Tool-Based Approach to Distributed Database Design:

Includes Web-Based Forms Design for Access to Academic Affairs Data

David A. Owens
System Engineer
Lockheed Martin Mission Systems
9970 Federal Drive
Colorado Springs, CO 80921

(719) 277-4896
dave.owens@Imco.com

ABSTRACT

This paper describes a tool-based approach for designing and
prototyping a distributed database application. This approach
is demonstrated for an Academic Affairs Information System
(AAIS) to assist the Webster University main campus and its
70+ remote sites in managing the information required to admit
students, approve programs, schedule courses, assign faculty,
register students, and generate the required queries and
reports.

ORACLE® Relational Database Management (RDBMS) tools
and products for Windows NT® were used to support AAIS
requirements analysis, design, and prototype implementation.
The Designer/2000® Process Modeler tool was used to
document the top-level business functions, and the Data
Modeler tool was used to develop a third normal form data
model. The Developer/2000® Forms tool was used to
prototype several user interface forms for main campus staff,
remote staff, and students to enter and update student and
program data. A Web Server was also installed, along with the
Java software and AppletViewer, to test the prototype forms
from a Web Browser.

Keywords

Distributed, Database, ORACLE®, Web, and Academic
Affairs.

1. INTRODUCTION

This paper proposes an automated Academic Affairs
Information System (AAIS) to allow a more efficient exchange
of information between the Webster University main campus
and its remote sites. Webster University is composed of a main
campus in St. Louis, MO., and over 70 remote sites in the U.S.,
Europe, and Asia. [10] The Webster Academic Affairs group is
responsible for student admissions, student registration,
course scheduling, and faculty assignments. Webster currently
maintains Academic Affairs information on a mini-computer at
the main campus.

Preprint: ACM Proceedings Symposium on Applied
Computing San Antonio TX, Feb. 28 — Mar. 2, 1999

Frederick T. Sheldon

Department of Computer Science
University of Colorado, Colorado Springs
1420 Austin Bluffs Parkway
Colorado Springs, CO 80918

(719) 262-3327
fsheldon@mail.uccs.edu

The remote sites mail or fax local student and faculty
information to the main campus, and the information is
manually entered into the main campus computer. Some of the
remote sites also enter the same information into a Dbase I+
application to support local operations. The upgraded AAIS
will automate the current manual process for information
distribution. It will be used by the main campus and remote
sites to admit students, schedule courses, assign faculty,
register students, and generate required queries and reports.

1.1 Known Solutions

One option is to expand the mini-computer at the main campus
to a central database server of sufficient power and
connectivity to service all of the remote sites. While a central
mainframe server is a simple, effective design, there are several
shortfalls with this approach. For example, hardware
maintenance costs, network traffic, development costs,
scalability, availability, and responsiveness to remote site
needs are significant disadvantages of a centralized approach.

Another option is to use network computers (NCs) at the
remote sites to access high-end servers at the main campus via
the Internet. This option is similar to the first option in that
application software and data would be maintained at the main
campus server. The remote site NCs typically use a compact
operating system that can be booted from the server, and
downloads Java applications from the server. The operating
system hosts a Web browser, which launches the Java Virtual
Machine when a Java application is downloaded.

A NC approach may lower the cost of ownership, because all of
the software is controlled and implemented by the main
campus. However, this approach is less flexible in responding
to new requirements, or customization requested by the remote
sites. Additionally, Java is an interpreted language, which
runs slower than compiled programs. Performance of this
approach is a concern, as well as network traffic and
availability.

A distributed client/server architecture is a third option. With
this approach, a small-to-medium size database server could be
used at each remote site to provide data services to multiple
local clients, to include local student home computer clients.
Servers of this class are currently resident at most of the remote
sites, and there are plans to network these servers together.
Once the data servers are networked together, the distribution
of Academic Affairs data between the main campus and the
remote site servers could occur.

