
VALIDATION OF GUIDANCE CONTROL SOFTWARE REQUIREMENTS

SPECIFICATION FOR RELIABILITY AND FAULT-TOLERANCE

By

Hye Yeon Kim

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

May 2002

 ii

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of
Hye Yeon Kim find it satisfactory and recommend that it be accepted.

 iii

 Copyright 2002

Hye Yeon Kim*

All Rights Reserved.

* Contact information : hyekim@ieee.org

 iv

ACKNOWLEDGMENT

Most of all, I would like to thank my Lord Jesus for all of his love and support throughout my

graduate study. Without his strengthening and encouragement, this thesis would not exist.

I would like to express sincere appreciation to my chair Dr. Sheldon’s dedication for this

research and its publications. His academic guidance and encouragement enabled this research to

be successful. I would like to thank my committee member Dr. Bakken and Dr. Dang. Their

comments and supports to this research were invaluable.

I thank my parents, Dal Hwan Kim and In Wook Lee, for their lifetime dedication for my

education and my sister, Diane Hye Kyoung Kim, for her support. I am grateful to my dearest

friends, Dean and Mary Guenther, for their love and care throughout my study at Washington

State University. I would also like to thank to my friends Dr. and Mrs. Johnson, and Elly

Soeryapranata for their advice and support. I am thankful for the time and effort my friend, Mary

Baker, spent for editing this thesis.

I would like to express my sincere appreciation to i-logix for extending the Statemate

licenses until the completion of this thesis. I am very grateful for their gift.

 v

VALIDATION OF GUIDANCE CONTROL SOFTWARE REQUIREMENTS

SPECIFICATION FOR RELIABILITY AND FAULT-TOLERANCE

ABSTRACT

by Hye Yeon Kim, M.S.
Washington State University

May 2002

Chair: Frederick T. Sheldon

Many critical control systems are developed using CASE tools. Validation for such systems

is largely based on simulation and testing. Current software engineering research has sought to

develop theory, methods, and tools based on mechanized formal methods that will provide

increased assurance for such applications. In addition to the previous fact, the present software

engineering research focuses on allowing earlier error detection of overlooked cases, more

complete testing using model checking to examine all reachable states, and full verification of

critical properties using an automated theorem prover to undertake formal verification. This case

study was performed for validating the integrity of a software requirements specification (SRS)

for Guidance Control Software (GCS) in terms of reliability and fault-tolerance. A verification of

the extracted parts of the GCS Specification is provided as a result. Two modeling formalisms

were used to evaluate the SRS and to determine strategies for avoiding design defects and system

failures. Z was used first to detect and remove ambiguity from a portion of the Natural Language

based (NL-based) GCS SRS. Next, Statecharts, Activity-charts, and Module charts were

constructed to visualize the Z description and make it executable. Using executable models, the

system behavior was assessed under normal and abnormal conditions. Faults were seeded into

 vi

the model, an executable specification, to probe how the system would perform. Missing or

incorrectly specified requirements were found during the process. In this way, the integrity of the

SRS was assessed. The significance of this approach is discussed by comparing this approach

with similar studies and possible approaches for achieving fault tolerance. This approach is

envisioned to be useful in a more general sense as a means to avoid incompleteness and

inconsistencies along with dynamic behavioral analysis useful in avoiding major design flaws.

The iteration between these two formalisms gives pertinent analysis of a problem – i.e.,

operational errors between states, functional defects, etc.

 vii

LIST OF PUBLICATIONS

• Refereed international conferences:

1. Frederick T. Sheldon, Hye Yeon Kim, and Zhihe Zhou. " A Case Study: Validation of the

Guidance Control Software Requirements for Completeness, Consistency, and Fault

Tolerance," in Proceedings of IEEE 2001 Pacific Rim International Symposium on

Dependable Computing.

2. Frederick T. Sheldon and Hye Yeon Kim. "Validation of Guidance Control Software

Requirements Specification for Reliability and Fault-Tolerance," in 2002 Proceedings of

Annual Reliability and Maintainability Symposium. IEEE.

• Refereed workshop:

3. Frederick T. Sheldon and Hye Yeon Kim. "Software Requirements Specification and

Analysis Using Zed and Statecharts," IEEE 3rd Workshop on Formal Descriptions and

Software Reliability, 2000.

• Journal papers in preparation for submission.

4. Hye Yeon Kim and Frederick T. Sheldon. “Evaluating Software Requirements for

Completeness, Consistency and Fault-Tolerance,” Submission in May 2002, IEEE

Transactions on Reliability.

5. Hye Yeon Kim and Frederick T. Sheldon. “Testing Software Requirements with Z and

Statecharts model,” Submission in May 2002, Special issue of the Requirements Engineering

Journal. UMIST.

 viii

TABLE OF CONTENTS

ACKNOWLEDGMENT... iv

ABSTRACT..v

LIST OF PUBLICATIONS ... vii

LIST OF TABLES.. xi

LIST OF FIGURES ... xii

CHAPTER

1. INTRODUCTION ..1

1.1. Problem definition ..2

1.2. Motivation...3

1.3. Definitions...5

1.4. Organization..6

2. RELATED RESEARCH ..7

2.1. Formal Methods ..7

2.2. SRS Analysis/Evaluation/Assessment Studies ...8

2.3. Related Case Studies with Z ...10

2.4. Contribution from this Case Study ...12

3. GCS REQUIREMENTS SPECIFICATION ..14

3.1. Specification Excerpt ..16

4. METHODOLOGY ...19

4.1. Application Phase ...19

4.2. Applied Methods...19

4.2.1 Z (Zed) ..21

 ix

4.2.2 Statecharts ...23

4.2.3 Specification Tests ..24

4.2.4 Fault Injection ...25

4.3. Application Example ..26

4.3.1 Z Specification ..29

4.3.2 Statecharts ...32

4.3.3 Tests ..35

4.3.4 Fault Injection ...38

4.3.5 Reformulated Requirements ...40

5. RESULTS ...42

5.1. Z (Zed) ..42

5.1.1 Global Constants and Functions ...43

5.1.2 ARSP Module ...52

5.1.3 CP Module ..55

5.1.4 GP Module ..65

5.1.5 RECLP Module...68

5.1.6 GCS Schema ...70

5.2. Executable Models..72

5.2.1 Module Chart ..73

5.2.2 Activity Charts ..74

5.2.3 Statecharts ...75

5.3. Specification Test Results...78

5.3.1 Test Results...78

 x

5.3.2 Fault Injection Results/Discussion..79

6. CONCLUSIONS...81

Bibliography ...83

APPENDIX A..86

 xi

LIST OF TABLES

Table 1. Cost of software defects [5, 6] .. 4

Table 2 Functional unit schedule [25].. 17

Table 3. ARSP specification simulation result ... 36

Table 4. ARSP specification test input and output ... 38

Table 5. Detailed testing results – Case 1 example... 38

Table 6. Detailed fault injection results – Case 1 example... 40

Table 7. Fault injection simulation result.. 40

Table 8. GCS excerpt high-level activity/state charts simulation result 79

 xii

LIST OF FIGURES

Figure 1. A typical terminal descent trajectory [25] .. 15

Figure 2. Velocity-altitude contour [25]... 16

Figure 3. GCS system architecture... 18

Figure 4. NL-based specification for AR_COUNTER [25]... 20

Figure 5. Form of axiomatic definition .. 22

Figure 6. Form of a schema.. 22

Figure 7. Free type notation ... 22

Figure 8. Translation example from NL-based to statecharts .. 27

Figure 9. ARSP_RESOURCE schema... 30

Figure 10. ARSP schema.. 31

Figure 11. ARSP activity-chart .. 33

Figure 12. INIT statechart .. 33

Figure 13. ALTIMETER statechart.. 35

Figure 14. Array definition with sequences ... 43

Figure 15. Proof formula of the nmatrix function .. 44

Figure 16. Z/EVES proof window ... 44

Figure 17. Z/EVES specification window.. 45

Figure 18. Proof formula of the rmatrix function... 46

Figure 19. T_any free type definition... 46

Figure 20. Global variable definition ... 46

Figure 21. GUIDANCE_STATE_1 schema .. 47

 xiii

Figure 22. GUIDANCE_STATE_2 schema .. 49

Figure 23. GUIDANCE_STATE schema .. 49

Figure 24. EXTERNAL schema .. 50

Figure 25. RUN_PARAMETERS schema... 51

Figure 26. SENSOR_ OUTPUT schema ... 52

Figure 27. ARSP_RESOURSE schema ... 53

Figure 28. ARSP_FUNCTION schema ... 53

Figure 29. ARSP schema.. 54

Figure 30. CP_RESOURCE_1 schema.. 56

Figure 31. CP_RESOURCE_2 schema.. 57

Figure 32. CP_RESOURCE schema.. 58

Figure 33. CP_PREP_MASK1 schema.. 58

Figure 34. CP_MASK schema ... 62

Figure 35. CP_FUCNTION schema .. 63

Figure 36. CP schema... 64

Figure 37. GP_FUCNTION schema .. 65

Figure 38. GP_1 schema .. 66

Figure 39. GP schema .. 67

Figure 40. A module chart of the GCS excerpt.. 73

Figure 41. Actual module chart of the GCS excerpt .. 74

Figure 42. GCS activity chart... 75

Figure 43. GCS_CONTROL statechart.. 76

Figure 44. SUBFRAME1 statechart... 76

 xiv

Figure 45. SUBFRAME2 statechart... 77

Figure 46. SUBFRAME3 statechart... 77

Figure 47. ARSP activity chart... 87

Figure 48. ARSP_CONTROL state chart .. 88

 xv

DEDICATION

This thesis is dedicated to my Lord Jesus Christ who

provided me all of his best.

