
ABSTRACT

TAMMINEEDI, NANDAN Design of the management component in a scavenged storage

environment. (Under the direction of Assistant Professor Dr. Xiaosong Ma).

High-end mass storage systems are increasingly becoming popular in supercomput-

ing facilities for their large storage capacities and superior data delivery rates. End-users,

on the other hand, face problems in processing this data on their local machines due to the

limited disk bandwidth and memory. The Freeloader project is based on the premise that

in a LAN environment, a large number of such workstations collectively represent signifi-

cant storage space and aggregate I/O bandwidth, if harnessed when idle. Aggregation of

these precious resources is made viable by the high speed interconnect that exists between

nodes in a LAN. The FreeLoader project is an effort to aggregate free storage space, and

I/O bandwidth contributions from commodity desktops to provide a shared cache/scratch

space for large, immutable data sets. Striping is initially used to distribute data among

multiple workstations, and this enables subsequent retrieval of data in the form of parallel

streams from multiple workstations.

In this thesis, we present the management component of the Freeloader project.

We discuss the functionality of the management component in terms of data placement and

maintenance of information about workstations which donate storage. We show how the

striping of data maximizes retrieval rates and helps in load balancing. We present the choices

we face in the design of the management component and how to minimize its overheads.

We also model the entire Freeloader cloud as a cache space with an eviction policy, due to

the dynamic nature of space contributions and the limited amount of donated space. We

discuss how the management component handles data set eviction in a manner that exploits

temporal locality based on a history of accesses. We also discuss experimental results which

show the impact of different striping parameters on the data access rates, and the viability

of Freeloader in comparison to traditional data retrieval from high-end storage systems.
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Chapter 1

Introduction

1.1 Motivation

Scientific discoveries are increasingly dependant on analysis of massive, high-

resolution data, produced by observatory instruments or computer simulations [15]. As

a result, storage area clusters, data centers and high-end mass storage systems are be-

coming popular in supercomputing facilities due to their large storage capacities and their

ability to deliver this stored data at high rates. While these systems serve the data needs

for a data-intensive application, end-users of scientific data are often limited by their lo-

cal resources. Local data storage is important for the “last mile” of computation, which

normally includes postprocessing of data (such as visualization) on users’ local machines.

However, these desktops are usually equipped with limited disk bandwidth and memory.

Additionally, the persistent storage requirements are greater than what a typical desktop

can provide.

A good example illustrating this problem is the setting in a typical national re-

search laboratory, where multiple departments specializing in different disciplines (physics,

microbiology, etc.) may exist in close geographic proximity. Each department has a num-

ber of workstations connected together in a high-speed LAN, and a multi-gigabit backbone

connects these LANs together. Scientists’ raw data are usually stored in local or remote

high-end mass storage systems, such as HPSS (High Performance Storage System [18]),

to which every department has access. However, a scientist is often faced with the task of

downloading this data to his/her local machine and performing visualization or some similar

interactive tasks. Moreover, it has been shown that researchers working in the same field
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make accesses to largely overlapping sets of data [21]. While most desktops are computa-

tionally equipped to handle this task, storage requirements are often not sufficient. As a

result, a scientist may have to repeatedly download small portions of the data set from the

high-end storage repository and run the visualization in multiple inconvenient steps. The

high-end mass storage system also generally has a queue of pending requests from other

scientists, which adds to the latency of data retrieval. Moreover, data at this end is stored

on tape, with the exception of only the most recently accessed data sets which are cached

on hard disks. This adversely impacts the data retrieval rate as percieved by the end-user.

The Freeloader project emerged in the hope of addressing the glaring inequities

in such settings. While storage space is insufficient for application requirements, most

workstations use only a small percentage of their total available disk space [1, 10]. Moreover,

the percentage of unused space increases as the capacities of disks on workstations increase.

Even when scientists do manage to fit bulk scientific data onto their desktop workstations,

they still prefer to delete this data after processing it, inspite of the possibility that it will

be used again. Additionally, the disk itself is idle (at a low disk bandwidth utilization) for a

large percentage of the time. In a LAN environment, a large number of such user desktops

exist, connected together by a high-bandwidth interconnect. In addition, most workstations

are online for a majority of the time [6]. As a result, these desktop machines represent good

collective storage space. More importantly, these desktops provide very impressive collective

disk I/O bandwidth. Freeloader aims at aggregating these precious resources by developing

software to manage these distributed idle disk spaces as a single cache and scratch space.

We call this process of space aggregation storage scavenging, in much the same way that

Condor harnesses idle CPU cycles [24].

1.2 Project overview

The FreeLoader project is an effort to aggregate space and I/O bandwidth con-

tributions from commodity desktop workstations in a LAN environment, and to provide a

shared cache/scratch space for large, immutable scientific data sets. We designed an archi-

tecture and framework that facilitates transient access to such data sets. The aggregated

storage space works together with and complements existing and future high-end storage

systems, by providing greater throughput and availability as a cache, diverting a significant

portion of the burden of servicing data requests to itself. Consider a group of biologists
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that routinely use gene sequence databases from a public web repository such as NCBI

(National Center for Biotechnology Information) [19]. Extracting meaningful information

from these databases, with tools such as pairwise or multiple sequence searches, involves

repeated scans over them. Each of these databases can easily be gigabytes in size. Caching

them either partially or entirely at a group of local workstations would significantly speed

up this process, while reducing the burden on remote storage systems (such as archival

systems and web servers) and the wide-area network connection.

With Freeloader, workstation users voluntarily donate storage space. These work-

stations are called benefactors, who run the benefactor daemon in the background. Storage is

aggregated from multiple benefactors to form the Freeloader storage cloud. Data is stored on

the benefactors in blocks of data called morsels, which serve as the basic units of donated

storage. Meanwhile, the management component, which runs on one or more dedicated

nodes called manager(s), keeps track of benefactors through a registration process. It is

also a decision making entity and an information server, which determines data placement

on the benefactors and stores/serves such information for data set accesses. The Freeloader

client is a set of user interfaces between an application accessing Freeloader data and the

Freeloader cloud.

Data is either locally generated or staged from one or more remote data sources.

Since write-once-read-many accesses are the norm in scientific computing, we design the

Freeloader cloud as an intermediate cache. This is especially useful when the remote source

is an ftp server or a web repository, which has limited request processing capacity and is eas-

ily overwhelmed by user requests, or is connected by a slow network pathway to the user.

In addition to space aggregation, Freeloader provides high data retrieval rates by aggre-

gating I/O bandwidths of desktop workstations. By enforcing cache content replacement,

Freeloader automatically favors “hot” data sets, saving users’ expensive and redundant re-

mote data accesses and data migration operations. Instead, these data sets can be accessed

from the Freeloader cloud, potentially at an access rate higher than one single workstation’s

local disk bandwidth.

1.3 My contributions

I worked with a team in building the Freeloader framework. The underlying com-

munication package, the benefactor daemon, and the communication module for the client
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were written by Jonathan Strickland, another student working on the same project. My

part of the project has involved the design and development of the manager component and

the client interfaces. Listed below are my contributions:

• Manager design

1. I designed and implemented the soft-state benefactor registration and status

update function of the manager.

2. I implemented the metadata management functions of the manager with a focus

on reducing the metadata maintenance overhead.

3. I implemented a data striping algorithm that exploits parallelism in data access

and optimizes space utilization on the Freeloader cloud.

4. I implemented a cache replacement algorithm based on existing work, to manage

the Freeloader cloud as a cache space.

• I designed and implemented the Freeloader client interface APIs with a focus on

improving access performance by parallelizing data transfers and enhancing write

efficiency with the use of client-side buffering.

• I was also involved in setting up the Freeloader testbed, running experiments through

scripts, and collecting results.

