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Abstract

Scientific datasets are typically archived at mass storage sys-
tems or data centers close to supercomputers/instruments. End-
users of these datasets, however, usually perform parts of their
workflows at their local computers. In such cases, client-side
caching can offer significant gains by reducing the cost of wide-
area data movement.

Scientific data caches, however, traditionally cache entire data-
sets, which may not be necessary. In this paper, we propose a novel
combination of prefix caching and collective download. Prefix
caching allows the bootstrapping of dataset downloads by caching
only a prefix of the dataset, while collective download facilitates
efficient parallel patching of the missing suffix from an external
data source. To estimate the optimal prefix size, we further present
an analytical model that considers both the initial download over-
head and the downloading speed. We implemented our proposed
approach in the FreeLoader distributed cache prototype. Experi-
mental results (using multiple scientific data repositories and data
transfer tools, as well as a real-world scientific dataset access
trace) demonstrate that prefix caching and collective download
can be implemented efficiently, our model can select an appropri-
ate prefix size, and the cache hit rate can be improved significantly
without hurting the local access rate of cached datasets.

1. Introduction

The use of client-side caching as a means to expedite data ac-
cess is well known [16]. HTTP proxy caches have long been used
for Web-based document browsing (Squid [2], etc.). Content de-
livery systems such as Akamai [1] extend this by way of deploy-
ing numerous surrogate, edge-cache servers closer to end-users
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that host popular Internet content. In general, client-side caching
reduces servers’ bandwidth consumption and load, but more im-
portantly, reduces latency and increases client perceived through-
put. These benefits are even more evident for large media files in
HTTP downloads. In fact, it is reported that much of the useful-
ness of Web proxy servers—up to 80% for some installations—is
in exploiting the locality involved in cached objects [16]. To this
end, many proxy caches are part of cooperative cache hierarchies,
wherein neighboring caches inquire each other to serve client re-
quests (e.g., Squirrel cooperative desktop browser cache [22]).

In the scientific computing world, however, there lacks similar
support for powerful caching that utilizes distributed storage re-
sources to transparently accelerate accesses to remote data repos-
itories. Yet the need for such caching is becoming more evident
and urgent:

• Generally, scientific computing workflows are distributed.
Raw data is often generated/collected from shared super-
computers or experimental/observational instruments, while
end-users of these data perform analysis and/or visualization
at their home institutes. Expensive wide-area data move-
ment is necessary in such cases.

• End-users are not able to store all their data locally. This
is partly due to the ever increasing data volume in scien-
tific computing [20, 19]. Further, scientists prefer to archive
their datasets at shared repositories, such as the mass stor-
age systems (e.g., HPSS [15]) and data centers (e.g., SDSS
[38]). These systems often reside close to high-end com-
puting or instrument facilities, with convenient and fast data
transfer capabilities to and from the latter. They provide
large capacity, fault tolerance, and easy data sharing among
collaborators.

• There exists a performance “impedance mismatch” between
the rates at which end-user applications consume data lo-
cally and retrieve data from shared repositories. Despite the
performance improvement in recent years, wide-area data
transfers are the most common bottleneck in an end-to-end
scientific data processing workflow [44]. Besides, even if
available, high-speed transfer tools are required to be tuned
to obtain optimal throughput and such tuning is not com-
monplace yet [44]. Because direct streaming of remotely
archived data is unable to support the rate needed by data



processing applications—especially interactive applications
such as visualization—users typically move their datasets
manually to local secondary storage before performing their
data analysis.

• There is access locality in scientists’ data analysis. Scien-
tists often focus on newly retrieved datasets for a certain
period of time, typically days or weeks. In their analyses
they are also required to compare different batches of data to
study the impact of varied computation models, parameters,
or input. Limited by their local storage capacity, many sci-
entists end up manually swapping data from the archiving
repository, suffering the large latency and low bandwidth
multiple times.

Motivated by the above facts, several near-the-client caches for
scientific datasets have been put forth recently. These include ded-
icated deployments of large storage servers (IBP [35]), dedicated
deployment of distributed parallel storage servers (DPSS [45]),
and loosely-coupled, highly dynamic collaborative desktop stor-
age caches (FreeLoader [47]). These caches enable faster data ac-
cesses by storing “hot” datasets close to their users.