This approach should provide good scalability, availability,
and performance at the remote sites without upgrading to high-
end servers. The amount of long-haul network traffic would
also be less than the other two options. This approach is also
more flexible in providing standardized software to manage
Academic Affairs data, while being responsive to the
customization needs of the remote sites. However, a significant
design issue with this approach is maintaining data
synchronization between the main campus and the remote sites.
This approach may also be more expensive because of local
system administration and COTS license requirements.

The factors that were considered most significant in
recommending a distributed client/server database approach for
the AAIS included:

¢ The desire to place frequently referenced data close to
client applications that need to reference it, thus
minimizing network or server load and access time.

¢ A reduction in the impact of a single point of failure such
as a central server going down.

1.2 Project Scope

A tool-based software system engineering process consistent
with the first cycle in the Boehm Spiral Development Model
was used to analyze, design, and implement a prototype
distributed database design capable of supporting AAIS
functions at the main campus and the 70+ remote operating
locations. [8] The prototype design allowed assessment of the
risks of using a distributed database, as well as refinement and
clarification of Academic Affairs operational requirements. A
top-level system design for the prototype is shown at Figure 1.

70 + Other Remote Sites

Colorado
Remote Site ~ =

St. Louis
-¥ain Campus =~
- e

ide Area Network

| | | Forms Forms | | |
D o 5 ~mo B =
Ly L4 ¢4 Ly L4 Ly

Clients Clients

Local Area Network Local Area Network

Figure 1. Top-Level System Architecture

2. ANALYSIS PHASE

Designer/2000 tools were used to model the AAIS top-level
functions and business processes for the main campus and the
remote sites. The following is a list of top-level AAIS
functions:

Remote Site Staff Functions
e Advise/Assist Students

¢ Schedule Classes
e Assign Faculty

Student Functions

e Apply for Admissions

¢ Register for Courses

¢ Complete Program Plan

e Pay Admissions/Registration Fees

Main Campus Functions

¢ Process/Approve Admissions

* Review/Approve Program Plans

* Review/Approve Course Schedules

* Review/Approve Faculty Assignments
* Collect/Process Student Payments

e Pay Faculty

The Designer/2000 Process Modeler supported the analysis
and documentation of AAIS functional requirements. It was
used to develop a functional model containing the AAIS
business functions and activities, to include the inputs,
outputs, flow of work, timelines, and organizational units
performing the activities, performed at the main campus and
remote sites.

Another Designer/2000 tool used during the analysis phase
was the Data Modeler. This tool was used to create the initial
AAIS data model containing the data entities, attributes, and
relationships necessary to perform the functions and activities.
The initial data model was a third normal form (3NF) model
with the following characteristics:

* All repeating data attributes were removed and placed in a
new (related) table.

¢ All non-key data attributes were dependent only on the
primary key, and not some other non-key attribute.

The Data Modeler tool was also used to design and document
many of the AAIS business rules using primary and foreign
keys, datatypes, check constraints, and indexes. The AAIS
data models generated with this tool were not included in the
paper due to limited space. [3, 7, 9]

3. DESIGN PHASE

Using the initial data model developed during the analysis
phase, a physical data model was produced using the
Designer/2000 Server Generator tool for implementation on an
ORACLE® 7.3.3 Relational Database Management System
(RDBMS) for Windows NT®. The physical data model
included the table (or entity) definitions, column (or attribute)
definitions, and the relationships between the entities. [1, 3, 7]

The initial 3NF model was iteratively refined, and in some
cases the model was denormalized for performance reasons. For
example, the Major table was denormalized and major codes
were included in the Program table. This was done because a
Webster program allows no more than two majors, and
generally there is only one major. By denormalizing major
codes, queries for information about majors associated with
Webster programs were simpler to develop and executed more
efficiently on the RDBMS.

3.1 Data Distribution Design
The data distribution design was based on the following
questions and answers:

What are the data availability requirements? Should all of the
data be available at all locations, or only some of the data at
some of the locations?

¢ Not all of the data in the Academic Affairs database needs
to be available at all sites.

e The main campus needs access to the data at all of the
remote sites, but individual remote sites do not need to
access data from another site.

