-
maining disks.

Storage abstractions are of little use unless applications
can actually connect to them. To this end, the TSS provides
an adapter called Parrot [26] that presents each storage ab-
straction as a conventional filesystem. The adapter runs or-
dinary applications and uses the system debugging interface
to capture and interpret system calls. I/O system calls that
refer to the TSS are captured and implemented on behalf of
the application. The important property of this technique
is that it can be applied entirely at user level and requires
no privileges or kernel changes even to install, thus it can
be used even by applications running in remote batch sys-
tems. To the end user, the TSS looks and acts just like a
kernel-implemented distributed filesystem.

Finally, the adapter allows for the construction of cus-
tom name spaces for individual applications. While indi-
vidual abstractions can be named and accessed explicitly
through the filesystem (/cfs/host.nd.edu/mydata),
we assume that applications will tend to access data through
fixed logical path names. To this end, the adapter provides

a mountlist facility that maps logical names to physical ad-
dresses, for example:

/data /cfs/host.nd.edu/mydata
/usr/local /dsfs/archive.nd.edu/sw

In a typical use case, the TSS would be used as a fa-
cility for expliticly staging data in and out of a cluster of
commodity storage devices. For example, to bring a large
dataset close to a batch computing facility, the user could
create a DSFS abstraction spread across eight disks, copy
the data from a local filesystem into the cluster using or-
dinary cp commands, and then execute jobs in the batch
system, referring to the data staged into the cluster. Using
the transparent adaptation facility, data in the cluster can be
seen and manipulated like a local filesystem from anywhere
on the network. When complete, needed data can be copied
out of the DSFS and then the entire abstraction deleted with
a single command.

4.3 Comparison

A brief comparison of Freeloader and TSS is instructive
to understand better what problems each system addresses
and to what applications each is suited. We pick a few
key areas such as parallelism, space management, data tran-
sience and namespace to illustrate how the two systems dif-
fer from each other. The intent is not to suggest the use of
one or the other. On the contrary, the two systems can coex-
ist as we will show. However, it is intended to illustrate the
spectrum of possibilities intermediate storage systems can
choose to implement in several of these key areas.

Parallelism. Freeloader is designed to extract high I/O
bandwidth from commodity storage clusters through a high
degree of parallelism. It is meant to serve as a cache for
or even replacement for a high end storage archive that de-
livers constant high throughput to a single application. To
this end, large storage objects are broken up into multiple
pieces and spread across multiple devices. A single applica-
tion may achieve high I/O bandwidth by requesting multiple
blocks in parallel.

Tactical Storage is designed to make many instances of
local storage accessible to a wide variety of users and ap-
plications, particularly those that run in distributed batch
systems. To maximize the utility of any single node, each
exports a full filesystem interface that can be used indepen-
dently. Although multiple file servers can (and are) aggre-
gated into larger filesystems and databases, this facility is
used to increase the overall throughput of the system to pro-
cess sequential jobs on partitioned data.

In summary, Freeloader provides fine-grained paral-
lelism in order to maximize I/O bandwidth for a small num-
ber of large applications, while Tactical Storage provides
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coarse-grained parallelism in order to maximize throughput
for a large number of small applications.

Space Management. Freeloader harnesses the unused
storage space found on personal workstations while at-
tempting to minimize the impact of this consumption on the
local user. If a local user signals an intent to consume more
space, then data must be deleted from that node. As a re-
sult, the broader system must incorporate a certain degree
of data replication and fault tolerance to compensate.

Although Tactical Storage can also run on a collection
of workstations, it assumes that each workstation gives a
fixed allocation of space to be used by each storage server.
This allocation may then be further subdivided and issued
to remote users. Clearly, this arrangement does not maxi-
mize the total storage, but it does provide a certain degree
of guarantee to applications: if the allocation succeeds, an
application can be relatively sure of success.

In summary, Freeloader scavenges for unused space,
while Tactical Storage exports fixed allocations of space.
The best choice depends on the dynamics of the system in
question.

Data Transience. Freeloader can function as a buffer
cache for remote storage archives. As applications re-
fer to data items in Freeloader, they are paged in and
cached on demand. In addition, more recent work on pre-
fix caching [17] allows for the user to explicitly trigger the
loading of a dataset into a Freeloader cache asynchronously
of the application’s actual access to the cache.