 1

CHAPTER ONE

INTRODUCTION

The trend of using software in embedded real-time systems and the fact that requirements for

such software are often complex and therefore difficult to understand necessitate increasing

employment of formal methods (FMs) in the software requirements specification and

verification. Requirements validation is concerned with checking the requirements document for

consistency, completeness and accuracy [1]. The main problem of requirements validation is that

there is no existing document which can be a basis for the validation. A design or a program can

be validated against the specification. However, there is no way to demonstrate that a

requirements specification is correct with respect to some other system representation [1].

Therefore, requirements validation really means ensuring that the requirements specification

represents a clear description of the system for design and implementation and is a final check

that the requirements meet stakeholder needs. Validating such a document is the final stage of

the requirements engineering. In this thesis, a requirements specification of a typical example for

embedded real-time software - the Viking Mars Lander Guidance Control Software - is

validated.

The particular notations that are selected to express requirements or designs can have a very

important impact on the construction time, correctness, efficiency, and maintainability of the

target system. One desirable property for these notations is that they be precise and

unambiguous, so that clients and implementers can agree on the required behaviors and observe

them in operation. The notation should be possible to state and prove properties of a system

 2

before it is built; then, if the system is constructed according to the specifications, it may be

guaranteed to exhibit certain properties and behaviors. This implies that the selected notation is

not only formally defined but is also amenable to mathematical/logical manipulation.

Observation of behaviors is particularly convenient if the specification language is executable.

Executable specifications are also useful for clarifying and refining requirements and designs [2].

The term ‘formal methods’ applies to a variety of methods that are used to ensure correctness

of the software, and their common characteristic being a mathematical foundation that make it

possible to prove correctness of software in the mathematical sense. The approach chosen

combines a model-based formal method (FM) which uses the mathematical theory of sets,

propositional and predicate logic with a state-based diagrammatic formalism to visualize and

simulate the specification (including fault injection). The first case correctness proof was

employed while the behavior of executable specifications was gauged through visualization and

simulation in the second case. This thesis covers a case study that is conducted to validate a

software requirements specification in terms of reliability and fault-tolerance using Z and

Statecharts.

1.1. Problem definition

Critical systems, such as safety-critical systems, mission-critical systems, and business-critical

systems [3], demand rigorously engineered software. A failure in the control software of such

systems can be disastrous. However, it is difficult to create a reliable software specification

because such control software tends to be highly complex. To avoid problems in the latter

development phases and reduce life-cycle costs, it is crucial to ensure that the specification be

reliable. Moreover, such control software is required to tolerate failure because the system is

typically cost/safety critical and operate in very harsh environments.

 3

Practically, no system is absolutely fault free. There are plenty of catastrophic failures to

substantiate this [4]. The probability of system failure decreases in accordance with a cautious

specification and design process. However, the more complex the system, the more difficult it is

to achieve high integrity and fault tolerance.

The typical SRS is highly dependent on natural language. Natural language (NL)-based

specifications are often subject to multiple interpretations. Even when such specifications are

developed systematically, it is difficult to ensure their integrity without some form of correctness

checking. Generally, correctness checking obligates the use of a mathematically based

requirements specification language (RSL). Such languages are notoriously difficult to

understand, and minimally require a proficient level of knowledge in discrete mathematics

and/or some formal logic system. This poses a serious concern to industry because many

different classes of requirements exist, and different stakeholders typically signify various ways

of looking at the problem. Thus, in regards to the requirements specification, a multi-perspective

analysis is important, as there is no single correct way to analyze system requirements [3]. The

usefulness of the requirements specification diminishes by not being understandable to the

diverse set of stakeholders.

1.2. Motivation

The Software development starts from specifying the requirements of the software. A Software

Requirements Specification (SRS) describes what the software must do. Naturally, the SRS takes

the core role as the descriptive documentation at every phase of the software development cycle.

Therefore, it is required to make sure the SRS contains correct and complete information for the

system. For that reason, employing a verification technique is necessary for the specification to

provide some support of prototyping, correctness proofs, elaboration of test data, and failure

 4

detection. Moreover, early detection of failures and incorrectly specified requirements can

reduce the amount of money and effort for the corrective work. Table 1 shows roughly the

relationship between correction costs and the development phase when the defect was

discovered, and detecting problems earlier, rather than later, provides significant rewards. To

avoid problems in the latter development phases and reduce the software life-cycle costs, it is

crucial to ensure that the specification be reliable.

Table 1. Cost of software defects [5, 6]

When defect is detected Typical Costs of Correction
Requirements Specification $100-$1,000
Coding/Unit Testing $1,000 or more
System Testing $7,000-$8,000
Acceptance Testing $1,000-$100,000
After Implementation Up to millions of dollars

Most problems can be traced to the requirements specification typically due to the ambiguity

[7]. Formal methods unambiguously define the requirements of software with respect to its

specification. They are the primary way to have a rigorous definition of correctness of the system

requirements. The decision to use formal specifications mainly depends on the criticality of the

component, in term of severity of fault consequences and of the complexity of its requirements

or of its development [8].

Z is a formal requirements specification language that uses set theory as the basic building

blocks of complex data structures combined with first-order predicate logic. A specification

written in Z is a mixture of formal, mathematical statements and informal explanatory text [9]. Z

was used in this case study to clarify intentions, identify assumptions, introduce precision and

explain correctness in light of ambiguous statements found in the NL-based SRS.

 5

 Considering the complexity of the control system, it is hard to prove the specification is

complete and consistent without any automated tool support. There are several tools supporting

the Z specification proof/refinement. However, they do not provide any improvement on the

understandability of the requirements for a set of diverse stakeholders. As mentioned before,

mathematically specified requirements are not easy to comprehend. Even though a Z

specification has informal explanatory descriptions, it is mathematically represented. By

describing the requirements as a set of graphical models, one can improve understandability of

the requirements better than either the detailed NL descriptions or the mathematical

representations. Statecharts were chosen to model the Z specifications because they provide a

means of visualization and a means to test the specification.

1.3. Definitions

Reliability, as applied to the software requirements specifications, means: (1) is the specification

correct, unambiguous, complete, and consistent; (2) can the specification be trusted to the extent

that design and implementation can commence while minimizing the risk of costly errors; and

(3) how can the specification be defined to prevent the propagation of errors into the downstream

activities?

The completeness of a specification is defined as a lack of ambiguity in the implementation.

The specification is incomplete if the system behavior is not specified precisely because the

required behavior for some events or conditions is omitted or is subject to more than one

interpretation [10]. Consistency, the presence of a lack of ambiguity in requirements, means the

specification is free from conflicting requirements and undesired nondeterminism [11].

Typically, fault-tolerance is considered as a implementation methodology that provides for

(1) explicit or implicit error detection for all fault conditions, and (2) backup routines for

 6

continued service to critical functions in case errors arise during operation of the primary

software [8]. For the software requirements specification, it can be defined as (1) subsistence of

specified requirements to detect explicit or implicit errors for all fault conditions, and (2)

presence of specified requirements that supports the system robustness, software diversity, and

temporal redundancy for continuing service of critical system functions in case of failure.

1.4. Organization

The next chapter of this thesis provides an introduction of formal methods and case studies that

were conducted to evaluate software requirements specifications. Chapter 3 presents a brief

description of the GCS requirements including a specification excerpt. Chapter 4 describes the

methodology used in this thesis and a simple application example to show how the method was

implied for evaluation of GCS SRS excerpt introduced in chapter 3. Chapter 5 presents the Z and

Statecharts models were built based on the abstracted information from the GCS SRS and

symbolic simulation results (i.e., testing results, fault injection results). Chapter 6 concludes

analysis results of this case study and chapter 7 finishes this thesis with a plan for the future

studies.

 7

CHAPTER TWO

RELATED RESEARCH

In this section, several categories of analysis methods are introduced for the safety/mission

critical system software requirements. In addition, a number of researches are presented which

are sought to find a way to verify software requirements specifications for critical systems for

consistency and completeness. Last, numerous related case studies are introduced that are

conducted using Z and other formal methods for the benefit of visualization and/or dynamical

assessment.

2.1. Formal Methods

Formal methods are a collection of techniques rather than a single technology to apply on

specifying a software system. The sole objective for using formal methods is to provide a way to

eliminate inconsistency, incompleteness, and ambiguities. Because the formal methods have an

underlying mathematical basis, it provides valid analysis of a system better than ad hoc reviews.

There are several classes of distinguishable formal specification techniques (also called as formal

methods). They are model-oriented specifications, property-oriented specifications, and

operational specifications [12].

In the property-oriented approaches, known as constructive techniques, one declares a name

list of functions and properties. Infinite numbers of models are represented by this method

because infinite numbers of functions can be provided for each of the previously declared names.

Among the models, only a few of them satisfy the required properties. The software is correct

with respect to a specification if it provides all the declared function names and defines a model

 8

that satisfies the specification [12]. These approaches provide notations that can depict a series of

data, and use equations to describe the system behaviors rather than building a model. These

property-oriented approaches can be broken into algebraic and axiomatic specifications [13]. The

algebraic specification describes a system as an algebra that is consisted with a set of data and a

number of functions over this set [14]. The axiomatic specification has its origin in the early

work on program verification. It uses first-order predicate logic in pre- and post-conditions to

specify operations [13].

In the model-oriented approach, known as declarative techniques, one builds a unique model

from a choice of built-in data structures and construction primitives that the specification

language offers [12]. This approach provides a direct way of describing system behaviors. The

system is specified in terms of mathematical structures such as sets, sequences, tuples, and maps

[13]. It defines the correctness based on the model behaviors whether it meets the specified

functionality [12]. Vienna Development Method (VDM), B, and Z are fit into this category.

The Operational/Executable specification is another category of formal specification

techniques. It provides sets of actions that describe the sequence of the system behavior and

computational formulas that describe the performance calculation. Petri nets, process algebra,

and state/activity charts in the STATEMATE2 environment [2] are considered to be in this

category [12].