However, existing systems cache scientific datasets in their en-
tirety. In this paper, we show that doing so is not necessary, and
propose a novel combination of prefix caching and collective down-
load, two techniques originating from the multimedia data stream-
ing and parallel I/O fields respectively. Prefix caching allows the
storage of only partial datasets, while collective download allows
seamless and fast parallel downloads of the uncached suffix. In
particular, our proposed approach achieves efficient parallel data
retrieval from external scientific data repositories by issuing large,
sequential file transfer requests. It further maintains high local
cache access performance by rearranging the data for finer-grained
data striping. The upshot is an improved cache hit rate, without
compromising the user-perceived access rate of cached datasets.
Further, we demonstrate that given a dataset and its external data
sources, we can effectively predict the appropriate prefix size to
minimize its cache space consumption.

We study the above techniques within the context of the Free-
Loader distributed storage prototype [47], which aggregates un-
used desktop disk space into a cache/scratch space for scientific
datasets. In addition to performance benefits, the proposed combi-
nation of prefix caching and collective download also enables new
resource aggregation models. Our experiments using the Free-
Loader prototype and several scientific data repositories illustrate
that collective download can be implemented efficiently to enable
aggressive prefix caching. In addition, our trace-driven simulation
using a real-world scientific dataset access log reveals that with
the performance of today’s data repositories, prefix caching can
significantly improve the caching performance.

The rest of the paper is organized as follows. Section 2 gives a
brief introduction on the FreeLoader system, and surveys related
work. Section 3 presents our proposed approach and Section 4
discusses its implementation. Section 5 discusses performance re-
sults and Section 6 summarizes the contributions of the paper.
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Figure 1. FreeLoader’s client dataset retrieval
throughput with different stripe widths.

2. Background

2.1 The FreeLoader Storage System Prototype

FreeLoader [47] is a near-the-client network data cache that
aggregates donated storage from collaborating user workstations
into a single storage cache. FreeLoader aims to aggregate both
distributed storage resources and I/O as well as network band-
width. Workstation owners within a local area network donate
unused disk space, and FreeLoader stripes datasets onto multiple
such workstations to enhance data access rates. It stores large,
immutable datasets by fragmenting them into smaller, equal-sized
chunks, which are scattered among the storage nodes. This en-
ables each researcher in the group to process the raw datasets as if
they reside on a high-performance shared file system, increasing
collaboration and reducing expensive downloading operations.

Within each FreeLoader instance, a dedicated manager node
maintains metadata such as node status, chunk distribution, and
dataset attributes including the primary copy location (URI and, if
necessary, authentication related metadata). Such metadata enable
transparent suffix patching of datasets from their primary copies.
A participating workstation may be a storage node that donates
disk space along with I/O and network bandwidth, or a client node
that stores/retrieves data from the FreeLoader space, or both. Data
storage and retrieval are initiated by the client via the manager,
while the actual transfer of data chunks occur directly between the
storage nodes and the client.

Figure 1 demonstrates FreeLoader’s data access performance
by showing the client-side dataset retrieval rate using different
stripe widths and dataset sizes. The experiments were performed
on a client workstation with a Gbit/s network interface and a group
of storage nodes with mixed interfaces (Gbit/s or 100Mbit/s). The
client’s Gbit/s network configuration is meant to capture scien-
tists’ high-end desktop workstations with good connectivity for
scientific data processing. Figure 1 shows that in such an envi-
ronment, storage space aggregation through striping brings not
only increased capacity by utilizing other workstations’ unused
disk space, but also increased performance by aggregating I/O



and network bandwidth at the distributed machines. Even when
users can accommodate datasets at their own workstations, stor-
ing such data in an aggregated cache like FreeLoader will deliver
an I/O throughput (as high as 88MB/s with a stripe width of 10)
significantly better than local disk I/O throughput (typically 30-50
MB/s). Finally, results reported earlier [47] revealed that striping
is also an effective way to reduce FreeLoader’s performance im-
pact on space donors’ native workloads.

2.2 Related Work

Prefix caching [21, 40] techniques have been proposed and im-
plemented for multimedia streaming protocols such as the IETF
Real-Time Streaming Protocol [37] that is built on HTTP. Prefix
caching is well suited for Web multimedia objects since it reduces
the latency, startup delay, and jitter involved in streaming media
files. However, if the streaming protocol itself is not inherently
parallel, HTTP prefix caching cannot exploit the residual band-
width that might be available between the proxy cache and the
server. Also, HTTP prefix caching—or for that matter, HTTP
caching in general—needs to address consistency issues that are
endemic to Web data objects [40]. Our work applies prefix caching
to scientific data storage/access, and leverages the parallel transfer
capability offered by tools such as GridFTP [8, 9], HSI [18], and
LoRS [34].