1.4 Roadmap of thesis

My thesis is organized as follows. Chapter 2 presents the Freeloader architecture

and its major components. We present the design of the manager in Chapter 3. Chapter

4 discusses the design of the client interface. Results of Freeloader performance tests are

presented in Chapter 5. In Chapter 6, we discuss other projects and results related to

Freeloader. Chapter 7 concludes the thesis and gives a brief discussion of future work.
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Chapter 2

Freeloader architecture

2.1 Overview

In this section, we describe the overall architecture of the FreeLoader storage

scavenging system by describing its major components and their interrelationships. Section

1.2 gave an example setting that Freeloader is designed to work in. Here, we illustrate the

use of Freeloader with a use-case scenario.

Consider a team of biologists within Oak Ridge National Laboratory (ORNL), who

want to examine microarray data from a public gene sequence database such as the NCBI’s

(National Center for Biotechnology Information) GenBank [20]. For example, they may run

data mining algorithms on this database to discover irregularities or dissimilarities in the

gene expressions, say between normal cells and cancerous cells. The data requirements for

this type of application would be in the order of tens to hundreds of gigabytes. The team of

researchers needs quick and repeated accesses to this database. The amount of data exceeds

the capacity of any individual workstation, but collectively the biology research group has

hundreds of gigabytes to terabytes of unused storage on desktop workstations.

Without the Freeloader cache, the situation facing the team of biologists is as

follows:

• These researchers have to revise their applications to directly stream-process data

from the database hosted at the NCBI web site, at a rate of about 2 MB/s.

• They might resort to replicating this database on their local mass storage system - in

this case the HPSS (High Performance Storage System) at ORNL. This gives them an
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Figure 2.1: Envisioned Freeloader Environment

access rate of about 10 MB/s. Their repeated and frequent accesses to the database

places a heavy load on HPSS, which is shared by all ORNL researchers and many

external users.

• These researchers can purchase a RAID system or a Storage Area Network solution

(SAN) to store such databases. Although disks are inexpensive, disk arrays and SAN

products are not. Moreover, shared file systems are often quickly filled up, while the

quota system incurs space fragmentation and underutilization.

With Freeloader, these researchers can aggregate their existing storage resources

for scientific data processing. Before we describe how Freeloader works, we define the

important terms that will be used in this context. A data set is a sequence of bytes, most

commonly a file containing scientific data. Every data set stored on Freeloader is assigned

a unique data set Id. A morsel is the unit of data storage and retrieval on Freeloader. Each

morsel of data is uniquely identified by the location independent pair of (data set Id, block

number). A block is a morsel-sized unit of data which refers to the contents of the original

data set. We use the terms block interchangibly with morsel, with the slight distinction that

the morsel refers to data blocks which are stored on the Freeloader cloud. The block number

is the offset of the data block in the data set, in terms of morsel sized blocks. Although we

use fixed size morsels in our performance impact experiments, our implementation allows

the manager to choose a different morsel size for each data set.

Freeloader alleviates the aforementioned problems of the researchers in the follow-
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ing way. When one of the client machines (used by one of the researchers) downloads the

public gene database, the client interface also contacts the manager indicating that this data

set is to be staged on the Freeloader cloud. Figure 2.1 shows how the Freeloader fits in as

an intermediate cache space. The manager responds by creating a list of morsel identifiers

for the data set, and in addition decides how morsels of the data set are distributed among

benefactors. The manager returns a list of key-value pairs, where each key is the morsel

identifier and the value is the network address of the benefactor on which the morsel is to

be stored. This mapping between every morsel identifier and its location is maintained by

the manager as metadata.

Parallel writes are initiated by the client which ensures that this data is striped

onto benefactors. Subsequent requests for access by any one of the team of researchers is

sent by their respective client to the manager, which responds with the mapping of the

morsels to benefactors. The client uses this mapping to retrieve data in parallel from the

benefactors. We optimize Freeloader for write-once-read-many data, which is the norm in

scientific data processing [29].

FreeLoader aggregates donated storage into a single scavenged storage system.

Storage space is donated by workstation users on a voluntary basis, by running the bene-

factor daemon as a background process. The basic architecture consists of three main com-

ponents - the manager, the benefactor, and the client. Figure 2.2 illustrates the relationships

between the components. The remainder of this chapter will focus on the functionalities of

each of the Freeloader components.

2.2 Manager

The primary function of the manager is to maintain metadata regarding benefac-

tors and data sets. Freeloader’s registration process requires each benefactor to periodically

contact the manager with statistics such as total storage space donated, used and unused

space, its liveness and uptime. If the benefactor already hosts data, the manager stores

metadata describing which data sets and their corresponding morsels are currently stored

on the benefactor. The manager also maintains metadata specific to data sets. This in-

cludes general information such as data set size and location of every morsel of the data

set.

Data placement is another major functionality of the manager. This involves
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deciding how and where to place data. Before a data set is initially stored on to the cloud by

the client, the manager is contacted. The manager chooses a subset of benefactors on which

to distribute data. This distribution is also called data striping. The manager partitions

each data set into equal-sized stripes, and assigns these stripes to a subset of benefactors

in a round-robin manner. Each of these stripes consists of one or more morsels, which form

the basic units of striping in Freeloader. Striping serves the purpose that subsequent data

retrieval by the client can be done in parallel from multiple benefactors. It also serves to

optimize space utilization on the Freeloader cloud.

Integral to striping are two basic parameters - stripe size and stripe width. The

stripe size indicates the breadth or the size of each stripe allocated to a benefactor. It is

also an indicator of the amount of data retrieved sequentially at a time from a benefactor

during retrieval. The stripe width denotes the number of benefactors chosen for the striping

of a data set. The choice of these two parameters will be discussed in Chapter 3 and the

performance impact of these parameters will be discussed in Chapter 5. Note that the

manager is not involved in any morsel data transfer. It only acts as a decision making

entity assigning morsels to benefactor nodes as part of the striping process. To access or

store the morsels in a data set, a client downloads this mapping of morsels to benefactor

nodes from the manager. It then performs a series of Get() or Put() requests of morsels in

parallel.

Striping also achieves the purpose of minimizing the performance impact on bene-

factors. Even though disk bandwidth is typically considered to be the bottleneck in data

accesses, with multiple benefactors serving data concurrently, we can afford to have each

benefactor reading at a rate lower than its maximum disk bandwidth. Therefore, striping

provides a method of saturating the network link on the client side, while at the same

time placing an acceptable load on individual benefactors. Striping also achieves some of

the future goals of Freeloader, namely high data availability and handling heterogeneity

among benefactors. Having variable stripe sizes for different benefactors in proportion to

their bandwidth is a promising method of achieving load balancing. Striping achieves the

granularity needed for load balancing, replication and relocation of morsels in case the load

on a benefactor is excessive. Note that all data placement decisions made by the manager

are maintained as part of its metadata.

In addition to deciding data placement and managing metadata, the manager also

manages the entire Freeloader space as a cache with an eviction policy. Eviction is mainly
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carried out at the level of a data set. The cache replacement algorithm is invoked when

there is a space limitation, and a new data set is to be staged on the cloud. At this

point, a victim data set is chosen and morsels are evicted in a bottom-up manner from

that data set. This is due to the assumption that sequential accesses are the norm and

that data sets are accessed in whole rather than partially. We user the LRU-K policy,

which is an improvement on the simple LRU in that takes into account a window of past

accesses to a data set to estimate the time of the next access. The concepts of replication

and relocation are closely related to that of cache replacement. Relocation is based on

moving the “hottest” morsels of the “most important” data sets when a benefactor either

shuts down or undergoes a space shrinkage. Replication deals with using access history of

data sets to create additional replicas of frequently used morsels. Both these features are,

however, not currently implemented.

The design goals of the manager are as follows:

• The management scheme should be scalable to manage several hundreds of worksta-

tions.