2.2. SRS Analysis/Evaluation/Assessment Studies

There have been numerous studies with the goal of improving the integrity, identifying defects,

and removing ambiguities (completeness and consistency). Fabbrini et al came up with an

automatic evaluation method called “Quality Analyzer of Requirements Specification (QuARS)”

 9

to evaluate the quality of SRS. They defined testability, completeness, understandability, and

consistency as properties of a high quality SRS [15]. The QuARS tool was employed to parse

requirement sentences written in natural language (NL) and point out potential source of errors in

the SRS. This is a linguistic, informal evaluation approach rather than a formal method. This

approach shows informal methods can expose some of errors in SRS. Authors claim this

approach is applicable to any domain of software based on the tool’s ability of the customization

of dictionaries. However, this approach did not provide any clear quantitative or qualitative

measure of quality for an SRS.

Heitmeyer et al., used Software Cost Reduction (SCR) tabular notation to expose

inconsistencies in software requirements specifications. The SCR method is applied to expose a

safety violation in a safety-critical software requirements specification. They used “Two

Pushbutton” abstraction method to reduce infinite system state space into a sizable one because

the enormous state space of specifications of practical software usually renders direct analysis

impractical [16]. Two redundant specifications were used to represent the required behavior of a

system. In this step, Petri-net and TRIO specification logic were employed. They analyzed

reduced size of SRS with Spin and a simulator which they developed to support the SCR

method. This approach is quite complicated to understand and apply for highly complex systems

due to the involvement of too many formalism and tools.

Heimdahl and Leveson used Requirements State Machine Language (RSML) to verify

requirements specifications for completeness and consistency [17]. RSML is a state-based

requirements specification language suitable for the specification of reactive systems. It includes

several features developed by Harel for Statecharts: superstates, AND decomposition, broadcast

communication, and conditional connectives. Superstates mean a state that represents groups of

2 STATEMATE Magnum – product of i-Logix, was used to conduct the research for this thesis.

 10

states. A superstate may have a number of substates. Such groupings reduce the number of

transitions by allowing transitions between superstates rather than explicit transitions between all

substates. AND decomposition (also known as orthogonal product) means that several state

machines are allowed to be combined into one state. Those state machines are combined as

parallel state machines. When the AND decomposed state is entered, each of the parallel state

machines are entered. Exiting from any of those parallel state machines makes all state machines

be exited. This use of parallel state machines reduces the size of the specification. In RSML, the

transitions are represented as relationships between states (i.e., hierarchical, next-state

mappings). The functional framework defined in [17] to check the model against every possible

input, to find conflicting requirements, to verify whether the model is deterministic. They used

textual representation based simulator developed for RSML to execute the requirements

specification. This approach shows several advantages such as the global reachability graph is

not required to perform analysis just for a part of a system.

2.3. Related Case Studies with Z

There have been numerous studies conducted that combine a Z specification with some formal

method or design notation. A hybrid formal method called PZ-nets is suggested by Xudong He.

PZ-nets combine Petri nets and Z notations [18]. PZ-nets provide a unified formal model for

specifying the overall system structure, control flow, data types and functionality. Sequential,

concurrent and distributed systems are modeled using a valuable set of complementary

compositional analysis techniques. However, modular and hierarchical facilities are needed to

effectively apply this approach to large systems.

Hierons, Sadeghipour, and Singh present a hybrid specification language µSZ [19]. The

language uses Statecharts to describe the dynamical system behavior and Z to describe the data

 11

and data transformations. In µSZ, Statecharts define sequencing while Z is used to define the

data and operations. Their data abstraction technique uses information derived from the Z

specifications to produce an Extended Finite State Machine (EFSM) defined by the Statecharts.

The EFSM features that can be utilized during test generation. These features help solve the test

automation problem of setting up the initial state and checking the final state of each test. Both

the dynamic behavior specified in Statecharts and the individual operations are checked using

these features.

Bussow and Weber present a mixed method consisting of Z notations and Statecharts [20].

Each method was applied to a separate part of the system. Z was used in defining the data

structures and transformations. Statecharts were used in representing the overall system and the

reactive behavior. The Z notations were type checked with the ESZ type-checker but the

statecharts semantics were not fully formalized. In addition, several other case studies utilized Z

for defining data while Statecharts were used as a behavioral description method [21-23].

Castello developed a framework for the automatic generation of the layout of statecharts

from a database that contains information abstracted from a SRS [24]. He developed a tool to

generate statecharts layout and generated Z schemas from the statecharts layout. He abstracted

data from the SRS to generate a database, and then he used the tool to create statecharts from the

info which derived from the database entry. The statecharts were translated by one to one match

into Z schemas. His Z schemas were exact replica of the statecharts. In the other words, the Z

schema was the text version of the statecharts. Both, the method and the criteria of SRS

abstraction for the database entry, were not explained in [24].

He claims that it is necessary to translate the statecharts into Z to validate the correctness of

the statecharts layout. To evaluate the correctness of the statecharts layout, he generated an exact

 12

replica of the statecharts layout in Z schema using the tool. However, the statecharts are

considered as a formal method [2], which is verifiable by using several off-the-shelf products

that support statecharts simulations and model checking without translating into Z.

How this approach can validate SRS which is usually involved with infinite state systems

when it is formed into statecharts? Statecharts do not allow representing infinite state systems.

To develop statecharts, one should find a way to reduce the system states into a discrete number.

This issue was not addressed in the paper.

2.4. Contribution from this Case Study

A clear distinction of this approach as compared to others is that Z and Statecharts are not

concurrently used to evaluate separate parts of the SRS. The part of the NL-based SRS is

translated completely into Z and then the Z specification was translated into Statecharts. The Z

specification is type checked and proved for correctness using Z/EVES with

reduction/refinement before translating it into statecharts. State/Activity charts in Statemate

environment are tested for consistency and completeness using simulations and the model

checking. By injecting faults into the statecharts model, the transformed SRS is evaluated for

fault-tolerance. Details of the tests and faults injections are described in chapter 4.

Z and statecharts do have different precision for revealing flaws inheriting in a SRS. In

general, it is believed that Z has more ability to define data types and Statecharts are better to

support to check the state transition over Z [21-23]. When one uses conjoined methods like other

case studies, the consistency between the joined methods cannot be tested or verified with any

technique. By transforming the specifications with one method at a time, the consistency can be

assured for the transformed specification with the method. For example, the consistency of Z

specification is verifiable using the type-checking and proofs features in the Z/EVES and the

 13

consistency and completeness of the Statecharts model are verifiable using the model checker

and simulations in the Statemate environment. Refinement between these two different

formalisms gives a more in-depth understanding of requirements, and reveals different flaws in

SRS.

Next, the usefulness of this approach is evaluated by applying it to some critical parts of the

SRS.

 14

CHAPTER THREE

GCS REQUIREMENTS SPECIFICATION

The Guidance and Control Software (GCS) principally provides control during the terminal

phase of descent for the Viking Mars Lander. The lander has three accelerometers, one Doppler

radar with four beams, one altimeter radar, two temperature sensors, three gyroscopes, three

pairs of roll engines, three axial thrust engines, one parachute release actuator, and a touch down

sensor. After initialization, the GCS starts sensing the vehicle altitude. When a predefined engine

ignition altitude is sensed, the GCS begins guidance and control of the vehicle. The purpose of

this software is to maintain the vehicle along a predetermined velocity-altitude contour. Descent

continues along this contour until a predefined engine shut off altitude is reached or touchdown

is sensed.

The initialization of the GCS starts the sensing of vehicle altitude. When the altimeter radar

senses a predefined engine ignition altitude, the GCS starts controlling descent of the vehicle.

The axial and roll engines are ignited; while the axial engines are warming up, the parachute

remains connected to the vehicle. During this engine warm-up phase, the aerodynamics of the

parachute dictate the trajectory (see Figure 1) followed by the vehicle. Vehicle altitude is

maintained by firing the engines in a throttled-down condition. Once the main engines become

hot, the parachute is released and the GCS performs an altitude correction maneuver and then

follows a controlled acceleration descent until a predetermined velocity-altitude contour is

crossed (see Figure 2). The GCS then attempts to maintain the descent of the vehicle along this

predetermined velocity-altitude contour. The vehicle descends along this contour until a

 15

predefined engine shut off altitude is reached or touchdown is sensed. After all engines are shut

off, the vehicle free-falls to the surface.

Figure 1. A typical terminal descent trajectory [25]

 16

Figure 2. Velocity-altitude contour [25]

3.1. Specification Excerpt

Figure 3 shows the overall system architecture of the GCS software. The circled parts are the

subunits consisting of the partial specification for this case study. The partial specification that

was examined includes one sensor processing unit, one actuator unit, and the two core subunits

of the GCS system (circled units in Figure 3). All other subunits are ignored in this case study

except the data stores. Control and data flows between the excerpted modules are the same as

they are represented in the Module chart (Figure 40).

The choice of parts for the specification excerpt is made based on its run-time schedule

(Table 2). The GCS has predetermined running time frame that is consists of three subframes.

Each subframe has specific submodules to run. The partial specification under this study is

consists of one submodule from each subframe and a submodule that runs every subframe.

ARSP (Altimeter Radar Sensor Processing) is running in the first subframe, GP (Guidance

Processing) is running in the second subframe, and RECLP (Roll Engine Control Law

 17

Processing) is running in the third subframe. CP (Communication Processing) is running in every

subframe. In SRS, CP is specified as the last submodules to run for every subframe. The order of

the submodules in the same subframe is not declared except CP. All of these submodules share

the control of some common variables. The modification of those variables is verified by the

testing. The detailed testing method is described in chapter 4.2.