Middleman cache for video files on the Web is similar to our
effort [6]. It is a cooperative proxy cache built from client work-
stations. However, it only exploits collaborating workstations for
aggregate space and not for improved bandwidth. Another similar
project on Internet streaming uses a combination of network band-
width estimation between the client, cache and server to optimize
media delivery [23]. We use similar information to determine the
ideal prefix size.

Scientific data caches like IBP [35], DPSS [45], and HPSS-disk
caches [15] all provide techniques to accelerate data accesses by
offering dataset caching. However, they support only entire dataset
caching and perform cache management by enforcing user quotas.
Moreover, users explicitly have to create space for new incoming
data by deleting datasets that they no longer require. In brief, cache
replacement is not dynamic and is left to user discretion. HPSS
disk caches is an exception to this since the cache—a collection of
disks atop high-latency tapes—is a staging area for most recently
accessed datasets on a per-user basis. Our proposed approach can
potentially be used by the above systems for better cache space
utilization, especially when parallel data transfer is available in
retrieving uncached data.

Also related is middleware such as Storage Resource Manager,
SRM (e.g., Storage Resource Manager, SRM [32, 41]). SRM pro-
vides an interface between caches and mass storage systems by
queuing requests, negotiating transfers and handling failure, etc.
Several science communities (e.g., climate [3, 4] and high energy
physics) provide access to archival data to a distributed community
using such systems (e.g., Earth System Grid, ESG [4]). However,
SRM does not perform partial caching and is itself not a cache.

To a certain extent, our work is similar to BitTorrent-style peer-
to-peer content distribution systems [10], in the sense that a node
may be serving data while retrieving missing data from others.
However, our approach targets a much less dynamic system, with
predictable data flows (remote data repositories to local cache to
clients), centralized control over the cache content, and tightly
coupled parallel data transfer.

Our collective download approach resembles the collective I/O
technique extensively studied in the parallel I/O field and widely
used in parallel simulations [11, 25, 31, 39, 43]. Collective I/O at-
tacks the I/O performance problem caused by a mismatch of data
distribution in memory and in files by consolidating small, scat-
tered I/O requests into large, sequential ones. Although collective
I/O has been used in conjunction with wide-area data migration
[27, 26], it was applied to the local staging step only. We extend
this approach to parallel download, by issuing a small number of
large, sequential partial file transfer requests, in order to achieve
better overall downloading performance.

Note that the term “parallel download” often means download-
ing in parallel from multiple remote source copies. There have
been previous studies on this subject in the context of co-allocated
download for GridFTP [46], IBP [34], or regular Internet down-
loads [13, 36]. In this paper, “parallel download” means multiple
nodes each using a separate stream to download parts of a file from
a common source copy simultaneously. These two techniques are
orthogonal and can potentially work together. One recent study
particularly relevant to our work investigated optimizing parallel
large file transfers between two sites where each site deploys data
striping [48]. In contrast, our approach assumes no knowledge on
the data distribution at the data sources (servers).

Finally, predictive prefetching is a widely researched topic to
improve WWW as well as cache performance [33, 24]. This can
also be applied to data caches when hints about user access pat-
terns are available a priori or when such patterns can be automat-
ically detected. In this paper, however, we focus on sequential
access patterns.

3. Methodology and Rationale

3.1 Prefix Caching for Scientific Datasets

With prefix caching, only an initial portion of each dataset is
stored in the cache. It allows us to “bootstrap” the data download
process with the in-cache prefix. It is a lazy method in the sense
that complete retrievals are not initiated until datasets are actually
accessed: the cached prefix is served to the client while at the
same time the missing suffix is fetched and patched transparently
from the original data source. Even then, the retrieved suffix is not
permanently stored in the cache.

Prefix caching for scientific data is made feasible due to sev-
eral facts and trends regarding both data-intensive analysis and file
transfer tools. First, as mentioned earlier, datasets are almost al-
ways safely archived at an external primary source (tapes, Internet
databases, parallel file systems). These relatively stable reposi-
tories provide reliable data sources for access-time suffix patch-
ing in order to seamlessly patch the suffix of the dataset. Second,
scientific datasets, especially raw data archived at shared storage
repositories, are usually write-once-read-many. Thus, consistency
between the partially cached copy and the primary copy is not a
big concern. Third, scientific data analysis often has a sequential
access pattern (e.g., in file scans for statistical analysis or mining,
time-series visualization processing to generate movies from sim-
ulation output, and biological sequence alignments against large
sequence databases). Finally, several bulk scientific data move-
ment tools (such as HSI, GridFTP, and LoRS) support the ability
to fetch partial files (specified by the starting offset and extent),
directly facilitating efficient suffix retrieval.