• FreeLoader should be robust and reliable even though the benefactor nodes are not.

• With striping, the data transfer protocol should saturate a client’s network connection,

providing maximum client-side throughput. This is achieved by a combination of client

and manager functionality.

• The benefactor design should accommodate low-end and heterogeneous hardware,

while keeping the overhead low so as not to adversely affect user comfort on donated

nodes.

More details regarding the design of the manager will be discussed in Chapter 3.

2.3 Benefactor

The benefactor component manages the workstation’s donated local storage space.

The primary function of this component is servicing morsel Get() (retrieve) and Put() (store)

requests. Because FreeLoader serves write-once-read-many data, we expect read requests

to dominate data traffic.
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Figure 2.2: Freeloader Components

A benefactor node is an ordinary user machine that is willing to donate its idle disk

space and has installed the Freeloader benefactor daemon process, which communicates with

the manager and services get/put morsel requests. Freeloader uses soft-state registration,

where the benefactor daemon regularly sends heartbeat or “I’m alive” messages to the

manager to renew its registration in the Freeloader cloud. Aside from servicing requests,

the impact of the benefactor daemon on the performance of the host workstation’s native

workload is negligible.

Since a benefactor node is donated, the resources it offers to the cloud are lim-

ited. Moreover, it cannot be considered reliable or robust. Therefore, Freeloader should be

designed wtih flexible error handling and recovery capabilities. We choose to use UDP for

control messages and metadata transfer for its flexibility, while TCP is primarily used for

data transfer between the client and a benefactor.

Another major task of the benefactor is to keep impact on its native workload to a

minimum. The daemon must run in the background and co-exist with the native workload.

The daemon process monitors the load that FreeLoader is placing on the benefactor and,

if necessary, throttles the responses to keep the user discomfort low. As mentioned earlier,

striping allows multiple benefactors’ data serving capacities to be combined in parallel.

This ensures that even when each benefactor is serving data at a rate significantly lower
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than its I/O bandwidth, the incoming network bandwidth on the client side can still be

saturated. For more details on the benefactor’s design and benefactor performance impact

control mechanisms, please refer to our research papers [35, 34].

2.4 Client

End-user applications on a client node use the services of Freeloader through

Freeloader interfaces. Applications link with the client interface library in order to store to

or retrieve data from the cloud. The basic APIs are:

• Reserve(): This allows a client to reserve a certain amount of space on the Freeloader

cloud.

• Store(): When the client decides to store a data set, it contacts the manager with its

details. The manager invokes its data striping policy and returns a list of morsels and

their assigned benefactors.

• Put(): Once the client knows where to place each data set morsel, it may write to

each of the benefactors in parallel by calling Put().

• Retrieve(): When the client intends to retrieve a dataset from the cloud, it contacts

the manager using Retrieve(). The manager returns a list of morsel identifiers and

the corresponding benefactors on which they are stored.

• Get(): Once the client retrieves morsel locations (benefactor node IDs) from the

manager, it reads these morsels by initiating Get() requests in parallel to each of the

benefactors.

Details of the client interface implementation will be discussed in Chapter 4.
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Chapter 3

Manager design

3.1 Design Overview

The functionality of the manager can be summarized as that of a lightweight

decision making entity and an information server. In our current implementation and

experiments, we choose to use only one manager node. However, our design can be easily

extended to multiple managers. In particular, our assumption of data being write-once-

read-many simplifies issues related to metadata consistency among managers, if more than

one exists. The design of the manager is discussed based on the following functionalities:

• Benefactor registration and status tracking

• Metadata maintenance

• Data placement

• Cache management

Prior to discussing each of these topics in detail, we give a brief description of the

skeleton of the manager design. Figure 3.1 illustrates this architecture. The manager is built

on top of an inter-node communication library which was designed by Jonathan Strickland.

This library uses UDP for control messages and TCP for morsel data transfers. Since

the manager is mainly concerned with receiving small status updates from the benefactor

and requests from the client, it uses UDP as its mode of communication. Communication

through UDP involves using generic Send() and Receive() functions for communicating
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Figure 3.1: Manager architecture

with other nodes. The message Id is passed as a parameter and defines the type of message.

Additional parameters may also be specified.

The manager receives requests from the client, services those requests, and re-

sponds to the client. It has a well-known address which clients and benefactors have access

to. The control flow of the main() function in the manager consists primarily of two steps.

First, a function handler is registered with the communication library and is associated with

a message Id. When an incoming request bears that message Id, the corresponding func-

tion handler is invoked. After the message is appropriately handled, the manager returns

to sleep(), waiting for another message. The underlying implementation uses the SIGIO

interrupt to wake up the manager process and the message Id is used to determine which

function handler is invoked. As a result, if multiple messages arrive at the same time, they

are placed in a queue and executed in the order of arrival.

The message Ids are integer values which are agreed upon by all communicating

parties. An example is the use of messages RetrieveMorselMapping and RetrieveAck. The

client sends a message to the manager with the first message Id and data set name as

parameter, asking for the mapping of morsels to benefactors. The manager responds with

the message RetrieveAck which serves as an acknowledgement, with the mapping of morsels

requested.
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3.2 Benefactor registration and status tracking

The manager is the only entity in Freeloader which has information regarding all

the benefactors. It handles the “membership” of benefactors through a soft-state registra-

tion process. Using soft-state registration implies that each benefactor is not “alive” or

“valid” unless it keeps itself registered with the manager periodically. The benefactor is

responsible for keeping the manager updated regarding its storage capacity, the morsels it

hosts and performance history such as the most recent outgoing data delivery rate it could

achieve. It is also responsible for notifying the manager in case the amount of space donated

is reduced or the benefactor is shutting down. The benefactor sends two types of status

messages to the manager:

• Start-up messages: Startup messages are sent to the manager to indicate that the

benefactor is up and running. Another use of startup messages is to indicate that a

benefactor is restarting after a failure or crash. This type of message also carries with

it details of data sets and corresponding blocks currently held by the benefactor.

• Alive messages: Alive messages are sent to the manager periodically to maintain the

benefactor’s validity as part of the Freeloader cloud. These messages may contain

additional information such as morsels accessed during the last time interval, which

could feed into the cache replacement policy.

The mechanism of soft-state registration is used in the manager, which maintains

a list of benefactors entries and their corresponding status. Each benefactor periodically

(every 20 seconds) sends a status message to the manager. The manager on receiving this

status message, sets the status of the benefactor to “alive” in its metadata. The manager

also periodically (once every minute in our implementation) checks the status of all the

benefactors. It does this by registering a status checking function with the schedular and

setting the status check frequency as 1 minute. For all benefactors that are marked as

“alive” when the status check is performed, the manager clears their status, and these

benefactors are considered to be a valid part of the cloud for the duration of the next

minute. For all benefactors marked “invalid” during the status check, the manager sends a

status request message forcing a response from the benefactor. Until an update is received

from that benefactor, it is not considered a valid part of the cloud.
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This is an effective way of implementing soft-state registration, since benefactors

can asynchronously send status messages to the manager. Choosing an update frequency for

benefactors which is greater than the frequency of status checks performed by the manager

ensures that a live benefactor remains a valid part of the cloud. It gives every benefactor

the chance of registering with the manager, before it is considered invalid when the status

check is performed. The frequency values of 20 seconds and 1 minute remain fixed while

Freeloader is in operation. We have determined that with small status messages and a

low update frequency, scalability is not a problem even with hundreds to thousands of

benefactors.

In the current version of our prototype, the purpose of status messages for data set

storage is to determine the list of benefactors on which striping can take place. If a request

for a data store arrives from a client, the manager only makes striping decisions based on

the set of benefactors that are considered valid at that point in time. For data retrieval,

the purpose of the status messages is to determine if the data set is stored on benefactors

which are currently invalid. A valid benefactor may still crash during a transfer. Handling

of such errors and subsequent recovery are not yet implemented. For future versions of

the Freeloader prototype, status updates can be used by managers to determine replication

policies for frequently accessed morsels or relocation policies in the event of a benefactor

crash, to handle benefactor withdrawal from the cloud or the shrinkage of donated space.