Table 2 Functional unit schedule [25]

SCHEDULING
Sensor Processing Subframe (Subframe 1)
ARSP 1
ASP 1
GSP 1
TDLRSP 1
TDSP 5
TSP 2
CP 1
Guidance Processing Subframe (Subframe 2)
GP 1
CP 1
Control Law Processing Subframe (Subframe 3)
AECLP 1
CRCP 5
RECLP 1
CP 1

The ARSP (Altimeter Radar Sensor Processing) is a sensor processing submodule of the

GCS. This functional unit reads the altimeter counter provided by the altimeter radar sensor and

converts the data into a measure of distance to the surface of Mars. The CP (Communication

Processing) is a submodule that converts the sensed data into a data packet appropriate for radio

transformation. The data packets are relayed back to the orbiting platform for later analysis. The

GP (Guidance Processing) is the core-processing submodule of the GCS. This module gathers

the information from the entire sensor processing subunits and the previous computational

results. Then, it manages the vehicle’s state during the descent by controlling the actuators. The

 18

RECLP (Roll Engine Control Law Processing) is an actuator unit that computes the value

settings for three roll engine. The roll engine value settings are calculated to fix the difference

between the vehicle’s measured values during operation and the designated trajectory values.

SENSOR_OUTPUT

GUIDANCE_STATE

CRCP AECLP RECLP

CONTROL AND
TELEMETRY

OUTPUTS
CP

SENSOR DATA

ASP GSP TSP ARSP TDLRSP ASP

GP RUN_PARAMETERS

PACKET

Figure 3. GCS system architecture

 19

CHAPTER FOUR

METHODOLOGY

4.1. Application Phase

In requirement engineering, Formal Methods are used in the process of the requirements

validation. It is the last step of the requirement specification phase of the typical software

development cycle. At the requirement validation phase, one must evaluated final version of the

SRS credibility.

4.2. Applied Methods

The employed approach for this case study is a two step process using Z/Statecharts. First, the

NL-based GCS requirements specification is transformed using the Z notation. Z is used to

clarify ambiguous statements found in the SRS. For example, AR_COUNTER is specified in

two sections (Figure 4) in NL-based GCS.

The statements in Processing Unit (left column in Figure 4) describe AR_COUNTER

modification and values. One can conclude that AR_COUNTER is increasing after the radar

pulse is transmitted from the first two sentences. This means that the AR_COUNTER value is a

positive number when the radar pulse is transmitted whether an echo is arrived or not. It conflicts

with the last sentence that states the AR_COUNTER will contain sixteen one bits that

representing a negative one according to the definition in data dictionary (right column in Figure

4).

 20

Processing Unit Data Dictionary

A digital counter (AR_COUNTER) is started

as the radar pulse is transmitted. The counter

increments AR_FREQUENCY times per

second. If an echo is received, the lower

order fifteen bits of AR_COUNTER contain

the pulse count, and the sign bit will contain

the value zero. If an echo is not received,

AR_COUNTER will contain sixteen one bits.

NAME: AR_COUNTER

DESCRIPTION: counter containing elapsed time

since transmission of radar pulse

USED IN: ARSP

UNITS: Cycles

RANGE: [-1, 215-1]

DATA TYPE: Integer*2

ATTRIBUTE: data

DATA STORE LOCATION: EXTERNAL

ACCURACY: N/A

Figure 4. NL-based specification for AR_COUNTER [25]

Z is used because it provides a concrete way to transform the requirements into state-based

models using the schematic structuring facilities. The transformation elucidates assumptions and

provides mechanisms for refining abstract specifications into concrete ones for clarifying data

and functional definitions. Z Schemas are abstracted from the GCS SRS. This compositional

process helped to clarify ambiguities. Second, the Schemas are transformed into

Statecharts/Activity-charts and symbolically executed to assess the model’s behavior based on

the GCS-specified mission profile. A clear distinction of this approach with other approaches is

that Z is not used as a conjunct3 method of Statecharts. The SRS was translated into Z

completely and then translated into Statecharts.

Developing Statecharts/Activity charts from the Z schema is not a direct transformation

process. It requires in-depth knowledge of Z model because Z allows specifying infinite

(countably infinite) numbers of the system state. To specify a model that involves with infinite

system states into statecharts, one should refine the number of states into the discrete numbers.

3 This means that Z and Statecharts are used to specify different part of the same specification (i.e., Z for data
specification and Statecharts for system behavior).

 21

The development of statecharts and activity charts in Statemate environment from Z

specification is an iterative process. The refinement process involves Activities and States

specified in Statemate tool first. Simulations are performed to verify that the statecharts do not

have any nondeterministic state/activity transitions. After checking inconsistency for data items

are included in the Statemate model, all the data and transition conditions specified in the

statecharts model. Simulations are performed again to verify the second transformation did not

effect the overall model transitions. In this second simulation process, some improperly defined

function/data items in Z were found. Some function/data items were correct in ranges and types

in both Z and Statecharts; however, they were generating incorrect output during simulations.

This error information is used for the refinement of the Z schemas into more accurate terms.

After the simulation, faults are injected into state/activity charts in STATEMATE

environment. It is done by changing state variable values while running simulation. The output

from simulation with injected faults is compared with expected output. The expected output

values are obtained by calculation based on the formula given in SRS. This fault-injected

simulation enables one to evaluate system ability for coping unexpected system failure.

4.2.1 Z (Zed)

Z is classified as a model-based specification language that is equipped with an underlying

theory that enables nondeterminism to be removed mechanically from abstract formulations to

result in specifications that are more concrete. In combination with natural language, it can be

used to produce a formal specification [26].

Axiom is one of the ways of defining global object in Z. It consists of two parts: declaration

and predicate in Figure 5. The predicate constrains upon objects introduced in the declaration.

 22

Declaration
Predicate

Figure 5. Form of axiomatic definition

Schema's are the main structuring mechanism used to create patterns and objects. The

Schema notation is used to model system states and operations. A schema consists of two parts: a

declaration of variables; and a predicate constraining their values. The name of a schema is

optional, however, it is more convenient to give a name to be referred in other schemas.

Schema name
 Declaration
 Predicate

Figure 6. Form of a schema

Free type can be used to define new types. Free types are similar to the enumerated types

provided by many programming languages [27].

Free_type_name ::= constants | constructor œsource∑

Figure 7. Free type notation

Figure 7 introduces a collection of constants, one for each element of the set source.

Constructor is an injective function whose target is the set Free_type_name. Consistency of free

type can only be validated when each of the constructions (i.e., the set source) is involved with

Cartesian products, finite power sets, finite functions, and finite sequences [26].

In this case study, the state of the system and the relationship between the ARSP and the state

of various components are explained. The production of such a specification helps one to

understand requirements, clarify intentions, and identify assumptions and explain correctness.

These facilities are useful and essential in clarifying ambiguities and solidifying one’s

understanding of the requirements.

 23

4.2.2 Statecharts

Statecharts, a state-based formal diagrammatic language, constitute a visual formalism for

describing states and transitions in a modular fashion, enabling cluster orthogonality (i.e.,

concurrency) and refinement, and supporting the capability for moving between levels of

abstraction. The kernel of the approach is the extension of conventional state diagrams by

AND/OR decomposition of states together with inter-level transitions, and a broadcast

mechanism for communication between concurrent components. The two essential ideas

enabling this extension are the provision for depth (level) of abstraction and the notation of

orthogonality. In other words, Statecharts = State-diagrams + depth + orthogonality + broadcast-

communication [28].

Statecharts (using STATEMATE) provide a way to specify complex reactive systems both in

terms of how objects communicate and collaborate and how they conduct their own internal

behavior. Together, Activity-charts and Statecharts are used to describe the system functional

building blocks, activities, and the data that flows between them. These languages are highly

diagrammatic in nature, constituting full-fledged visual formalisms, complete with rigorous

semantics providing an intuitive and concrete representation for inspecting and checking for

conflicts [29]. The Activity-charts and Statecharts are used to specify conceptual system models

for symbolic simulation. Using the simulation method, assumptions were verified, faults were

injected, and hidden errors were identified that represent inconsistencies or incompleteness in the

specification.

In this case study, a GCS project was created within the Statemate environments. Graphical

editors were used to create Module chart, Statecharts and Activity-charts. Once the graphical

forms were characterized, state transition conditions and data items were defined. These items

and/or conditions trigger activities and state transitions that occur within the Statemate model

 24

based on definitions within the “data dictionary” and/or the “data bank browser.” The Activity-

chart and Statecharts reflect all variables/conditions defined in the Z formulation. During

simulation, various color changes and simulation monitor help to show the sequence of state

changes that occur to validate the system according to its specified structure (based on Schema

signatures) and constraints (based on Schema predicates). Initial (and current) values and

conditions were changed while at the same time rerunning and/or resuming the simulation in the

process of verifying assumptions against the Statecharts specification. In this way, the

Statecharts model was executed and tested.

4.2.3 Specification Tests

The statecharts model is tested in two different ways in the Statemate environments. First, the

state/activity charts are tested as finite state machines. In this way, the consistency and the

completeness of those charts are verified. This testing involves with state transition conditions

and the triggers of activities. Next, the functionality of the statecharts model is tested using

simulations. The actual outputs (values that are generated by the state/activity charts simulations)

are compared with the expected output (values that are calculated based on the equations given

in the SRS and defined in the Z schemas). Using graphical simulation, both of the tests are

performed.

4.2.3.1 Finite State Machine Approach

Bogdanv and Holcombe discusses about how they tested a statecharts model of the aircraft

control system in [30]. They extended a method to examine finite state machine for the

statecharts model. It is reasonable to extend their method to this case study because the

statecharts are a state-based specification language.

 25

The test cases are generated to evaluate whether the statecharts model is behaviorally

equivalent to the NL-based GCS specification. In other words, every activity and state transitions

are performed as described in the SRS. This testing assures that there are no absorbing

states/activities in the statecharts model.

4.2.3.2 Data Item approach

In the data item approach, the state/activity charts are treated like a software program. The test

cases are generated to evaluate whether the statecharts model produces the correct outputs. The

input and output values are determined based on the information from the data dictionary and the

equations given by the SRS. The expected outputs are calculated from a pre-selected set of

inputs. This test assures that there are no inconsistent or unspecified operations with in the SRS.