By overlapping in-cache data access with data retrieval directly
from the primary copies, prefix caching helps in maximizing space
utilization and increasing cache hit ratio by offering a virtual cache
that appears to be larger than the physically available cache space.
Compared to caching entire datasets, users enjoy higher hit rate
without suffering degraded data retrieval performance while ac-
cessing cached datasets.

To hide the cost of suffix patching, a sufficiently large enough
prefix of the dataset should cached. The desired prefix size is de-
termined based on four parameters: the size of the dataset, the
in-cache data access rate, the suffix patching rate, and the suffix
patching initial startup latency. Consequently, the ideal prefix de-
pends on the internal and external environments. The following
model determines the size of the prefix, Sprefix, necessary to en-
sure that the uncached suffix will be fetched in time to deliver the
same local access performance as if the entire dataset were cached.
It assumes sequential access from the client, which as explained
earlier, is often true for scientific data processing.

Suppose the dataset size is S and the in-cache client access rate
afforded by the distributed cache is Rclient. The cost of parallel
patching from the external data source is formulated into two parts:
the initial size-independent overhead L (which includes the costs
of creating the connection, authentication, loading the file from
tape systems, etc.), and the size-dependent cost of parallel data
transfer at the aggregate rate Rpatch.

We assume that Rpatch < Rclient, which means the client
fetches data from the local cache faster than directly from the ex-
ternal data source—implying the need for a cache. Given the client
access rate, we know how much time we have to patch. The equa-
tion below equates client access time and the time of the two com-
ponents of patching,

S

Rclient

= L +
S − Sprefix

Rpatch

.

Solving for the prefix size, we get

Sprefix = S

„

1 −
Rpatch

Rclient

«

+ LRpatch.

With this model, the appropriate prefix size can be calculated
for each individual dataset, taking into account the external source
storing its primary copy. Parameters such as L and Rpatch for
each data source can be stored at the cache manager as a part of
the metadata. As the total number of scientific repositories for a
dataset is limited, the time and effort required to benchmark and
save such parameters should not be significant. In addition, these
parameters can be derived from actual dataset imports and suffix
patches, enabling the prefix size prediction to adapt to changes in
the remote storage systems and in networking hardware/software.

3.2 Collective Download

In this section, we discuss optimizing the parallel prefix patch-
ing process to enhance the aggregate patching rate Rpatch. Our
approach is inspired by the collective I/O strategy used in parallel
I/O libraries, which aggregate small, non-contiguous I/O requests
into large, sequential ones to achieve better file read/write perfor-
mance. Such an aggregation is necessary since the way data is
partitioned in distributed memories often forces processors to is-
sue many disjoint file system requests (e.g., a 2-D array distributed
in a BLOCK manner across processors but written in row-major
order in a shared file). In parallel I/O libraries, collective I/O is

typically done by performing client-side inter-processor commu-
nication to exchange data (called shuffling or data reorganization
[30]).

We face a similar problem in suffix patching when the cache
stripes data across multiple nodes. For better local sequential ac-
cess performance, it is preferred that data be striped at a relatively
fine granularity (say hundreds of KBs to several MBs). This is
so that the I/O and network bandwidth at the participating nodes
can be effectively aggregated. On the flip side, for better down-
load performance from external data sources, it is beneficial if each
patching node issues a small number of large requests. Note that
in the parallel I/O context, “several MBs” is considered a large
request size, which is already many times a typical file system’s
block size. For example, the default aggregated I/O request size is
4MB in the widely used ROMIO implementation of MPI-IO [43,
42]. However, such a request size is unable to exploit today’s pop-
ular scientific data transfer tools, as we will show in Section 5.
This may be attributed to several factors, including the less pre-
dictable data transfer bandwidth, the higher per request overhead
at certain data sources (such as a tape system), and the fact that
protocols/tools such as GridFTP and HSI are designed and tuned
for bulk data transfer.

To alleviate the problem, we propose collective download that
allows the patching node to issue large partial file retrieval requests
from the external data sources. Simultaneously, the downloaded
data is shuffled locally for a rearranged layout, conforming to the
smaller stripe size used in the distributed cache. It is not difficult
to pipeline the data shuffling with data download, so the cost of the
faster operation is hidden. Further, parallel data download and data
shuffling can be interleaved with serving data stripes to the client.
Implementation details will be discussed in Section 4.2. Through
our experiments, we have found that for large datasets, the retrieval
request size should be in the order of hundreds of MBs.