How often is the data accessed, and is it important to have the
current value?

¢ Since the main campus is located in Saint Louis, MO, and
the remote sites are located throughout the United States,
Europe, and Asia, Academic Affairs data is being accessed
on a daily, sometimes hourly, basis.

e It is important for the data shared between the main
campus and remote sites to be current in order to meet
student educational needs and Academic Affairs business
rules.

Which locations have the authority to change the data? Can a
location change all the data, or only some of the data, and how
often is the data changed?

¢ Most of the volatile data, such as student/employee
information, program plans, class schedules, and
registrations, is owned (and changed continuously) by
the remote sites.

¢ The main campus reviews and approves volatile data
entered at the remote sites, and provides frequent (e.g.,
weekly or monthly) updates to some of the volatile data,
such as student admissions status, student billing, and
instructor pay.

e The main campus owns and maintains most of the non-
volatile data, such as degrees, majors, courses, and
curriculums. This data is changed less frequently, e.g.,
semiannually.

Based on the answers to the questions on data availability,
access, and volatility, the following 7.3.3 RDBMS products
and features were investigated to meet the AAIS needs:
symmetric replication, snapshots, remote copy, and custom
triggers/stored procedures. [1]

The symmetric replication feature is a relatively new capability.
This feature is primarily applicable where there is a need to
maintain updatable copies of volatile data at multiple sites, and
both data availability and integrity are of primary importance.
With symmetric replication, a change to any of the replicated
data tables at any of the sites is propagated to the tables at all
of the other sites. The time it takes for a change to propagate
depends on various parameters set by the Database
Administrator (DBA), and also on the availability of the
databases to which the propagation is taking place. When
there is a large number of sites/tables, the impact on both
network load and server load is likely to be severe for any
significant update volume. Since the AAIS does not need to
replicate all volatile data to all remote sites, and the number of
sites that need to share data is large, symmetric replication was
not recommended.

Snapshots can be used to copy a table (or tables) at a point in
time from a remote database into a local database. Snapshots
are defined using a query on a single table (simple snapshot) or
a set of tables (complex snapshot), and a time interval in which
the query is to be refreshed. At first glance, snapshots appear

useful for distributing non-volatile data (e.g., degrees, majors,
courses, and curriculums) from the main campus to all of the
remote sites for read-only queries. The main problems with
snapshots revolve around their set-up, administration, and
efficiency. If the main campus server can sustain the load to
record all the changes made to the snapshot tables for the 70+
remote sites, then simple snapshots could be used to distribute
the read-only data.

However, the main campus non-volatile data tends to remain
stable for long periods of time. Therefore, it is probably better
to wait until all the degree, major, and curriculum changes are
made at the main campus, and then manually update the remote
site tables (using a remote copy). It was beyond the scope of
this project to implement either snapshots or a remote copy in
the prototype implementation. However, based on an analysis
of their capabilities compared to AAIS needs, a remote copy is
recommended for distributing non-volatile, read-only data.

The AAIS data distribution requirements for volatile data are
based on special rules (or conditions) that are not directly
supported by either symmetric replication or snapshots.
Therefore, custom PL/SQL triggers/stored procedures were
developed. The prototype implementation included a set of
custom triggers to distribute student, student admissions, and
program plan data between a remote site and the main campus.
[1,2,7]

3.2 Data Integrity

A simple design was implemented to maintain data integrity if
data distribution fails due to a problem in wide area network
communications between a remote site and the main campus.
This design used exception-handling triggers to write the
table name, primary keys, and type of transaction (i.e., insert,
update, and delete) to a distribution log table. This design
would allow a remote site or the main campus to continue to
operate even if the wide area network connecting them was
down. Once the network was restored, a site could review the
distribution log for unprocessed transactions, and
procedurally synchronize the databases. It was beyond the
scope of this project to develop code to automate the database
synchronization process. This is one area of the prototype
AAIS that needs additional refinement prior to fielding. [7].