4.2.4 Fault Injection

Fault injection is a technique used to observe how a software system behaves under

experimentally-controlled, anomalous circumstances. Voas et al., define that system anomalies

are caused by either faulty codes or corrupted inputs otherwise combinations of both. They take

the approach of injecting anomalies rather than injecting faults in the software program [31]. In

this case study, the evaluation with abnormal inputs and outputs are covered by the test using the

data item approach (Chapter 4.3.3.2).

In this process, the system state transitions and incorrect output due to the abnormal system

failures are focused to analyze. While running the simulation, either the system variables were

altered or state transitions are redirected. Test cases were generated based on the functionality

and significance of the failure. The fault injection is not performed to the submodule that would

not cause critical system failure. In this way, the SRS is evaluated for the fault-tolerance.

 26

4.3. Application Example

The example shown in this section is the part of publications that describes a prototypical case

study using same validation methods as used in this thesis [32, 33]. This section shows the only

one submodule of the GCS SRS transformation via Z and Statecharts.

The Altitude Radar Sensor Processing (ARSP) module specification showing inputs, outputs,

and subsystem processing descriptions was chosen for the purpose of this application example.

The SRS provides a data dictionary with variable definitions, type, and units, and a brief

description of variables and functions. The NL-based module specification was abstracted into Z,

while variable names, operations (i.e., functionality), dependency and scope were preserved.

Figure 8 provides an example using the FRAME_COUNTER input variable that illustrates the

complete translation from Z to Statecharts. The top box in the Figure 8 represents the NL-based

SRS. The box in the middle of the Figure 8 represents the Z Specification while the bottom box

shows a part of the Statecharts model of ARSP submodule. In the NL-based SRS, the

FRAME_COUNTER is defined as an integer with range [1,231-1]. In Z, the

FRAME_COUNTER is declared as a set of natural numbers in the signature part, and the range

of the variable is defined in the predicate part (lower half of the schema). The Statechart

representation of the FRAME_COUNTER variable is presented with the direction of data

transfer from EXTERNAL into the ARSP Module. Its type and value range are defined in the

Statemate data dictionary.

 27

ARSP_RESOURCE
1 FRAM E_COUNTER? : N
2 AR_ FREQUENCY? : R
3 AR_COUNTER? : Z
4 K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW : {0,1}

5 AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,
AR_ALTITUDE_NEW : R

6 AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4,
AR_STATUS_NEW : {0,1}

7 K_ALT: K_ALT_NEW x K_ALT_1 x K_ALT_2 x K_ALT_3 x K_ALT_4
8 AR_STATUS: AR_STATUS_NEW x AR_STATUS_1 x AR_STATUS_2 x

AR_STATUS_3 x AR_STATUS_4
9 AR_ALTITUDE: AR_ALTITUDE_NEW x AR_ALTITUDE_1 x AR_ALTITUDE_2 x

AR_ALTITUDE_3 x AR_ALTITUDE_4
X AR_COUNTER? e -1..32767
Y AR_FREQUENCY? e 1..2450000000
Z FRAM E_COUNTER? e 1..2147483647
[AR_ALTITUDE_1 == 1..2000 ¶ AR_ALTITUDE_2 == 1..2000 ¶

AR_ALTITUDE_3 == 1..2000 ¶ AR_ALTITUDE_4 == 1..2000 ¶
AR_ALTITUDE_NEW ==1..2000

INPUT
AR_ALTITUDE AR_COUNTER
AR_FREQUENCY AR_STATUS
FRAME_COUNTER K_ALT

OUTPUT
AR_ALTITUDE AR_STATUS

K_ALT

PROCESS:
It is only necessary that this functional module …

NAME: FRAME_COUNTER
DESCRIPTION: Counter containing the number of
the present frame
USED IN: AECLP, ARSP, CP, GP, TDLRSP
UNITS: none
RANGE: [1, 231-1]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

Module Specification Data Dictionary

Z Specification

Statecharts

NL-Based SRS

RUN_PARAMETER

EXTERNAL

ARSP

@INIT

CALCULATE

@ALTIMETER

GUIDANCE_STATE

SENSOR_OUTPUT
AR_FREQUENCY

AR_COUNTER

FRAME_COUNTER

AR_ALTITUDE

AR_ALTITUDE

AR_STATUS

AR_STATUS

K_ALT

K_ALT

Figure 8. Translation example from NL-based to statecharts

 28

In translating from the NL-based SRS to Z, four different requirements were identified as

being ambiguous. The first ambiguous requirement concerns the rotational direction assumed by

the use of the term “rotate.” Secondly, an undefined third order polynomial was revealed that is

used to estimate the AR_ALTITUDE value. The third issue (i.e., ambiguity) concerns the use of

the AR_COUNTER variable for two different purposes, which implies that it has two different

types. Finally, there is uncertainty regarding the scope of the AR_COUNTER variable that

brings into question which module should use and/or modify this variable.

Given these various issues, two scenarios were considered. The first scenario assumes the

AR_COUNTER is updated within the ARSP module while the second scenario does not. Both

scenarios were constructed separately and compared to understand how Z could be useful in

clarifying ambiguity and avoiding conflicts. In the SRS, the sign bit of AR_COUNTER

represents whether the radar echo pulse is received on time. In scenario one, this condition is

split off into the Echo variable while in scenario two the Echo variable is not introduced. The Z

specification is consistent with the SRS as long as the newly defined Echo variable does not

cause a side affect outside of the ARSP module. Accordingly, the Z version of the ARSP

specification was defined to account for two separate variables. As the result of the process, the

Echo variable was found to be treated as an additional ARSP input, otherwise there is no way to

determine if the radar echo pulse has been received. This in turn caused the whole specification

to be revised to reflect the principle that mandates decoupling data [3]. Therefore, the

interpretation of Scenario One is inconsistent with the SRS.

On the other hand, in Scenario Two (details described in chapter 4.3.1) no additional

variables were defined. Only those variables defined in the SRS were specified, and all the

requirements specified in ARSP were covered. Therefore, this reformulation of the SRS in Z

 29

was considered complete and consistent. Consequently, Statecharts were developed based on

Scenario Two.

4.3.1 Z Specification

The second Z scenario of the ARSP module is described here. The only assumption in this

scenario is that the AR_COUNTER value must be updated from outside of the ARSP module

and is ready for immediate use. When the AR_COUNTER value is –1 this indicates that the echo

of the radar pulse has not yet been received. If the AR_COUNTER value is a positive integer,

this means that the echo of the radar pulse arrived at the time indicated by the value of the

counter.

The ARSP_RESOURCE schema (Figure 9) defines the ARSP module input and output

variables. The FRAME_COUNTER? (Signature [Sig.] 1) is an input variable giving the present

frame number and is typed as a natural number. AR_FREQUENCY? (Sig. 2) represents the rate

at which the AR_COUNTER? has been incremented and is typed as a real number. The

AR_COUNTER? (Sig. 3) is an input variable that is used to determine the AR_ALTITUDE

value and its type is an integer. The K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, and

K_ALT_NEW (Sig. 4) variables are defined as sets of binary elements. The

AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4, and

AR_ALTITUDE_NEW (Sig. 5) are defined as a set of real numbers to represent the altitude

that is determined by altimeter radar. AR_STATUS_1, AR_STATUS_2, AR_STATUS_3,

AR_STATUS_4, and AR_STATUS_NEW (Sig. 6) are defined as binary values that represent

health status for the various elements of the altimeter radar. The AR_STATUS,

AR_ALTITUDE, and K_ALT (Sig.s 7-9) arrays hold the previous 4 values of their elements

respectively.

 30

The AR_STATUS, AR_ALTITUDE, and K_ALT variables were defined as a 5-element

array in the SRS. Z does not have a specific array construct so these variables are designed as 5-

element Cartesian products. The array can also be represented as a 5-element sequence. The

Cartesian product method was chosen because this composition assumes that any element can be

accessed directly without having to search though the sequence. The predicates X, Y, and Z

represent the variables ranges. The predicate [restricts the values for the sets in the Signature

5.

ARSP_RESOURCE
1 FRAME_COUNTER? : N
2 AR_ FREQUENCY? : R
3 AR_COUNTER? : Z
4 K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW: {0,1}
5 AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,

AR_ALTITUDE_NEW: R
6 AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4,

AR_STATUS_NEW: {0,1}
7 K_ALT: K_ALT_NEW x K_ALT_1 x K_ALT_2 x K_ALT_3 x K_ALT_4
8 AR_STATUS: AR_STATUS_NEW x AR_STATUS_1 x AR_STATUS_2 x

AR_STATUS_3 x AR_STATUS_4
9 AR_ALTITUDE: AR_ALTITUDE_NEW x AR_ALTITUDE_1 x AR_ALTITUDE_2 x

AR_ALTITUDE_3 x AR_ALTITUDE_4
X AR_COUNTER? e -1..32767
Y AR_FREQUENCY? e 1..2450000000
Z FRAME_COUNTER? e 1..2147483647
[AR_ALTITUDE_1 == 1..2000 ¶ AR_ALTITUDE_2 == 1..2000 ¶

AR_ALTITUDE_3 == 1..2000 ¶ AR_ALTITUDE_4 == 1..2000 ¶
AR_ALTITUDE_NEW ==1..2000

Figure 9. ARSP_RESOURCE schema

The ARSP schema (Figure 10) is the main functional schema of the ARSP module. The

ARSP_RESOURCE schema is imported (and is modified) in the Signature 1. The

Altitude_Polynomial function (Sig. 2) obtains the AR_ALTITUDE as input and estimates the

 31

current altitude by fitting a third-order polynomial to the previous value of the AR_ALTITUDE.

AR_STATUS_Update (Sig. 3), K_ALT_Update (Sig. 4), and AR_ALTITUDE_Update (Sig.

5) update AR_STATUS, K_ALT, and AR_ALTITUDE array with their _NEW values

respectively. The expression “FRAME_COUNTER? mod 2” is used on 7 occasions to determine

if the FRAME_COUNTER? is odd or even.