3.3 New Architecture for Desktop Resource Ag-
gregation

Besides its performance advantages, combining prefix caching
with collective download enables a new architecture for aggregat-
ing unused resources in distributed desktop environments.

Existing resource stealing/aggregation systems have focused
on harnessing idle CPU cycles (e.g., Condor [29] and Entropia
[14]) or unused disk space (e.g., Farsite [7], FreeLoader [47], and
Kosha [12]). With prefix caching, we allow a distributed cache
built atop donated disk space to utilize nodes that are willing to
share their network bandwidth but not storage space. These nodes
will be enrolled as dedicated patching nodes, as opposed to stor-
age nodes that contribute persistent storage resources. This helps
attract more participants to join the distributed cache, for exam-
ple, nodes with limited secondary storage space but good network
connectivity.

With this architecture, dedicated patching nodes only perform
parallel downloads from external data sources, allowing suffix data
to be streamed without being stored persistently. Storage nodes, on
the other hand, will store stripes of prefix data and their donated
space will be managed by a cache replacement policy.

For optimal performance, collective download should be car-
ried out in memory at the patching nodes. As in parallel I/O li-
braries, data shuffling itself can be conducted incrementally with
a relatively small additional buffer space. Therefore, the partial
file retrieval request size also indicates the memory space required
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Figure 2. Prefix caching environment with
storage nodes and dedicated patching nodes

to buffer the retrieved data. In the resource stealing scenario, this
imposes an additional constraint on the file retrieval request size.
In a separate study, we have found that when both the native work-
load on a donated machine and the foreign workload (in this case
suffix patching and serving data to the client) are both memory-
intensive, the paging caused by memory contention will have a
significant impact on both workloads [17]. While it is desirable to
maximize I/O request sizes, in our experiments we used 256MB
as the largest size to reduce the likelihood of memory contention.

Figure 2 depicts the new resource aggregation architecture en-
abled by prefix caching. When a partially cached dataset is re-
quested by a client, the storage nodes, which donate both persistent
storage resources and transient bandwidths, will serve the cached
prefix. Meanwhile the dedicated patching nodes, which donate
bandwidths only, will stream the suffix from external data sources.

4. Key Design and Implementation Issues

4.1 Cache Management and Dataset Access

We implemented the prefix caching and collective download
approach in the FreeLoader prototype, introduced in Section 2.1.
When a partially cached dataset is accessed, the manager passes
the chunk distribution map to the client and allows it to start re-
trieving the cached prefix from the appropriate storage nodes. Mean-
while, p patching nodes are selected, first among those specialized
patching nodes, who elect to donate network bandwidth but not
disk space. If there are not enough such nodes, the manager will
enlist storage nodes too, preferably those who are not serving data
at the moment. Since data is striped in a round-robin manner, the
manager can decide the chunk distribution map for the suffix and
communicate it to the client. The suffix retrieved by the patching
nodes will be discarded after the client finishes the access.

When a dataset is initially imported into the cache, we choose
between two strategies depending on the cache space availability.
When there is enough empty cache space to accommodate the new
dataset, the dataset is cached in its entirety. When cache eviction
is needed, however, only a prefix of the new dataset will be striped

to the storage nodes. The size of this prefix is calculated using the
model given in Section 3.1. This way, a small working set will
automatically result in the caching of entire datasets.

Our cache eviction is based on LRU, but extended for prefix
caching. More specifically, each dataset is evicted from its tail. If
there are datasets whose cached part exceeds the prefix size nec-
essary (again according to the prefix size prediction model), we
select victims using LRU and evict chunks from each dataset to
keep only the desired prefix size. When no such datasets exist and
still more chunks are needed, we evict dataset (the cached pre-
fix) victims, one after another, again by LRU. Note that even a
dataset whose cached prefix is shorter than the desired level, when
accessed again, can be served with our patching scheme, though
performance penalty may be observed by the client.

4.2 Collective Download and Patching Implemen-
tation

We have implemented collective download using a combina-
tion of large downloads and concurrent shuffling of the down-
loaded data. As described in Section 3, the large downloads are
performed to increase the downloading rate from external data
repositories. The resultant data is required to be shuffled locally—
among the p patching nodes—according to local striping policies
to optimize client accesses to the cache. For instance, FreeLoader
uses a default 1MB chunk as the basic unit of striping, whereas
remote downloads perform best at a granularity of hundreds of
megabytes.