Performance histories obtained from these status messages can also help the manager stripe

data in smart ways by considering the capability and reliability of individual benefactors.

3.3 Metadata maintenance

The manager is the information server for the Freeloader cloud. It must maintain

metadata regarding benefactors and data sets. Additionally, the manager needs metadata

for its own purposes, such as using a history of statistics on data access performance and

benefactor availability. Freeloader’s metadata management has to take into account several

issues. First, metadata must remain persistent at the manager node to make it capable of

failure recovery and restoring the Freeloader system status. Second, the size of metadata

should be reasonable, and metadata look-up should be efficient. As the single metadata

server in the system, the manager should be able to handle dozens to hundreds of benefactors

and clients with typical scientific workloads, without becoming a bottleneck in overall per-
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formance. The manager must also support highly generic store(), retrieve-by-key(), update()

and delete() functions. Portability to various UNIX compatible platforms and Windows is

also important.

Given these factors the metadata management component of the manager must

have the following characteristics. First, it should have basic database functionality - an

example of this would be storing benefactor Id and the corresponding available space as a

record. The benefactor Id serves as the key in this case. Another example is the mapping

from a unique data set block to a specific location/benefactor. In this case the pair of

attributes - (dataset Id, block number) represents the key. Second, the retrieval must also

be fast. This implies that the data management uses some form of indexing. The data

management utility must have the ability to handle complex data types - an example is

the 4 octets used in representing a node’s IP address. Database functionality should be

obtained by just linking with a library. Some of the more mature and complex database

systems like MySQL and PostgreSQL introduce too much overhead, due to the fact that

they provide for more complex functionality like security and consistency. Moreover, they

need to be installed as servers before they can be used.

We use the dbm package because it has the above features. Apart from its ease

of use, it allows the user to define the structures of records and a key field by which to

index the records. It also provides a set of generic APIs which can be used to store records,

delete records, traverse the database record-by-record, fetch records by key, and update

records. UNIX uses the dbm package for a number of its utilities. Command line utilities

on Linux commonly use gdbm, which is a lightweight indexing database package. We use

the ndbm package, which is a close variant of gdbm. It has been proven to be sufficiently

fast in terms of fetching by key. To illustrate this, consider a test case involving look-up

of morsel locations for a data set of size 5 gigabytes. Over multiple retrievals of this 5

gigabyte data set, the manager overhead in terms of look-up never exceeded 0.15 seconds.

Even with a high aggregate throughput of 45 MB/s from 4 benefactors, this represents less

than 0.15% of the total retrieval time. File storage overheads are also minimal. For the

data set of size 5 gigabytes and morsel size of 1 MB, the associated metadata is less than

800 kilobytes. This is a reasonable amount of space, considering the fact that the manager

is a dedicated machine. Note that this is inclusive of the per-morsel data mapping, which

we store for better data placement flexibility. Metadata size will decrease if the morsel size

is increased. Each database is stored in the form of two files - a sequence of records and
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an index file. This package is used in our implementation for all benefactor-specific and

data set-specific metadata. These include mappings from data set Ids to file names, data

set striping parameters, mappings from morsels to benefactors, and the benefactor-specific

status information.

3.3.1 Morsel metadata

All data is stored on the Freeloader space in morsels. Apart from storing data

specific to data sets, the manager also keeps information specific to individual morsels. The

morsel specific information stored by the manager includes location of all replicas of the

morsel in the form of the benefactor network addresses.

Associated with each morsel is also its heat. This represents the frequency of

accesses to the morsel, divided over all replicas of the morsel. This forms a good approx-

imation of the demand for a particular morsel. When the number of replicas reduces, the

demand increases. Data sets and their corresponding morsels’ heats must be recomputed

constantly when they are accessed from the Freeloader space. This heat information is an

important basis for the manager to make decisions regarding eviction, relocation and repli-

cation. Relocation of morsels is carried out when either a benefactor quits or reclaims its

donated storage, or the amount of space donated by the benefactor is reduced on demand

by the workstation user. Relocation involves moving the “most important” morsels from

such benefactors to other benefactors in a time-critical manner. Replication involves storing

duplicates of morsels on the cloud based on their “hotness” or frequency of use.

A simplistic explanation of the above strategy can be stated as - morsels with

the greatest demand are the first candidates for relocation and replication, and the least

preferred candidates for eviction. This heat index is expected to form the basis of cost

model-based strategies in future versions of the manager, where replication and relocation

are incorporated. Although relocation and replication are not currently implemented, the

data structures we use are designed to accomodate this future functionality.

Morsel metadata is periodically forced to persistent storage. However, the morsel

mapping functionality uses metadata stored (cached) in memory to minimize response time

as seen by the client. There is a need for choosing data structures which incur minimum

overhead in the look-up process. With naive linked list implementations, there are potential

scalability problems because the volume of incoming status updates can be very high. Heat
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Data set 1 Data set 2 Data set 3 Data set n

replica 1 replica nreplica 2

benefactor ID benefactor ID benefactor IDBlock header 1

Block header 2

Block header 3

Block header 4

Block header n

Figure 3.2: Data structures for morsel metadata

indexes need to be recomputed, and they may vary from one morsel to another. This can

be a problem when there are many benefactors, possibly in tens or hundreds.

The structures we use are illustrated in Figure 3.2. We use an array of pointers,

each element of which is assigned to a data set. This array is dynamically allocated since the

number of data sets is not known in advance. Each pointer points to the base address of an

array of blocks which belong to that data set. Each element in the block array corresponds

to a block number of the original file. This method of dynamically allocating arrays for

blocks proves to be efficient since the size of a data set is not known in advance. This also

provides look-up performance which is similar to using a hashing scheme. For example -

dataSet[X].blockNumber[Y] refers to the node which represents block number Y of data set

Id X. This node refers to a linked list of replicas of that morsel. Each node of the linked list

represents a different replica and stores the benefactor network address where it is stored.

The ordering of replicas is based on the time of last access to each replica. Since look-up is

inexpensive, updates can be carried out quickly. Deletion or invalidation of a data set is a

simple process of marking the data set as invalid by using a flag.
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3.4 Data placement

Data placement is crucial to the data access performance of Freeloader. The data

placement function comes into play when the manager receives a message from a client for

storing data. The client supplies the data set size, and the manager chooses a suitable

morsel size, stripe size, stripe width and a subset of benefactors on which to stripe that

data set. The client expects in return a list mapping each morsel of the data set to the

benefactor on which it is stored, so that it can proceed with storing these morsels on those

benefactors.

The manager’s role in data placement is to serve two purposes. First, it needs to

stripe data in a manner so as to maximize the client perceived retrieval bandwidth. The

stripe size, stripe width and morsel size are three parameters which need to be chosen by

the manager prior to striping. The stripe size defines how many consecutive morsels are to

be stored on one benefactor, and the stripe width defines the number of benefactors across

which the data is striped. We use an emperical study to determine the optimal morsel size,

by increasing morsel size in powers of 2, starting from 16 KB, and studying the impact on

retrieval performance and size of metadata. The size of metadata, in turn directly affects

the metadata storage needs and the overhead of the manager in the process of look-up

of morsel locations. In our experiments, we use a morsel size of 1 MB as a value that

provides enough granularity for striping, and is still large enough to keep metadata storage

and look-up overhead minimal. Currently, stripe width values for data sets are chosen as

powers of 2. We find that retrieval performance is maximized between a stripe width of 4

and 6 benefactors. Benefactors are assumed to be similar and therefore a uniform stripe

size is used across all benefactors. However future versions of the manager will assign a

stripe size which is commensurate with the retrieval rate of a benefactor. The impact of

varying stripe width and stripe size is shown in Section 5.2.