ARSP
1 D ARSP_RESOURCE
2 Altitude_Polynomial: AR_ALTITUDE f R
3 AR_STATUS_Update: AR_STATUS_NEW x AR_STATUS f AR_STATUS
4 K_ALT_Update: K_ALT_NEW x K_ALT f K_ALT
5 AR_ALTITUDE_Update: AR_ALTITUDE_NEW x AR_ALTITUDE f AR_ALTITUDE
X FRAME_COUNTER? mod 2 = 0 ¤

AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE_NEW,
AR_ALTITUDE) ¶ AR_STATUS’ = AR_STATUS_Update (AR_STATUS_NEW,
AR_STATUS) ¶ K_ALT’ = K_ALT_Update (K_ALT_NEW, K_ALT)

Y FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER ˘ 0 ¤ AR_ALTITUDE’=
AR_ALTITUDE_Update ({AR_COUNTER? * 300000000 div AR_FREQUENCY div
2}, AR_ALTITUDE)

Z FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS = (_, 0, 0, 0, 0) ¤
AR_ALTITUDE’ =
AR_ALTITUDE_Update ({Altitude_Polynomial AR_ALTITUDE}, AR_ALTITUDE)

[FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS Î (_, 0, 0, 0, 0)
¤ AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE_1, AR_ALTITUDE)

\ FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER ˘ 0 ¤ AR_STATUS’ =
AR_STATUS_Update(0, AR_STATUS) ¶ K_ALT’ = K_ALT_Update(1, K_ALT)

] FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS = (_, 0, 0, 0, 0) ¤
AR_STATUS’ = AR_STATUS_Update(1, AR_STATUS) ¶
K_ALT’ = K_ALT_Update(1, K_ALT)

^ FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶ AR_STATUS Î (_, 0, 0, 0, 0)
¤ AR_STATUS’ = AR_STATUS_Update(1, AR_STATUS) ¶
K_ALT’ = K_ALT_Update(0, K_ALT)

Figure 10. ARSP schema

 32

Predicate X requires that the current AR_ALTITUDE, AR_STATUS, and K_ALT element

values be the same as the predecessors when FRAME_COUNTER? is even. Predicate Y

constraints the AR_ALTITUDE update. The update takes the current value, calculated by the Eq.

1, when FRAME_COUNTER? is odd and AR_COUNTER? is greater than or equal to zero.

Predicate Z states that the AR_ALTITUDE value is updated (i.e., estimated) by the

Altitude_Polynomial function. This is done when FRAME_COUNTER? is odd,

AR_COUNTER? is -1, and all the AR_STATUS elements are healthy.

Predicate [requires that the current value in AR_ALTITUDE be the same as the previous

values when FRAME_COUNTER? is odd, AR_COUNTER? is -1 and any of the elements in

AR_STATUS are not healthy. Predicate \ requires that the updates to AR_STATUS and

K_ALT occur when FRAME_COUNTER? is odd and the AR_COUNTER? is -1. Predicate]

requires that the updates to AR_STATUS and K_ALT occur when FRAME_COUNTER? is odd,

the AR_COUNTER? is -1, and all of the AR_STATUS elements are healthy. Predicate ^

requires that the updates to AR_STATUS and K_ALT occur when FRAME_COUNTER? is odd,

AR_COUNTER? is -1, and any of the elements in AR_STATUS is not healthy.

4.3.2 Statecharts

The state/activity charts in Statemate environments of the Z specification is described in this

section. The ARSP Activity-chart (Figure 11) shows the data flow between the data stores and

the ARSP module. The data flows are directed as specified in the data dictionary of the NL-

based SRS. The “@INIT” control state in the ARSP activity chart represents the link to the INIT

Statechart. Each activity is allowed to have only one control state. The control state can be a

superstate or AND/OR decomposed state.

 33

RUN_PARAMETER

EXTERNAL

ARSP

@INIT

CALCULATE

@ALTIMETER

GUIDANCE_STATE

SENSOR_OUTPUT
AR_FREQUENCY

AR_COUNTER

FRAME_COUNTER

AR_ALTITUDE

AR_ALTITUDE

AR_STATUS

AR_STATUS

K_ALT

K_ALT

Figure 11. ARSP activity-chart

INIT

[MOD(FRAME_COUNTER, 2)=1]/
st!(CALCULATE)

CURRENT_STATE

KEEP_PREVIOUS_VALUE> CALCULATION

[MOD(FRAME_COUNTER, 2)=0]/
AR_ALTITUDE(4):=AR_ALTITUDE(3);
AR_ALTITUDE(3):=AR_ALTITUDE(2);
AR_ALTITUDE(2):=AR_ALTITUDE(1);
AR_ALTITUDE(1):=AR_ALTITUDE(0);
AR_STATUS(4):=AR_STATUS(3);
AR_STATUS(3):=AR_STATUS(2);
AR_STATUS(2):=AR_STATUS(1);
AR_STATUS(1):=AR_STATUS(0);
K_ALT(4):=K_ALT(3);
K_ALT(3):=K_ALT(2);
K_ALT(2):=K_ALT(1);
K_ALT(1):=K_ALT(0)

Figure 12. INIT statechart

INIT Statechart (Figure 12) shows the initialization of the ARSP module and a portion of the

ARSP operational schema (Figure 10). The default transition activates the CURRENT_STATE

 34

when the ARSP activity of the ARSP activity chart is begun. The transition from the

CURRENT_STATE state to KEEP_PREVIOUS_VALUE state describes predicate X of Figure

10. The KEEP_PREVIOUS_VALUE state is one of the module termination states. The

termination states are marked with “>” at the end of the state name. The transition from the

CURRENT_STATE to the CALCULATION state represents a condition where the value of

FRAME_COUNTER is odd which is described as “FRAME_COUNTER mod 2 = 1” in Figure

10.

The Altimeter Statechart (Figure 13) is represented by the “@ALTIMETER” control activity

of the ARSP activity chart. The ODD state is activated by the default transition when the

CALCULATION activity of the ARSP activity chart is begun. The transition from the ODD

state to the ESTIMATE_ALTITUDE state occurs when the AR_COUNTER value is set to -1

and all the elements of the AR_STATUS value are set to “healthy.” When this transition begins

the AR_STATUS and K_ALT values will be updated as described by predicate] of Figure 10.

The 0 (zero) value of the AR_STATUS means “healthy” which corresponds to the value given in

the SRS data dictionary [25]

The transition from the ODD state to the CALCULATE_ALTITUDE state begins when a

positive value of the AR_COUNTER is given which is equivalent to predicate \ of Figure 10.

The transition from the ODD to the KEEP_PREVIOUS state is triggered when the

AR_COUNTER value is set to -1 and at least one of the AR_STATUS elements is not healthy.

This transition has the same meaning as predicate ^ in Figure 10. The transition from the

ESTIMATE_ALTITUDE state to the DONE state happens when the ESTIMATION_FINISHED

event occurs. This process is represented as an event because the transaction is described as an

undefined third-order polynomial estimation in the SRS. The transaction from the

 35

CALCULATE_ALTITUDE state to the DONE state denotes predicate Y (Figure 10). The

transaction from the KEEP_PREVIOUS state to the DONE state denotes the predicate [(Figure

10) operation.

ALTIMETER

DONE>

[AR_COUNTER=-1]
and [AR_STATUS(1)=0]
and [AR_STATUS(2)=0]
and [AR_STATUS(3)=0]
and [AR_STATUS(4)=0]
/AR_STATUS(0):=1;
K_ALT(4) := K_ALT(3);
K_ALT(3) := K_ALT(2);
K_ALT(2) := K_ALT(1);
K_ALT(1) := K_ALT(0);
K_ALT(0) := 1

/AR_ALTITUDE(4) := AR_ALTITUDE(3);
AR_ALTITUDE(3) := AR_ALTITUDE(2);
AR_ALTITUDE(2) := AR_ALTITUDE(1);
AR_ALTITUDE(1) := AR_ALTITUDE(0)

ESTIMATION_FINISHED

/AR_ALTITUDE(4) := AR_ALTITUDE(3);
AR_ALTITUDE(3) := AR_ALTITUDE(2);
AR_ALTITUDE(2) := AR_ALTITUDE(1);
AR_ALTITUDE(1) :=
(AR_COUNTER /AR_FREQUENCY)* 300000000/2

[AR_COUNTER=-1]
and ([AR_STATUS(1)=1]
or [AR_STATUS(2)=1]
or [AR_STATUS(3)=1]
or [AR_STATUS(4)=1]
/AR_STATUS(4) := AR_STATUS(3);
AR_STATUS(3) := AR_STATUS(2);
AR_STATUS(2) := AR_STATUS(1);
AR_STATUS(1) := AR_STATUS(0);
AR_STATUS(0):=1;
K_ALT(4) := K_ALT(3);
K_ALT(3) := K_ALT(2);
K_ALT(2) := K_ALT(1);
K_ALT(1) := K_ALT(0);
K_ALT(0) := 0

[AR_COUNTER>=0]
/AR_STATUS(4) := AR_STATUS(3);
AR_STATUS(3) := AR_STATUS(2);
AR_STATUS(2) := AR_STATUS(1);
AR_STATUS(1) := AR_STATUS(0);
AR_STATUS(0):=0;
K_ALT(4) := K_ALT(3);
K_ALT(3) := K_ALT(2);
K_ALT(2) := K_ALT(1);
K_ALT(1) := K_ALT(0);
K_ALT(0) := 1

ODD

CALCULATE ALTITUDEESTIMATE_ALTITUDE KEEP_PREVIOUS

Figure 13. ALTIMETER statechart

4.3.3 Tests

Now the results of this validation effort must be discussed based on a symbolic simulation of the

GCS Statechart model. In effect, the ARSP submodule requirements are verified complete and

consistent by running the simulation against all of the Activity/Statecharts in the Statemate

environments. Two specification tests results are presented in this section.