3.3 Security Design
There are two areas of security that were considered important
for the AAIS design:

¢ Access security to control who can access AAIS
applications (e.g., Forms), and how much of its
functionality is available once accessed.

* Data security to control which tables a user can reference,
and what permissions/ privileges they have to data in the
tables (e.g., read, read/write).

The 7.3.3 RDBMS has a variety of mechanisms for identifying
and verifying users. The simplest is to require a user to enter a
valid name and password prior to accessing a database
application. Additionally, object permission features, such as
create role, create user, and grants are available to control
access to database objects, such as tables (and columns),
views, functions, sequences, etc. Also, form controls and
custom triggers can be developed to restrict access to specific
data in the tables and columns. [1, 2]

The use of object permissions, user name/password, form
controls, and custom triggers were included in the AAIS

database security design. During the analysis phase, five
separate user roles were identified: developer, main campus
staff, remote site staff, students, and faculty. As part of the
security design, each role is granted database object and
system privileges based on the AAIS business rules for
database access. Specific user accounts and passwords are then
created, and granted the roles (and privileges) needed to access
the forms, tables, views, and other database objects. When
logging into AAIS, all users are required to enter a valid user
name and password in order to access the database object.

Additionally, form access controls and custom triggers were
designed and prototyped to provide another layer of security
for student access. This additional level of security is used to
prevent a student from accessing personal data, such as the
social security number of another student.

3.4 Forms Design
The primary purpose of the AAIS prototype forms was to limit
the risk in the following areas:

¢ Understanding the AAIS requirements through early
feedback from users on the functionality, data distribution,
and security design.

¢ Determining the performance, feasibility, and utility of the
prototype tools for the final implementation of the AAIS
requirements.

The Developer/2000 Forms Designer was used to prototype
several forms for main campus staff, remote staff, and students to
access the Webster Academic Affairs database. The current
Webster University Application for Admissions and Program
Plan paper-based forms were the basis for the design.
Additional forms, pop-up dialog boxes, and windows were
also designed to maintain and control access to student and
program data. Examples are shown in Figures 2 and 3. The
forms prototyped for student use were also converted to
Developer/2000 Java applets so they could be run from a Web
browser. [4, 5, 6, 7]

The prototype forms were designed with a standard look-and-
feel for displaying and manipulating data by main and remote
campus staff and students. The user-interface was kept basic
and unobtrusive, and much of the form prototyping effort was
spent building controls and trigger code to enforce Webster
data security, integrity, and distribution rules.

4. CONCLUSIONS

The prototype implementation is a reasonable model for the
final AAIS. The Student Admissions, Program Plan, and
Program maintenance forms are sufficiently mature to elicit
feedback from the main campus and remote site staff on how a
distributed application would work in practice. The prototype
forms could be used to validate and refine their requirements for
transferring student and program information among students,
main campus, and remote site staff.

The ORACLE® tools and products used for the AAIS project
provided excellent support. For the most part, these tools
appear to be robust enough to support design, development,
and implementation of a final system.

Designer/2000 contains a powerful set of tools that can be
used at different stages of a database system's life cycle. All of
the tools available in Designer/2000 were not used for the
prototype application, because of tool complexity and the time
available to learn to use the tools. However, the Process
Modeler was very useful in modeling the AAIS top-level

business functions. The Data Modeler was also satisfactory for
designing and documenting the AAIS data models and
business rules.

On the other hand, the Server Generator tool used to translate
the data model into database objects was somewhat
cumbersome to use. In some instances, the DDL generated had
to be manually augmented to build the 7.3.3 RDBMS server
objects needed by the prototype system.

Developer/2000 includes a powerful, fairly intuitive tool for
developing forms applications. By adding custom triggers to
the prototype forms, the AAIS data distribution rules were
implemented in response to various user interface events (e.g.,
record-inserted, record-updated, button-pressed, etc.). A few
problems were encountered in installing and configuring the
ORACLE® Web Server, Java software and AppletViewer.
Once properly configured, the prototype forms would launch
and run from either the AppletViewer or Microsoft Internet
Explorer®. However, these problems prevented extensive
experimentation with the performance and security
characteristics of the Web-based forms.