The second goal of data placement is to optimize the utilization of the storage

capacity available on the Freeloader cloud. The manager needs to use a suitable striping

algorithm. Informally, the problem of striping can be stated as follows. Given the set of m

benefactors with their corresponding storage capacities, and an incoming data set d of size

s - choose a subset of the benefactors on which to stripe the data.

We now formally describe the problem of creating an optimal fit of data, given the

size of the data set which is to be stored. Consider that the Freeloader cloud is made up of
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Get updated list of benefactors B[], and corresponding free space F[]
Sort benefactors in descending order of free space
MorselCounter = 1
MorselLocation[i] gives the benefactor Id on which Morsel i of data set is stored
Do
    For i = 1 to StripeWidth

                Assign the morsel numbered X to B[i], where X = MorselCounter
                MorselLocation[MorselCounter] = B[i]
                MorselCounter = MorselCounter + 1
                Update F[i] = F[i] − MorselSize

          For j = 1 to StripeSize

          End For
    End For

Repeat until all morsels have been assigned to benefactors
Array MorselLocation[] contains the morsel mappings

Figure 3.3: Striping algorithm

m benefactors B = {b1, b2, . . . , bm}, where benefactor bi has initial free space size fi. The

input consists of a sequence of n datasets D = d1, d2, ..., dn, where di is of size si and uses

a stripe width wi. The problem is one of striping as long a prefix of D to B as possible.

We have shown that a known NP-hard problem, Minimum Bin Packing, can be reduced to

the off-line version of the above problem.

The manager handles this using a greedy heuristic. Given a list of m benefactors

B = {b1, b2, . . . , bm}, where benefactor bi has initial free space size fi, we sort the benefactors

in decreasing order by their available unused space. This represents the most up-to-date

“view” of the cloud at any moment of time. Given an incoming data set d of size s and

stripewidth w, the top w entries from the sorted benefactor list are chosen for the striping.

The striping is also dependent on the sufficient availability of storage in top w benefactors

in the list. In the event that the space is insufficient after one round of striping, another

round of striping is carried out on the top w benefactors for striping the remainder of the

data set. Once the subset of benefactors is chosen, the manager uses a round-robin strategy

to assign consecutive stripes of the data set to different benefactors. Each stripe consists

of stripesize number of morsels. Once this striping is done, the morsel mapping is sent to

the client. The rationale behind using the heuristic is as follows. Assigning the new data



21

data store

Benefactor 1 Benefactor 2 Benefactor 3 Benefactor 4

block 1
block 5

block 2
block 6

block 3
block 7

block 4
block 8

requests

morsel mappings

1

2Manager Client

3 4   6

8 9
10

7

5

Figure 3.4: Example of striping (stripe width = 4, stripe size = 1 morsel)

set to the top w benefactors in the sorted list reduces the imbalance in storage capacity

among benefactors, making the cloud of benefactors more amenable to uniform striping.

Pseudo-code of the striping algorithm is presented in Figure 3.3.

Figure 3.4 illustrates an example of how the blocks are distributed when the client

uses the mapping to store data. The directed edges are labelled with numbers which are

indicative of the order in which the corresponding events occur. The client first contacts

the manager with details of the data set which it intends to store, requesting details on how

and where to store the data set on the cloud. The manager then chooses the appropriate

morsel size, and also chooses the striping parameters - stripe width and stripe size. The

manager applies the greedy algorithm described above and assigns morsels to benefactors.

Note that this is an allocation process and does not mean that morsels are actually being

placed on benefactors. This allocation or mapping is returned to the client which stores

morsels on the benefactors using the Put() interface. Steps 3, 4, 5 and 6 denote calls of Put()

by the client on individual benefactors. These steps are overlapped with respect to each

other. The acknowledgements may not however, arrive in the same order. After storing

block 3, benefactor 3 is the first to reply with an acknowledgement labelled 7. The figure

shows that acknowledgements are received by the client from benefactors 3, 1, 4 and 2 in
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that order. The client initiates new morsel transfers for benefactors in the order in which it

receives acknowledgements from them. This means that the next morsel stored on the cloud

is block number 7 to benefactor 3, followed by block number 5 to benefactor 1, and so on.

This example shows how more than one benefactor might be storing data in parallel, while

the client itself reads another morsel to store onto the cloud. This parallelism is achieved

through a combination of striping done by the manager and the data transfer protocol used

by the client.

3.5 Cache management

The entire Freeloader space is a finite, limited resource which must be managed

effectively by the manager. New requests can be expected from clients at any time. Since

the Freeloader cloud acts as a cache of frequently accessed data sets, a cache eviction policy

is needed. A large number of policies came into contention initially, ranging from the

basic LRU (Least Recently Used) to the Least Frequently Used (LFU) policies. In our

implementation, the policy chosen for cache eviction is a variant of the LRU-K replacement

policy [28].

The basic principle behind LRU-K replacement is the eviction of the data set

which has the greatest backward-K distance. Accesses to data sets can be represented as

a reference string of accesses. The backward-K distance for a particular data set is the

time from the last access to the K-th most recent reference to the same data set. When a

client makes a request for storing a new data set and the space on the Freeloader cloud is

insufficient to host the new data set, the cache eviction policy is invoked. The one chosen

to be the victim data set is that which has the greatest backward-K distance. The rationale

is that backward-K distance acts as a good estimate of inter-arrival (time of next access)

time of data set accesses.

Once a victim data set is chosen, morsels are evicted from the bottom up. This

means that if data set d has n morsels, the order of eviction of morsels is n, n − 1, and

so on until the space evicted is sufficient to accomodate the new data set. It is possible

that eviction of one data set does not free enough information for the new data set. In this

case, the next victim data set is chosen based on the same criteria as before - backward-K

distance. The reason for evicting blocks in the bottom up manner is that sequential accesses

are the norm in scientific data sets. The morsels at the beginning of a data set are often
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needed first. This order of eviction allows the data recovery from a remote primary copy

to overlap with data accesses within Freeloader. Partial data set recovery, however, is not

currently implemented and forms part of our future work (Chapter 7).

The reasons for choosing LRU-K as our eviction policy are as follows. Simple LRU

only uses the last access to a data set to estimate the arrival time of the next access to the

data set. LRU-K, on the other hand, uses the K most recent references to the data set as an

estimate of when the data set will be accessed next. Therefore, it also has a built-in notion

of aging, by considering only the last K references to a data set. Unlike LRU-K, LFU is

unable to adapt to changing access patterns. LRU-K does not rely on external hints about

workload characteristics. It is also well suited to the case where there are repeated, and

often periodic accesses to the same data set.

We implement a slightly extended version of the LRU-K algorithm. Backward-K

distance is determined by subtracting time stamp values, which are recorded with every

data set access. This serves the same purpose as a reference string of accesses. In our

implementation of the LRU-K algorithm, we choose the value of K as 3. This is based on

observations made by the authors of the paper describing the LRU-K algorithm [28], where

they indicate that LRU-2 is no worse than LRU-K (where K is greater than 2), especially

for changing access patterns. Since access patterns may remain constant over a period of

time, and choosing a greater value of K incurs greater overhead, the value of K is arbitrarily

chosen as 3.