 36

4.3.3.1 Finite State machine approach

There are four possible paths of activity/state transition in the ARSP statecharts model. Path 1

represents the ARSP module’s reaction when the FRAME_COUNTER is even. Path 2 is when the

updated FRAME_COUNTER is an odd value, the radar echo pulse is not yet received, and all the

AR_STATUS elements’ values are healthy. Path 3 is when the updated FRAME_COUNTER is an

odd value, the radar echo pulse is received, and all the AR_STATUS elements’ values are

healthy. Path 4 is when the updated FRAME_COUNTER value is odd, the echo is not arrived, and

one or more of the AR_STATUS elements’ values are not healthy.

The simulation results in Table 3 shows the order of the activities/states entered for each

path. One can conclude that the ARSP statecharts model does not have any absorbing

state/activity. Therefore, the statecharts model is consistent.

Table 3. ARSP specification simulation result

Activity/State Transition Paths
Name of Chart Activity / State Name

1 2 3 4
ARSP E1 E1 E1 E1
@INIT E2 E2 E2 E2
CALCULATE - E5 E5 E5

ARSP

@ALTIMETER - E6 E6 E6
CURRENT_STATE E3 E3 E3 E3
KEEP_PREVIOUS_VALUE> E4 - - - INIT
CALCULATION - E4 E4 E4
ODD - E7 E7 E7
ESTIMATE_ALTITUDE - E8 - -
CALCULATE_ALTITUDE - - E8 -
KEEP_PREVIOUS - - - E8

ALTIMETER

DONE> - E9 E9 E9

 Ei entered in ith order, - not activated.

 37

4.3.3.2 Data Item approach

Five test cases (Case 1-5) as shown in Table 4 were defined to execute and test the statecharts.

They represent the way the Z specification is visualized and evaluated. Based on the given

equations in the NL-based SRS, the input and output values are calculated. The

AR_FREQUENCY variable is used to process AR_ALTITUDE value (represented as a state

transition from the CALCULATE_ALTITUDE state to the DONE> state in Figure 13). This

variable is defined as a real number and has a very large range. For that reason, the

AR_FREQUENCY variable is not used as a system state variable in the statecharts model.

Instated, its value is fixed as a constant. To calculate the expected output value of

AR_ALTITUDE, the AR_FREQUENCY value is fixed at 1,500,000,000 for all test cases. The

material presented below shows how each of the conditions was evaluated and this should help

to convince the reader that the ARSP subunit is significantly complex (one of six different sensor

units used by the GCS).

The values of the ARSP input/output variables are given in Table 4. The contents of the

Table 5 represent the highlighted column of the Table 4 in detail. In the test case1, for example,

input variables for ARSP submodule are FRAME_COUNTER, AR_STATUS, and

AR_COUNTER and their values are 2, “Don’t care”, and -1. “Don’t care” means that the

AR_STATUS variable can take any values in its range. The output variables of the ARSP

submodule are AR_STATUS, K_ALT, and AR_ALTITUDE. The expected values of each of the

output variables are depend on the module inputs and its value before the execution. The

expected values of the output variables are calculated outside of the simulation. The “After

execution” values (shown in Table 5) of the output variables represent the actual outputs from

the statecharts model simulation. The test results are concluded correct when the expected values

 38

and the after execution values match. All of the output values for all the test cases are the same

as expected (as shown in Table 4). All of the variables were updated as expected. Therefore, the

result of this simulation shows the previous Z specification was developed correctly.

Table 4. ARSP specification test input and output

 Variable Case 1 Case 2 Case 3 Case 4 Case 5

FRAME_COUNTER 2 2 1 1 3
AR_STATUS - - [0, 0, 0, 0, 0] - [0, 0, 1, 0, 0]Input
AR_COUNTER -1 19900 -1 20000 -1

AR_STATUS KP KP [1, 0, 0, 0, 0] [0, -, -, -, -] [1, 0, 0, 1, 0]
K_ALT KP KP [1, 1, 1, 1, 1] [1, -, -, -, -] [0, 1, 1, -, 1]Expected

Output
AR_ALTITUDE KP KP [*, -, -, -, -] [2000,-,-,-,-] KP

AR_STATUS KP KP [1, 0, 0, 0, 0] [0, -, -, -, -] [1, 0, 0, 1, 0]
K_ALT KP KP [1, 1, 1, 1, 1] [1, -, -, -, -] [0, 1, 1, -, 1]Actual

Output
AR_ALTITUDE KP KP [*, -, -, -, -] [2000,-,-,-,-] KP

- Don’t care, KP Keep Previous value, * An estimated value.

Table 5. Detailed testing results – Case 1 example

Case 1
 Variable

Before the execution Expected values After the execution
FRAME_COUNTER 2 2 2

AR_STATUS - - - Input
AR_COUNTER -1 -1 -1
AR_STATUS [1,0,0,0,0] [1,1,0,0,0] [1,1,0,0,0]

K_ALT [1,1,1,1,1] [1,1,1,1,1] [1,1,1,1,1] Output
AR_ALTITUDE [2000, -, -, -, -] [2000, 2000, -, -, -] [2000, 2000, -, -, -]

- Don’t care.

4.3.4 Fault Injection

At this step, simulation of the specification is used for discovering hidden faults and their

location. To accomplish this, faults are injected into the model to simulate memory corruption

(i.e., expected due to the harsh space born lander mission environment.)

 39

Four new issues arose during the fault injection process. (1) Some correct inputs produced

incorrect outputs; (2) The Statecharts approach has a better chance of predicting possible faults

in the system. (Because the Z specification cannot provide a way of predicting the transitions

from state to state i.e., Z is not executable); (3) During the symbolic simulation, some week

points were found where faults were lurking (e.g., errors described in Appendix C in [32]); (4)

Consequently, there are many design decisions to be made in the process of developing a model

(i.e., specification). Finding the correct formulation is a process of refinement and validation,

which was facilitated using this approach combined with symbolic simulation. Some

requirements were found to be inconsistent/incomplete because they produced incorrect results.

For example, one can alter a system state variable (i.e., FRAME_COUNTER) at a certain

state (i.e., CURRENT_STATE) during the simulation (i.e., for test case 1). Table 6 shows the

fault injection results of the FRAME_COUNTER alteration at CURRENT_STATE while

running test case 1. The expected values of the output variables are not the same as the actual

values of the output due to the state variable change. This means the highlighted x mark in the

Table 7.

Table 7 shows 120 of the specification testing results using fault injection. The fault injection

states are the states defined in the Statecharts model. According to the result table, the

“CURRENT_STATE” does not tolerate any of the injected faults. In addition, the fault injection

in the CALCULATION and ODD system states produce erroneous outputs. Therefore, one can

conclude these three system states are the most vulnerable states.

 40

Table 6. Detailed fault injection results – Case 1 example

Case 1
 Variable

Before the execution Expected values After the execution
FRAME_COUNTER 2 2 2

AR_STATUS - - - Input
AR_COUNTER -1 -1 -1
AR_STATUS [1,0,0,0,0] [1,1,0,0,0] [1/0,1,0,0,0]

K_ALT [1,1,1,1,1] [1,1,1,1,1] [1,1,1,1,1] Output
AR_ALTITUDE [2000, -, -, -, -] [2000, 2000, -, -, -] [*, 2000, -, -, -]

- Don’t care, * An estimated value.

Table 7. Fault injection simulation result

Altered state variable

FRAME_COUNTER AR_COUNTER AR_STATUS
Case Case Case

Fault injected State

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
CURRENT_STATE x x x x x x x x x x x x x x x

KEEP_PREVIOUS_VALUE b b b b b b b b b b b b b b b
CALCULATION b b b b b b b x x x b b x b x

ODD b b b b b b b x x x b b x b x
ESTIMATE_ALTITUDE b b b b b b b N/A b b b b N/A b b

CALCULATE_ALTITUDE b b b b b b b b x b b b b b b
KEEP_PREVIOUS b b b b b b b b b b b b b b b

DONE b b b b b b b b b b b b b b b

x incorrect outputs, b no defect, N/A not applicable.

4.3.5 Reformulated Requirements

Based on the simulation results using fault injection, the SRS was discovered incomplete. To

remedy the situation, the AR_FREQUENCY value must be bounded to prevent the

AR_ALTITUDE value from exceeding its limit. Thus, one of the following conditions should be

included: 1¯AR_FREQUENCY¯AR_COUNTER * 75000, or AR_COUNTER = -1 v (0 ¯

AR_COUNTER ¯ AR_FREQUENCY/75000). In other words, one of these two relational

expressions must resolve to true.

 41

The result of this analysis revealed that it is possible to construct a complete and consistent

specification using this method (Z-to-Statecharts). Ambiguous statements in the NL-based

specification were revealed in the refinement process of Z specification using the test results.

The outputs from the modules were examined and shown to be consistent with the expected

results by running simulations based on the Statecharts/Activity-charts. All of the state

activation/transition paths were in the correct order as expected for all test cases. Moreover, no

nondeterministic state transitions were detected for all simulation runs (based on the conditions

provided). In this way, the simulation has provided a means for determining the consistency of

the requirements.

The output values from the simulation were checked and compared against the expected

values, which were calculated based on the NL-based SRS, then found to be valid. After running

various simulations using fault injection, several issues were uncovered which indicate that the

SRS is incomplete. In addition, some vulnerable states were identified where faults were injected

into the system model (i.e., Statecharts) when the model was executed using simulations. The

conclusion is that the transformed submodule would not be able to tolerate certain system faults.

Therefore, these findings indicate that one can better understand the implications of the system

requirements using this approach (Z-Statecharts) to facilitate their specification and analysis.

 42

CHAPTER FIVE

RESULTS

5.1. Z (Zed)

The GCS SRS excerpt was specified in Z. The generic Z has the "?" notation representing an

input variable and the “!” notation representing an output variable. The NL-based GCS SRS

defines some variables as both input and output. Z does not provide a way to describe this.

Therefore, those variables are represented without both "?" and "!" notations.