At the beginning of each collective download operation, a ses-
sion is established between the patching nodes and the external
data source. Many remote sources assume downloads occur in an
interactive session that includes authentication, such as GridFTP
servers using UberFTP client [5] and HPSS using HSI [18]. In
our implementation, the patching nodes use Expect [28], a tool
specifically geared towards automating interactive applications, to
establish and manage these interactive sessions. We instrumented
the FreeLoader patching framework with Expect so that authenti-
cations and subsequent partial retrieval requests to a remote source
can be performed over a single stateful session. This implementa-
tion mitigates the effects of authentication and connection estab-
lishment by amortizing these large, one-time costs over multiple
partial file retrieval requests.

During shuffling, each patching node sets up TCP connections
to their peers involved in the patching process, to send and receive
chunks from the downloaded data. With a patching width of p, ap-
proximately (p − 1)/p of a patching node’s downloaded data has
to be sent to its peers. Therefore, for a reasonable patching width
(one that at least matches the cache’s stripe width to ensure good
client access throughput), a substantial amount of data is shuffled.
Thus, it is important to optimize the performance of shuffling and
to efficiently overlap it with the download. In our implementation,
we use separate threads to perform the download and shuffling
(which is not the case in popular collective I/O libraries due to
MPI thread-safety concerns). As downloaded data arrive, nodes
immediately start re-distributing chunks to other patching nodes.
They will concurrently serve chunks to the client if requested by
the latter. The shuffling process is accomplished in memory to
expedite data redistribution and to motivate bandwidth-only con-
tributions from donors.



Figure 3. Testbed setup

5. Performance Results

This section presents performance results measured from our
FreeLoader testbed using multiple external data sources, as well
as from a trace-driven simulation.

5.1 Testbed Configuration

Our testbed (Figure 3) depicts a scientist’s HPC research en-
vironment with a powerful, well-connected local client machine,
with access to external data sources such as parallel file systems
and mass storage systems.

We installed the FreeLoader storage cache in this setting to
study its ability to patch datasets from external data sources in
a transparent manner. Our testbed spreads across Oak Ridge Na-
tional Laboratory (ORNL) and the TeraGrid (a Nationally deployed
Grid infrastructure). It consists of the following components.

1. Remote data sources where scientists store and/or share pri-
mary copies of their datasets (identified by the protocol name
and the location of the source). The HPSS [15] archival stor-
age system at ORNL (HPSS-ORNL), with 365PB of tape
storage accessed through HSI. GridFTP servers, enabling
access to parallel file systems on the TeraGrid sites, ORNL
(TeraGrid-ORNL) and Pittsburgh Supercomputing Center
(TeraGrid-PSC). We used the UberFTP client interface to
access the GridFTP servers. Figure 3 also shows the con-
nectivity of these remote data sources to the ORNL subnet,
which results in varied patch bandwidth.

2. The FreeLoader cloud at ORNL contains aggregate storage
of 0.5TB on 13 storage nodes (donating 7-60GBs each) and
one manager. These donated machines have dual Pentium
III, Linux 2.4.20-8 kernel, and mostly 100Mb/sec Ethernet
connection. The storage nodes are equipped to patch from
the remote sources using appropriate protocols as well.
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Figure 4. Parallel download rates
3. A client machine at ORNL with Dual AMD Opteron, Linux

2.4.21 and GigE, running the FreeLoader client component.
It is at most five hops away from any of the storage nodes in
the FreeLoader cloud.

In this paper, all the experiments performed with the above
testbed use a dataset size of 2.5GB. The results reported are the
averages of 3 or more tests (with no significant variance observed).
Further, for HPSS, we consider ”cold” accesses (i.e., retrieving a
dataset from the tape). Even though HPSS has high-speed disk
caches atop tapes, such caches can only accomodate a small por-
tion of the tape capacity and are typically shared by a large group
of users.

5.2 Collective Download Performance

Figure 4 shows the parallel download rate from each of the



Download Download
& shuffle

Client access

HPSS 13.6 12.3 -9.6% 11.7 -4.9%
Tera-ORNL 79.7 75.1 -5.8% 74.7 -1.3%
Tera-PSC 21.9 20.2 -7.8% 20.0 -1.0%

Table 1. Collective download performance,
MB/s (patching width = 10, partial file request
size = 256MB)

external data sources. The results are collected using a chunk size
of 1MB (which is also the stripe size) when storing the dataset in
the FreeLoader space.