The manager also needs to protect data sets from eviction under some circum-

stances, such as when they are being accessed. This is handled by the client sending explicit

messages to the manager to indicate the start and end of a data set store or retrieval. While

a data set is being accessed, it is protected by the manager. Therefore, there is no danger

of a data set being evicted while it is being retrieved. Data sets which have recently been

placed on the cloud also tend to be targeted for eviction, due to their backward-K distance

of infinity. Intuitively, such data sets may be considered “cold” since there have been few

acccesses (less than K, possibly none) to them. As a result, with the standard eviction

algorithm, it is not uncommon for a data set to be evicted shortly after it is stored on the

cloud. These data sets need to be protected by the manager since each data set is expected

to be used at least once after it is stored in Freeloader space. The manager uses a time-out

value, which is twice the average time difference between the store and the first access as

observed for all previous data sets. After a data set is placed on the cloud, it is locked
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(protected from eviction) for the period of the time-out value, after which it is subject to

the same criterion as used by the regular LRU-K policy. It is also possible for more than

one data set to have a backward-K distance of infinity. This is because the data set may

not have been accessed K times since it was placed on the cloud. In such cases, simple LRU

is used to choose the victim from among these data sets.
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Chapter 4

Client design

On the client side, a user application invokes Freeloader client interfaces such as

Reserve(), Store(), Retrieve(), Get() or Put(). These functions are implemented as part of

the interface library. The interface library also implements a buffering strategy to ensure

that the retrieved file is written out in an optimized manner in terms of disk seeks. Such

buffering is necessary to ensure that the packets received from multiple benefactors are

correctly ordered before the application processes the data. In this chapter we briefly

discuss the implementation of the basic APIs provided by the client interface. We also

discuss the specific buffering strategy used in the client library implementation. Note that

the term write is intended to mean either writing to disk or writing to the input stream of

the application.

4.1 Implementation of client services

All of the client services are implemented on top of the communication library

mentioned in Chapter 3. Reserve() is implemented using a simple request response ex-

change. The client requests a slot on the cloud for a particular data set, and the manager

responds with a data set Id if the reservation is successful. The client uses this Id for all

future references to the data set. Reservation is granted based on the amount of space

requested by the client. In our implementation, we reject a reservation request if the client

requests more than one third of the total available Freeloader space. This prevents any one

data set from dominating the storage provided by Freeloader. Once a reservation is made,

it remains valid until the client explicitly cancels the reservation. We can afford to do this
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because space allocation does not begin until the client calls Store().

By calling Store(), the client requests an allocation of its data set by sending data

set details to the manager. The manager performs the striping and responds with a list

which maps morsel Ids to the network addresses of the benefactors on which they are to

be stored. The client uses Retrieve() to request the mapping of morsels for a data set

already stored on Freeloader space. The manager performs a look-up on its metadata and

responds with a mapping of morsels. Therefore, Store() and Retrieve() share some common

functionality in that both expect a list of morsel mappings in return.

Once the morsel mappings are obtained, processing is done by the client to divide

the morsels into separate streams, one per benefactor. This is done by scanning the ordered

list of morsel-to-benefactor entries (ordered by block number) and assigning all morsels

located in a benefactor to a separate array. This array represents the stream of data to be

stored to or retrieved from that particular benefactor. Once this initial processing is done,

the client calls Put() for storing data or Get() for retrieving data.

• Put(): Morsel data corresponding to the first morsel of each stream is sent out onto

the network. When an acknowledgement is received by the client from a benefactor

indicating a morsel was received, the client sends out the next morsel to the benefactor

corresponding to that stream. The implementation allows for concurrent morsel data

transfers from the client to each of the benefactors involved, thus making maximum

use of the client’s network link.

• Get(): Requests for the first morsel of each stream are sent out to the corresponding

benefactor. Since this process is non-blocking, these requests are serviced by individual

benefactors simultaneously. This allows benefactors to overlap their disk I/O and

network activity, thus allowing for concurrent morsel data transfers from multiple

benefactors. When a particular morsel of information is received by the client, it

sends out the next morsel request to the benefactor corresponding to that stream. On

receiving a morsel, the client does not immediately write it to disk or the application’s

input. Instead, it buffers the morsel, waiting for the opportunity to do a consecutive

write with one or more received morsels to emulate a sequential stream of data. This

is discussed in the next section.

The method used in both Put() and Get() involves waiting on a response from a

benefactor before sending out the next request to that benefactor. This ensures that the
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CurrentBlockNumber = first block

Associate buffers with morsel requests
Send initial morsel requests to all benefactors
Loop:
    Wait on any incoming morsel (blocking call)

    If grabbing was successful
        Associate grabbed buffer with next request
         Send next morsel request to the source

    Store morsel in associated buffer

Grab stripeWidth buffers from buffer pool

    Identify source benefactor of received morsel
    Grab a buffer from buffer pool for next request

    Else
         If CurrentBlockNumber is not yet received      

         Skip CurrentBlockNumber and write first received block to disk      
         Else

         Write CurrentBlockNumber to disk
         Grab the buffer just released for next request
         Associate grabbed buffer with next request
         Send next morsel request to the source
         Update CurrentBlockNumber to point to first unwritten block
Repeat loop while there are pending morsels

Figure 4.1: Pseudo code for Get()

rate at which the client sends or receives information is controlled. This is particularly

crucial in Get(), where it is important not to swamp the client with too many incoming

morsels. The pseudo code for Get() in conjunction with the buffering strategy can be seen

in Figure 4.1.

4.2 Buffering strategy for data retrieval

A fixed pool of buffers is preallocated to store incoming morsels. Each buffer

accomodates one morsel. We use stripewidth × (stripesize + 1) number of buffers for

retrieval, each of which equals the size of a morsel. Therefore we can potentially have

stripesize morsels from each benefactor in the buffer without having to write to disk or the

application. An increase in either the stripe width or the stripe size increases the size of the

buffer pool allocated and the memory requirements of the client interface. Prior to sending

out a request for any morsel, a buffer from this pool is assigned to the outgoing request.
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When data arrives, it is stored in the buffer associated with its request. The method used

can be thought of as a double-buffering scheme, where the previous buffer is being processed

by the application while the next buffer is being assembled.

When the buffer pool runs out of free buffers, a write must be forced to free up

buffer space. This might mean skipping some holes in the data while carrying out the write.

When the morsel corresponding to the hole arrives, a seek is done backwards to fill up the

hole and write out the morsel. The buffering strategy described here is a best-effort attempt

to write out morsels in a consecutive manner. When morsels arrive out of order, they are

buffered. When the buffers run out, there might be some out-of-order writing, but only to

ensure free space on the buffer pool. With an increase in stripe size, the likelihood of the

occurrence of a hole in the buffer increases. This is the reason we use only stripesize + 1

buffers for each benefactor to which the client connects to. Any higher value would most

likely result in an increase in the number of holes and therefore the number of out-of-order

writes of data. Additionally, when the morsel corresponding to the hole arrives, the length

of the disk seek is greater, resulting in a decrease of write efficiency.
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Chapter 5

Results

In this section, we present the results of using the Freeloader on different data sets.

We will first describe the testbed on which these tests are conducted. We then present a

comparison of the performance of traditional data retrieval techniques with that of retrieval

from the Freeloader cloud. Finally, the impact of variation of stripe width and stripe size

on the retrieval performance will be discussed.

5.1 Testbed

The Freeloader cloud tests were carried out at Oak Ridge National Laboratory

(ORNL) and North Carolina State University (NCSU). The cloud consists of a dozen ma-

chines at ORNL, each of which is a Pentium III, dual processor machine running Linux

2.4.20-8. Each of these nodes has a 100 Mb/sec Ethernet card connected to a Gigabit hub.

This means that the network outflow rate of each benefactor is limited to 100 Mb/sec, which

is less than its disk bandwidth, which averages between 20 and 30 MB/sec. Each benefactor

makes a contribution of between 7 and 30 GBs of free disk space, which adds up to about

120 GB overall. Figure 5.1 shows the testbed used to carry out the experiments.

The following comparison tests are also carried out:

• Retrieval of data sets from HPSS (High Performance Storage System) which has

petabytes of storage capacity in the form of tapes.