Tactical Storage encourages the use of file servers as
staging points in a distributed computation. The same file
server and protocol can be used for both streaming data
movement as well as filesystem access, allowing the user
to easily push data to a remote site, and then access it trans-
parently. Using the namespace function in the adapter, the
application will not perceive any external difference. How-
ever, the user (or the broader system) must explicitly ar-
range the transfer and configuration.

In summary, both Freeloader and Tactical Storage en-
courage the use of intermediate storage for transient data.
However, Freeloader provides a transparent buffer cache,
while Tactical Storage encourages explicit data staging.

Application Namespace. FreeLoader is a storage cache
and not a file system. However, it is vital to provide a
namespace for application accesses. Current Freeloader im-
plementation supports a flat namespace wherein datasets are
identified using the URI with which they are imported into
the storage cloud. For instance, if a dataset was imported us-
ing the HTTP protocol from “from-this-url/dataset”, then it
is identified by the URI, “http://from-this-url/dataset”. This
allows FreeLoader to perform easy recovery from remote
sources.

Tactical Storage attempts to provide a namespace as
close as possible to the filesystem directory hierarchy ex-

pected by most applications. Remote file services are seen
as filesystem entries containing the name of the hosting ma-
chine. In addition, the namespace mechanism allows for the
mapping of logical directories to physical locations.

To summarize, these two systems complement each
other. Tactical Storage can be used to provide a filesys-
tem abstraction atop FreeLoader so applications can use
FreeLoader capabilities using familiar interfaces. Given the
range of different requirements these two systems address,
such an endeavor can be extremely useful in supporting a
variety of data intensive HPC applications.

5 Future Work

Combining Freeloader and Tactical Storage. Al-
though FreeLoader and Tactical Storage address different
aspects of storage caches – Freeloader maximizes band-
width for single clients, while Tactical Storage maximizes
throughput for many jobs – there are opportunities to com-
bine the technologies. TSS provides a transparent adapter
that connects Unix applicatinos to remote storage. This
adapter could be modified to address and load data from
Freeloader, making it appear as a conventional file sys-
tem. Conversely, TSS provides low-level storage devices
that Freeloader could harness as storage benefactors, thus
increasing the set of resources available for caching. We
plan to address both of these directions in future work.

Seamless Data Migration. As we discussed earlier in
this paper, the storage landscape includes a wide variety of
existing systems: parallel, archival, distributed, appliance,
and now storage caches. Users would be much better served
if data was easily migratable between each of these kinds of
systems. In the same manner that hierarchical storage sys-
tems migrate data between disk and tape, users need to be
able to migrate data between each category of storage sys-
tem, depending on the data processing needs of the moment.

Such migration is currently difficult because each cate-
gory of system already has several distinct software infras-
tructures. (In this paper alone, we have introduced two dis-
tinct infrastructures for storage caches.) We cannot expect
any single software infrastructure to be deployed on all of
these system categories. Yet, there is an opportunity for a
higher layer of software to unify multiple disparate storage
systems, allowing for transparent access to logically-named
data, regardless of the category of system it resides in.

Performance Adaptation. As we have pointed out,
each category of system offers a different tradeoff between
I/O bandwidth, access latency, lease time, and monetary ex-
pense. Given a framework for seamless data migration be-
tween categories of machines, it should be possible to con-
struct a system that migrates data between categories in the
storage hierarchy, based on the runtime behavior (and ad-
vance requests) of clients. In the same way that a conven-
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tional operating system provides a memory based buffer for
slow disks, a storage manager should be able to transpar-
ently migrate and reconfigure data between caches based
on client needs.

6 Conclusion

In this paper, we present the need for novel intermedi-
ate storage nodes or caches as a means to address the gap
in the current storage landscape for data intensive HPC ap-
plications. We explore the design space of storage caches
and present several data intensive scenarios as usecases. In-
termediate storage can be used in a variety of cases such
as client-side caching, staging, offloading, checkpointing,
etc. The various scenarios also illustrate certain desired be-
havior from these systems. These include functionalities
such as lifespan management of datasets, relaxed, fast, easy
to use I/O mechanisms, ability to allocate space, etc. We
then present two case studies, namely FreeLoader and Tacti-
cal Storage, as major implementation examples that address
different requirements.
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