For each data source, we report the impact of varying two pa-
rameters: the remote I/O request size and the patching width (PW,
the number of patching nodes performing parallel patching). Here
the remote I/O request size is the size of each contiguous par-
tial file retrieval request made by a patching node. For parallel
downloading, the file is partitioned among the patching nodes in
a round-robin way, at the unit of the remote I/O request size. The
patching nodes will perform data shuffling to re-stripe the down-
loaded data among themselves to have a stripe size of 1MB. There-
fore, with a remote I/O request size of 1MB, no data shuffling is
necessary.

Figure 4 clearly indicates the need for collective download. For
all three data sources, significant improvement in the aggregate
download performance can be achieved by using a larger request
size. For example, at a patching width of 10, the throughput in-
crease ranges from 55% (TeraGrid-ORNL) to 114% (TeraGrid-
PSC) when using a request size of 256MB instead of 1MB. This
means collecting the target file requests from patching nodes into
fewer larger requests delivers much higher overall download per-
formance. The desired request size, however, varies between dif-
ferent data sources. For TeraGrid-ORNL, it seems a request size
of 64MB suffices. For the other two data sources, a larger request
size is desirable, although in our implementation we keep the re-
quest size below 256MB for memory space concerns, as explained
in Section 3.3. This result suggests that using a larger request
size might be beneficial for a high-latency protocol/storage sys-
tem. Benchmarking results shown in Figure 4 can be also saved
as part of the management metadata to select a sufficiently large
partial file request size for an individual data source, while mini-
mizing the memory usage at patching nodes.

For all the data sources, parallel download appears to scale with
patch width. The aggregate throughput steadily increases as more
nodes are involved in the download. Limited by our testbed re-
sources, we stopped at a width of 10, to match the best FreeLoader
stripe width observed from our experiments (Figure 1). With a
larger FreeLoader deployment and more patching nodes, it may
be helpful, especially for the slower data sources, to have a patch-
ing width that is a multiple of the desired FreeLoader stripe width,
to work in groups on disjoint segments of the suffix.

Table 1 shows the performance of collective download, with a
patching width of 10. For each data source, we plot the aggregate
throughput for three types of operations: (1) “download,” where
each patching node simply download its assigned portions of the
dataset, (2) “download and shuffle,” where the patching nodes also
exchange their downloaded data, and (3) “client access,” where
the patching nodes serve the downloaded and shuffled data to the

Data Source HPSS-ORNL Tera-ORNL Tera-PSC
Rclient (MB/s) 52.2 52.2 52.2
Rpatch (MB/s) 7.6 42.0 10.8

L (s) 31.4 3.0 3.9
Predicted ratio 95.0% 24.6% 81.0%

Table 2. Prefix prediction parameters and re-
sults

client, with a stripe size of 1MB.
The results demonstrate that collective download can be im-

plemented efficiently. When data shuffling is added, it overlaps
well with the parallel download and the maximum decrease in the
aggregate throughput is 9.6% (HPSS-ORNL). Further, when the
patching nodes have to serve data to the client, the performance
reduction from the previous step, “download and shuffle”, is even
smaller. Note that the client access rate here indicates the user-
perceived cost of retrieving the entire dataset from the external
source (with a 0% prefix cached).

5.3 Prefix Size Prediction Model Verification

In this section, we verify the prefix size prediction model given
in Section 3.1. Also, in this group of experiments, we test the
new architecture described in Section 3.3, where two groups of
donated machines assume the roles of storage nodes and patching
nodes respectively. Limited by our testbed, we assigned 6 nodes to
be storage nodes, who contribute persistent storage resources and
store the cached prefix of datasets. Another 6 nodes are assigned
to be patching nodes, who contribute bandwidths.

First, we collect the required parameters from the above test
configuration. Table 2 summarizes the parameter values and the
predicted prefix ratios. The client access rate Rclient measures
the client’s throughput of accessing an in-cache dataset (striped at
6 storage nodes) and is therefore independent of the data sources.
Rpatch is measured using 6 patching nodes, who perform down-
loading plus shuffling. L is measured by timing the overhead of re-
trieving a 0-byte file from the data sources. With these parameters,
we calculate the predicted prefix ratio (percentage of the dataset
size) for each data source.

Figure 5 verifies the above predicted prefix ratios against the
measured client access rate at a series of prefix ratios. At each
given prefix ratio, the prefix is stored at the 6 storage nodes, and
the suffix is patched by the 6 patching nodes. The three curves il-
lustrate the impact of the increasing prefix ratio on the client access
rate. As expected, the rate gradually approaches the maximum rate
(the rate measured with a prefix ratio of 100%, i.e., with the entire
dataset cached). Ideally, the predicted prefix ratio (indicated by
the vertical lines) should be at the saturation point of each curve.