• Retrieval of data sets from one of ORNL’s IBM SPs, served by the GPFS parallel file

system. Retrieval is carried out via GridFTP.
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Wide-area GridFTP access

GridFTP access
1MB TCP buffers
4 parallel streams

hsi access

Parallel “get()”

FreeLoader 
Storage Space

GPFS
HPSS 

Archives

Client Machine
1 Gb/sec Ethernet
Linux 2.4.20-8, AMD

Gb subnet

Gb switch

ORNL Testbed

NCSU Testbed

NFS

Figure 5.1: Freeloader testbed

• GridFTP access to data sets stored on the NFS storage at NCSU’s High Performance

Computing Center blade cluster.

For tests involving GridFTP access, tuned TCP buffer settings and parallel streams

were used in order to have a more competitive setting for Freeloader. With HPSS, we

recorded data for “cold” and “hot” retrieval separately. This was done in order to account

for the impact of the disk cache used in HPSS for frequently accessed data. Data was also

retrieved from the NCBI website http://www.ncbi.nlm.nih.gov using wget to download

the data. This represents the typical method of retrieval from a remote server.

Table 5.1 shows the entire suite of tests that were carried out. File sizes were

varied from 256 MB to 2 GB. Tests were conducted over a three-day period with each file

transfer being repeated between 30 and 50 times. A common client machine was chosen

for all these tests. The client has a similar configuration to the benefactor workstations,

except that it has a Gigabit network card. The benefactor machines, the client machine,

HPSS and the IBM SP are all connected by a gigabit subnet, which in turn is connected

externally by an OC-12 link.

5.2 Freeloader performance

In this section we compare Freeloader’s performance with other retrieval methods

and the impact of varying stripe size and stripe width on the retrieval performance of
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FreeLoader 12 Benefactors, 1 Manager and 1 client

(Data set size) 256MB, 512MB, 1GB, 2GB

(Morsel size) 1MB

(Stripe size) 1MB, 2MB, 4MB, 8MB, 16MB, 32MB

(Stripe Width) 1, 2, 4, 6

GPFS GridFTP, GSI authent., 1MB TCP buf., 4 streams

NFS GridFTP, GSI authent., 1MB TCP buf., 4 streams

HPSS hsi with DCE authentication

(Hot) Data maintained in disk caches of HPSS

(Cold) Fetch from tape: data purged from caches before fetch

NCBI wget from http://www.ncbi.nlm.nih.gov

Table 5.1: Throughput test setup

Freeloader.

Figure 5.2 clearly shows that Freeloader outperforms GridFTP by a factor of

2 and HPSS by a factor of 4. Retrieval using wget understandably shows the poorest

performance. GridFTP access to a remote NFS server is a little better due to the tuned

buffer settings and the parallel streams. HPSS cached data is retrieved at a faster rate than

data retrieved from archival tape, which can also be expected. The most significant result

is that Freeloader outperforms GridFTP access to the local GPFS file system. This justifies

the use of Freeloader as a high-performance cache space.

As mentioned earlier, experiments are conducted with data sets of varying file

sizes. For each file size, further tests are conducted by varying stripe size and stripe width.

In our tests, the stripe width chosen is either 1, 2, 4 or 6 benefactors. The morsel size chosen

and used consistently through the tests is 1 MB. The stripe size is an integer multiple of the

morsel size - 1, 2, 4, 8, 16 or 32 MB. The morsel size was fixed at 1 MB after considering

the trade-off between increased flexibility for smaller morsel sizes and reduced book-keeping

with larger morsel sizes.

Figures 5.3 and 5.4 show the impact of varying the stripe width on retrieval per-

formance with fixed stripe sizes of 1 morsel and 8 morsels respectively. The following

observations are noted from these graphs:

• Retrieval performance speedup is linear while varying from 1 benefactor to 2 benefac-

tors, and then to 4 benefactors. There is a speedup when 6 benefactors are used for

striping, but the improvement is not a factor of 2.
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Figure 5.2: Best of class throughput comparison, with 95% confidence ranges
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Figure 5.3: Impact of stripe width variation (stripe size = 1 MB)
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Figure 5.4: Impact of stripe width variation (stripe size = 8 MB)

• The speedup is consistent over different file sizes.

• There is a slight improvement in performance as there is an increase in file size, for

any particular stripe width. For example, for a stripe width of 4 there is a slight

improvement in overall throughput when file sizes vary from 256 MB, to 512 MB,

through 1 GB and 2 GB. This is seen in both graphs.

The cause for the linear speedup is due to the parallelism in data retrieval. The

client initiates parallel transfers from benefactors containing the striped data. Different

benefactors then begin to read morsels from their own donated space and send packets over

the network in parallel. This is one of the main reasons that Freeloader outperforms some

of the other retrieval methods. The next section will discuss this in further detail.

The client link is saturated between 4 and 6 benefactors, with the individual

benefactors delivering data at their full capacity (10 MB/s). However, based on the load

on the benefactors and their capacities, we can afford to increase the stripe width and

reduce the rate at which data is delivered from each benefactor. This would serve to reduce

the impact on individual benefactors, while keeping the retrieval rate high. The third

observation listed above can be explained as follows. As the file grows larger, the initial

overhead of retrieving the morsel mapping from the manager is amortized over a larger file

size. As a result, the total throughput increases. The fact that the increase is very small
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Figure 5.5: Impact of stripe size variation (stripe width = 4 benefactors)

and hardly perceptible, is a testament to the fact that the manager overhead in the overall

retrieval is minimal.

Figure 5.5 shows the impact of variation of stripe size on the overall retrieval. As

seen in the figure, an increase in stripe size does not seem to affect the overall retrieval

rate. This is a favorable result for 2 reasons. Firstly, it implies that the parallelism in

data retrieval is very effective. Keeping the stripe size small means that the client switches

between packets of different benefactors more frequently. One would normally expect that

this would adversely affect retrieval performance as opposed to the case where the stripe

size is large and each benefactor reads and transfers a larger amount of sequential data.

However, the graph does not show any clear correlation between an increase in stripe size

and retrieval rate. Secondly, this also means that the memory requirements on the client side

are reduced. The buffer size allocated on the client is set to stripewidth × (stripesize + 1)

morsels. A smaller granularity of striping also means that future tasks such as replication

and relocation become easier and more flexible. We currently stripe data over a fixed

set of benefactors (stripewidth number of benefactors). With smaller stripe sizes, striping

over variable sets of benefactors becomes possible, while still maintaining the parallelism in

retrieval.
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Chapter 6

Related work

A number of projects closely resemble the Freeloader project. What separates

Freeloader from the other projects is its unique combination of features and that it is

not a file system. Freeloader is an effort to be aggressive in disk bandwidth borrowing

from workstations, while still attempting to keep impact on native workstation tasks to

a minimum. Results from [16] clearly show that for normal user tasks, borrowing disk

bandwidth can be aggressive without creating any perceivable impact. This is also true for

borrowing physical memory space and CPU cycles, though to a far lesser extent.

The Google File System [13] is a scalable, distributed file system which is developed

exclusively for Google’s data-intensive applications. The file system is built on top of a large

number of commodity machines, where failures are the norm. Data sets are extremely large

in size and are mostly read, rather than written to. High sustained bandwidth is more

important to their applications than low latency. The Google File System also shares some

other commonalities with Freeloader. Chunk servers are used which are similar to the

benefactors in our setup. Replication is used to increase the availability. A single master

is used to maintain metadata, and all data transfers take place directly between the clients

and the chunk servers. TCP connections are used for data transfer and are kept open over

a period of time. Freeloader differs in that it is not a file system, and therefore does not

deal with more complex file system issues like consistency, name spaces or atomicity of

operations.