S. FUTURE WORK

Some additional analysis, design, and testing is required to
evaluate the prototype's performance over a wide area network,
as well as handle exception conditions, such as a failure of the
wide area network between the main campus and the remote
sites. The prototype design and implementation in this area is
still relatively immature.

An upgrade to Developer/2000 Forms and a later version of the
Web Server (v3) is needed to complete the functionality and
performance evaluation of the prototype Java applets over the
Web. This is the highest priority future prototyping effort,
because forms that can be launched as applets from a Web
Browser are applicable to either a NC or a distributed, client-
server architecture.

6. REFERENCES
[1] Ensor, Dave and Stevenson, Jan, Oracle Design, O'Reilly
& Associates, Inc., 1997.

[2] Koch, George and Loney, Kevin, ORACLE: The
Complete Reference, Osborne McGraw-Hill, 1997.

[3] Lulushi, Albert, Insidle ORACLE DESIGNER/2000,
Prentice Hall PTR., 1998.

[4] Lulushi, Albert, Developing ORACLE
Applications, Prentice Hall PTR., 1996.

[5] Muller, Robert J, ORACLE Developer/2000 Handbook,
2nd Edition, Osborne McGraw-Hill, 1997.

[6] Papaj, Robert and Burleson, Donald, Oracle Databases on
the Web, Coriolis Group, Inc., 1997.

[7] Owens, David A., Distributed Database Application
Project Report, University of Colorado, Colorado
Springs, Master of Engineering Software System
Engineering, 1998.

FORMS

[8] Sommerville, lan, Software Engineering, S5th Edition,
Osborne McGraw-Hill, 1996.

[9] Watson, Richard T., Data Management, John Wiley &
Sons, Inc., 1996.

[10] Webster University 1997-1998
Catalog, Webster University.

Graduate Studies

! Developer/2000 Forms Runtime for Windows 95 7 NT [_ [OO] <]

Login Admissions Registration Class Schedules Window

Count: *0

Enter your Webster Student Numb. Student
Password. and Press the [T

User Name: Idnwens

Student Numb

|112233445
Database: I
Validate Connect | Cancel |

Ixxxxxx

Password:

Logon

|

Invalid Login. Please Re-enter your Webster Student Numb,
Password, and Press the Validate Login Button.

Count: *0

Figure 2. Prototype Login Forms

Developer/2000 Forms Runtime for Windows 95 7 NT
Action Edit Block Field BRecord Query indow Help

#ZY PROGRAM_PLAN [b=

=] B3

PROGRAM PLAN Enroll Plan Plan Create Last
Student No Program Id Term Comp Term Approved Date Update
[112233445 [1000001 [Faiss [SP1393 [ozo [fos0Gs7 | PEE TR

COURSE PLAN COURSE INFORHMATION
P1ln Trm Crs NHum Crs HName Dsg Hrs Comments
“warve [COSCsS000 |Distributed Systems R |2 [Course wWaived
SP297 |COSC5010 |Object-Oriented Analysis and Design c [3
SuUg7? COSC5020 |Object-Oriented Programming c Iz
FA197 |COSC5040 |Distributed Database Design c [z
FA297 |COSCS5050 |Distributed D atabase &pplications &7 EE
SP198 |COSCS5030 |Prototyping E |2
H<FER COSCS5060 |Systems Concepts IE— 3_ Hfer Approved
EINEE] COSC5110 |Computer Network Architecture E
F&198 |COSC5120 |Data Communication E |3
FA298 |COSC5130 |Computer Security and Reliability E |2
SP193 |COSCe000 |Distributed Systems Project c 3
'+ —
<< < l > | >> I Query | Save I
<]
Count: 1 W <List>

an

Figure 3. Prototype Program Plan Form