From Figure 5, we can see that our prediction model works
fairly well. For TeraGrid-ORNL, the model predicts a prefix ra-
tio of about 25%, while the actual saturation point is located be-
tween 30% and 35%. For TeraGrid-PSC, the model predicts 81%,
while the actual saturation point is between 80% and 85%. For
HPSS-ORNL, the model predicts 94% while the actual saturation
point is between 95% and 100% (which indicates that for slow
data sources with a high predicted prefix ratio, caching the entire
dataset is a good choice). Even with the largest error (TeraGrid-
ORNL), the client access rate achieved is 90% of the saturated
performance.

The result does show that our prediction model appears to be
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Figure 5. Client access rates at varied prefix
ratios. The vertical lines mark the model pre-
dicted prefix ratio for the data sources.

consistently optimistic. Our speculation is that the benchmarking
of Rpatch may have obtained higher numbers since the tests were
conducted on the patching nodes without having the storage nodes
perform data serving simultaneously. This may result in a lower
local network traffic than in the model verification test. However,
the assignment of patching nodes is dynamic anyway, hence de-
termining a perfect prefix size according to the accurate patching
rate does not seem practical.

The prefix size is large for high-latency data sources and small
for low-latency sources. However, if a set of clients can be satisfied
with 80% of the full bandwidth or cannot sustain maximum pos-
sible bandwidth, we can cache 75% of the dataset (say, for HPSS-
ORNL) and still not impact client perceived throughput.

5.4 Simulation Results: The Impact of Prefix
Caching on Cache Hit Rate

We perform a trace-driven simulation to evaluate the impact of
prefix caching on the cache space utilization. Our simulator takes
as input a dataset access trace, and manages the cache using the
caching strategies described in Section 4.1. The access trace we
used is a real-world trace containing the Jefferson Laboratory re-
searchers’ access log to the high-energy physics data hosted at the
Jefferson Lab Asynchronous Storage Manager (JASMine). Due to
its large size, we filtered the trace to include datasets with a size of
at least 2GB, considering that users will be more interested in stor-
ing larger datasets in a distributed cache. The filtered trace spans
19.1 days and has 4000 entries accessing 1686 unique datasets.

Figure 6 plots the cache hit rates at different prefix ratio levels.
To illustrate the impact of the prefix ratio, the same prefix ratio
is applied to every dataset (a cache storing datasets from differ-
ent data sources will apply different prefix ratios to them). The
“1.0” curve corresponds to the original caching strategy storing
entire datasets. The results reveal that with scientists’ real access
patterns, prefix caching may result in a dramatic improvement in
cache hit rate, and allows a cache to reach the maximum perfor-
mance allowed by the access pattern with a much smaller total
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Figure 6. Cache hit rates at varied prefix ratios
using the Jasmine trace

cache space. Considering the data sources used in our testbed,
faster sources (such as TeraGrid-ORNL) that allow a prefix ratio
of around 30% will observe an improvement between the “0.2”
curve and the “0.4” curve in cache hit rate (up to 308% and 176%
with a prefix ratio of 20% and 40% respectively). Even a signif-
icantly slower data source, TeraGrid-PSC, will receive an up to
76% improvement in hit rate with a prefix ratio of 80%. Finally,
the expected cache hit rate improvement will grow as the high-
end computing network infrastructure and file transfer tools are
enhanced.

6. Conclusions

This paper demonstrates the design and implementation of pre-
fix caching plus collective download for caching large scientific
datasets. We have shown that prefix access can be effectively
overlapped with suffix patching from external data sources. Mean-
while, by merging small remote file retrieval requests into larger
ones and performing local data shuffling, we can achieve high
performance in both dataset downloading performance and local
cache accesses. The combination of the above techniques obvi-
ates the need for always caching large datasets in their entirety,
and improves the overall cache space utilization. We also demon-
strate that the desired prefix size for individual data sources can
be predicted fairly accurately using an analytical model. Further,
we argue that our proposed solution enables new resource sharing
models. We summarize our contributions in this paper as follows.

• We proposed novel novel techniques to overlap remote I/O
with cache I/O and demonstrated the usefulness of collec-
tive I/O in bulk data transfer from high-end scientific data
repositories.

• We designed and built the prototype prefix caching architec-
ture in the context of our FreeLoader collaborative desktop
cache environment.

• We performed both experimental as well as simulation stud-
ies, using multiple scientific data repositories and a real-
world scientific data access trace, to evaluate our proposed



approaches and model.
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