Farsite [1] is another project that shares some of Freeloader’s goals. It is a scalable,

serverless distributed file system that functions logically as a centralized file server. Due to

the fact that metadata is distributed among many machines, consistency is an important
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issue. The integrity of directory and file data is maintained through a Byzantine-fault-

tolerant protocol. The Byzantine Generals Problem [23, 5] is one of the many problems

that Freeloader faces if multiple managers are used. Security is also considered a major

issue in the design of Farsite. In the Freeloader project, we assume that since data is staged

within a relatively secure domain, security is a secondary issue. Farsite is also not designed

for high-performance I/O needed by scientific applications.

The Andrew File System (AFS) project [17] is a location-transparent distributed

file system that has been under development at Carnegie Mellon University since 1983 and

is one of the first successful full-featured distributed file systems. AFS is composed of

cells, with each cell representing an independently administered portion of file space. Cells

connect to form one enormous UNIX file system under the root /afs directory. An AFS cell

is a collection of servers grouped together administratively and presenting a single, cohesive

filesystem. The main strengths of AFS are its client-side caching facility, its scalability and

location independence.

Network File System (NFS) [31] was designed to provide transparent, remote access

to shared filesystems across, with a special emphasis on portability and using the platform

neutral XDR (External Data Representation). NFS is built on top of Sun RPC and is a

stateless protocol. The primary functions of NFS are to export or mount directories to other

machines, either on or off a local network. These directories can then be accessed as though

they were local. NFS uses a client/server architecture and consists of a client program, a

server program, and a protocol used to communicate between the two. The server program

makes filesystems available for access by other machines via a process called exporting. NFS

clients access shared file systems by mounting them from an NFS server machine. When

a file system is mounted, it is integrated into the directory tree and accessed as a different

mount point. One characteristic feature of NFS is the Virtual File System (VFS) and the

use of Vnodes which define operations on files.

Coda [32] is a file system for a large-scale distributed computing environment

composed of Unix workstations. It provides for high availability and performance by using

server replication which involves storing copies of a file on multiple servers. It also uses

disconnected operation, a mode of execution in which a caching site temporarily takes on

the role of a replication site. Clients cache most of the data needed to locate files. When a

connection to a server breaks down, the file system continues to provide the same service,

while at the same time logging the changes. On reconnection, it brings the server up to date.
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Security is achieved through Kerberos-like authentication and access control lists. Coda is

a descendant of AFS-2, but is more robust than AFS when it faces network problems and

server failures. The primary thrust of Coda is to support mobile computing. LOCUS [30]

is a Unix compatible distributed operating system which provides a single image of a file

system inspite of files being distributed among multiple machines.

Kosha [3] is a P2P enhancement to regular NFS. It aggregates free storage from

cluster nodes and desktop machines to form a low-overhead shared file system with NFS

semantics. It provides the best features of P2P storage such as replication, location trans-

parency, and load balancing, which are also the goals of Freeloader. It also provides basic

NFS functionality like hierarchical file organization, directory listings and file permissions by

builiding it on top of NFS. The main goals of Kosha compare well with those of Freeloader,

except that Freeloader does not provide common file system services and Kosha is targeted

more towards academic and corporate settings while Freeloader is targeted towards much

larger scientific data sets, and acts mostly as a cache space. With Kosha, performance is

measured in terms of overhead incurred for common file manipulation commands such as

copy, mkdir, grep and stat. In the case of Freeloader, a greater focus is placed on harnessing

idle disk bandwidth of workstations and maximizing client-side retrieval throughput.

OceanStore [12] is a global persistent data store designed to scale to billions of

users. It provides a consistent, highly-available, and durable storage utility on top an

infrastructure comprised of untrusted servers. It is similar to Freeloader in that it is not a

file system. Its main contribution appears to be the proposal of multiple groups of storage

service providers. Any computer can join the infrastructure and provide storage in exchange

for monetary compensation by subscribing to a service provider. Providers negotiate and

trade coverage and capacity amongst themselves, providing a quality of service superior

to any one company. OceanStore caches data promiscuously; any server may create a

local replica of any data object. These local replicas provide faster access and robustness

to network partitions. They also reduce network congestion by localizing access traffic.

Redundancy and cryptographic techniques are used to protect data from the servers on

which the data resides. The main contributions of this project which are relevant to the

Freeloader manager are the introspective method used for ensuring locality and the 2-tiered

approach used in routing messages. While this project is closely related to the Farsite

project, the Farsite project does not address a wide-area infrastructure.

A large number of parallel file systems have also been used in scientific facilites.
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Examples of these are GPFS (General Parallel File System) [33], Lustre [8] and PVFS (Par-

allel Virtual File System) [36, 4]. These file systems are well suited to scientific applications

since they use both striping and parallel I/O, and are capable of sustained high retrieval

rates. Freeloader is also expected to fit into such a setting by complementing these existing

systems. Freeloader serves to fully utilize free space on LAN workstations using a scaveng-

ing approach. It is also expected to serve the purpose of a scratch space for intermediate

results. Additionally, it reduces the load on existing parallel file systems. With data being

aggressively replicated and distributed, it serves as a highly available source of frequently

accessed data sets with the ability to deliver sustained throughputs.

Many P2P systems perform the same functions as Freeloader in terms of creating

distributed storage infrastructures for file sharing. Some examples are Gnutella [25], Kazaa

[26], PAST [11] and BitTorrent [9]. The Freenet project [7] is an adaptive P2P application

which pools together space contributions from different nodes to host shared data files.

Files are replicated based on their access frequency and proximity to the nodes making

the requests. They are also deleted from locations where they are in less demand. Future

versions of Freeloader which implement relocation and replication, may draw from ideas

used in Freenet. The main contribution of Freenet is that it uses cryptographic techniques

to maintain the anonymity of different parties involved in file transfers. Squirrel [22] is a

P2P web cache used for exploiting locality in web accesses by sharing the browser caches

of different desktops. When a reference is made to a web object contained in this shared

cache, it is retrieved from the cache instead of the original data source (web server).

The use of LRU-K cache replacement policy was motivated by the paper [28]. The

paper mainly deals with using the policy for database disk buffering. The cache dealt with

in the original paper is a buffer of popular disk pages. The replacement policy estimates

inter-arrival time based on the total time taken for the last K references. Another paper [27]

by the same authors proves the optimality of LRU-K among all algorithms which consider

the past K references using Bayesian statistics. In terms of general theory behind page

replacement, 2 papers [2, 14] serve as good references.



39

Chapter 7

Conclusions and Future Work

This thesis presented the manager component of the Freeloader project. An

overview of the goals and the architecture of the Freeloader project were presented. We have

also discussed the design of the manager and the client. Results indicate that the Freeloader

is a viable option for staging Gigabytes of data. Striping has proved to be very effective in

balancing load, exploiting parallel I/O, and optimizing space utilization on the Freeloader

cloud. The best performance of Freeloader is clearly better than that of GridFTP access to

GPFS and HPSS retrieval. The manager’s role in terms of registration of benefactors and

being a lightweight information server were discussed. A cache eviction policy suitable for

large, repeatedly accessed data sets was also presented.

Future work on the manager will focus on accounting for heterogeneous benefac-

tors. This involves striping intelligently according to the capabilities and the load of the

benefactors. Striping parameters - stripe width and stripe size will be chosen on-the-fly by

the manager for each new data set. We also plan to develop a cost model which effectively

captures the relative priorities of data sets and morsels. This would be used in the both the

replication and relocation policies. Using a common cost model would also help to integrate

these policies with the cache eviction policy. We also plan to develop predictive strategies

which help to “brand” or classify benefactors based on their performance histories, to help

make better data placement decisions. We are also researching potential optimizations in

the area of asymmetric striping, where greater stripe sizes are assigned to nodes closer to

the client machine. Security features will need to be incorporated before people are willing

to donate their workstations as benefactors. Work on the benefactor side mainly involves

finding throttling techniques to minimize the impact on native workload [34].
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