Z/EVES4 is used to verify the correctness and the consistency for the prototypes of the Z

specification. There are three reasons why the Z/EVES is used for the prototype rather than the

entire Z specification. First, the Z/EVES does not have the capacity of importing the entire

schemas in one file. The GCS is a very complex system and the GCS excerpt (in Chapter 3)

requires about 18 pages of schema to describe its data and functions. All the schemas and axioms

have to be placed in a same file to examine the whole system because they are defined

hierarchically. In other words, most of the schemas import previously defined schemas and

axioms. Second, most of the specification patterns are repeatedly used to describe functions and

data of the GCS excerpt. It is not necessary to examine the same specification patterns over and

over. Last, Z/EVES does not provide some data types (i.e., R: real numbers) and functions (i.e.,

x: Cross product of metrics). The correctness and consistency of data items using those data

types and functions are evaluated while the Statecharts model is tested using simulations.

4 Z/EVES is a tool made available by ORA, Canada. It provides theorem proving, domain checking, type checking,
precondition calculation, and schema expansion for Z specification.

 43

5.1.1 Global Constants and Functions

Axioms and abbreviations are used to define global constants and functions. The abbreviation

represents T_n is another name for a sequence of natural numbers.

 T_n==seq N

nmatrix: NxN f seq T_n
Aa:T_n; b,m,n:N; t:seq T_n | mÎ0¶nÎ0¶#a=m¶#t=n¶be1..n • t b = a ¶ nmatrix (m,n)=t

The axiom defines a global function that returns a matrix that has n rows and m columns.

The dimensions (n and m) of the matrix definition are in reverse order for making reference of

the elements more conventional. For example, [a:seq T_n • a = nmatrix(3,2)] creates a 2×3

matrix. When the reference convention of this matrix is as described in the Figure 14.

When it is defined as a sequence in Z,

a = 〈 a1 , a2 , a3 〉 a =

 a11 a12
 a21 a22
 a31 a32 = 〈〈 a11, a12 〉, 〈 a21, a22 〉, 〈 a31, a32 〉〉

The row’s of a are referred as a 1 a 2 a 3

The each elements of the a are

referred as a 11, a 1 2, a 2 1, a 2 2, a 3 1, a 3 2

Figure 14. Array definition with sequences

In the declaration part, the nmatrix function is signified to take two natural numbers and it

maps those two numbers to a matrix that is represented by a sequence of T_n. The constraint part

shows that the element of the return sequence is a non-empty sequence of natural numbers and

the return sequence is a non-empty sequence.

Z/EVES is used to prove these definitions are correct. Figure 15 shows the proof formula

from the Z/EVES and Figure 16 shows the proof window of the Z/EVES after proving the

nmatrix function definition. Figure 17 shows the specification window after running the proof.

 44

proof of nmatrix$domainCheck
prove by reduce

local nmatrix e N x N f seq T_n
v (a e T_n v b e N v n e N v m e N v t e seq T_n)
fi (m Î 0 v n Î 0 fi a e dom #)
v (m Î 0 v n Î 0 v # a = m fit e dom #)
v (m Î 0 v n Î 0 v # a = m v # t = n v b e 1 .. n
fi (t ,b)e applies$to v (t b = a fi (m ,n)e dom local nmatrix))

Figure 15. Proof formula of the nmatrix function

Figure 16. Z/EVES proof window

 45

Figure 17. Z/EVES specification window

 T_r ==seq R

rmatrix: NxNfseq T_r
Aa:T_r; b,m,n:N; t:seq T_r | mÎ0¶nÎ0¶#a=m¶#t=n ¶be1..n • t b = a ¶ rmatrix (m,n)=t

The abbreviation makes T_r be another name for the sequence of real numbers. In this

case, R is used as a basic type representing real numbers while it is not provided as a basic type

in the Z/EVES; therefore it is defined in the Z/EVES as a free type (in Figure 17).

The axiom defines a global function that creates a matrix that has n rows and m columns.

In the declaration part, the rmatrix function is signified to take two natural numbers and it maps

those two numbers to a matrix which represented by a sequence of T_r. The constraint part

shows that the elements of the return sequence are sequences of natural numbers and the

elements of the return sequence are non-empty sequences.

 46

proof of rmatrix$domainCheck
prove by reduce

local rmatrix e N x N f seq T_r
v (a e T_r v b e N v n e N v m e N v t e seq T_r)
fi (m Î 0 v n Î 0 fi a e dom #)
v (m Î 0 v n Î 0 v # a = m fit e dom #)
v (m Î 0 v n Î 0 v # a = m v # t = n v b e 1 .. n
fi (t ,b)e applies$to v (t b = a fi (m ,n)e dom local rmatrix))

Figure 18. Proof formula of the rmatrix function

The nmatrix function and rmatrix functions are the functions that create matrixes with n rows

and m columns; one with natural numbers and the other with real numbers respectively. The

specification patterns forming these functions are the same except the data type. Furthermore, the

proof formula for the rmatrix is the same with the proof formula for the nmatrix except the data

type (Figure 18). Therefore, the nmatrix function is considered as the prototype of the functions

which form the n rows and m columns of a matrix. In this regard, the prototypes of the

declarations and predicates are proved in the same way the nmatrix function is proved.

T_any ::= any1 œseq N∑| any2 œseq R∑

Figure 19. T_any free type definition

Figure 19 shows a definition of a free type that consists of sequences of natural numbers

and/or sequences of real numbers.

INIT_DONE, RUN_DONE: N

Figure 20. Global variable definition

Figure 20 shows global variable definitions. The variable INIT_DONE and RUN_DONE is

specified as natural numbers. They are system control variables of the GCS excerpt.

 47

GUIDANCE_STATE_1
 A_STATUS: seq T_n

 AE_STATUS, AE_SWITCH, AE_TEMP, C_STATUS: N
 AR_STATUS: T_n

 CHUTE_RELEASED, CL, CONTOUR_CROSSED, G_STATUS: N
 FRAME_ENGINES_IGNITED: N

 GP_ALTITUDE: T_r
 GP_ATTITUDE_ELEMENT: seq T_r
 GP_ATTITUDE: seq (seq T_r)

 GP_PHASE: N
 GP_ROTATION, GP_VELOCITY: seq T_r
 K_ALT: T_n
 K_MATRIX_ELEMENT: seq T_n
 K_MATRIX: seq (seq T_n)
 PE_INTEGRAL:R
 A_STATUS=nmetrix(3,4)¶

As:T_n; n:N | s=^/A_STATUS ¶ ne1..#s • s n e{0,1}
 AE_STATUSe{0,1}¶ AE_SWITCHe{0,1}¶ AE_TEMPe{0,1,2}¶ C_STATUSe{0,1}
 An:N| ne1..#AR_STATUS ¶ n¯5 • AR_STATUS n e {0,1}

 CHUTE_RELEASEDe{0,1}¶ CLe{1,2}¶ CONTOUR_CROSSEDe{0,1}
 G_STATUSe{0,1}
 FRAME_ENGINES_IGNITED e1..231-1

 An:N| ne1..#GP_ALTITUDE ¶ n¯5 • GP_ALTITUDE n ˘ 0¶ GP_ALTITUDE n ¯2000
 GP_ATTITUDE_ELEMENT =rmetrix(3,3) ¶

As:T_r; n:N | s=^/GP_ATTITUDE_ELEMENT ¶ ne1..#s • s n˘ -1 ¶ s n ¯1
 An:N| ne1..#GP_ATTITUDE ¶ n¯5 • GP_ATTITUDE n = GP_ATTITUDE_ELEMENT

 GP_PHASEe1..5
 GP_ROTATION =rmetrix(3,3)¶

As:T_r; n:N | s=^/GP_ROTATION ¶ ne1..#s • s n˘ -1.0¶ s n ¯1.0
 GP_VELOCITY =rmetrix(3,5) ¶

As:T_r; n:N | s=^/ GP_VELOCITY ¶ ne1..#s • s n˘ -100¶ s n ¯100
 An:N| ne1..#K_ALT ¶ n¯5 • K_ALT n e {0,1}
 K_MATRIX_ELEMENT =nmetrix(3,3) ¶

As:T_r; n:N | s=^/K_MATRIX_ELEMENT ¶ ne1..#s • s n e{0,1} ¶ s n e{0,1}
 An:N| ne1..#K_MATRIX ¶ n¯5 • K_MATRIX n = K_MATRIX_ELEMENT
 PE_INTEGRAL˘ -100¶ PE_INTEGRAL ¯100

Figure 21. GUIDANCE_STATE_1 schema

 48

The GUIDANCE_STATE_1 (Figure 21) and the GUIDANCE_STATE_2 (Figure 22)

schemas are sub-schemas of the GUIDANCE_STATE schema (Figure 23). The

GUIDANCE_STATE schema is separated into the two sub-schemas due to the page limit. The

GUIDANCE_STATE schema represents the data store GUIDANCE_STATE in the NL-based

GCS SRS. The variables used by the GCS excerpt, which are defined in the

GUIDANCE_STATE data store, are specified in Figure 21 and Figure 22.

The A_STATUS (Sig.) is a variable defined as a natural number matrix. The predicate

constrains the A_STATUS as a 4 × 3 matrix of which the elements are either 1 or 0. All the 2-

dimensional matrix variables are defined in the same way A_STATUS is defined. The

AR_STATUS (Sig.) is a variable defined as a sequence of natural numbers. The predicate

constrains the sequence to be consists of five elements with the set of possible values {0, 1}.

The AR_STATUS variable represents all the finite sequence variables with natural/real number

elements. The FRAME_ENGINES_IGNITED is defined as a natural number variable. The value

of the FRAME_ENGINES_IGNITED is restricted to numbers between 1 and 231-1 (in the

predicate). Any variable has a natural number value defined in the same way.

The signature declares a matrix of real numbers, and the constraints for the matrix are

specified in the predicate . The matrix (GP_ALTITUDE_ELEMENT) has 3 × 3 elements and

the value of the elements for the matrix range from -1 to 1. The GP_ALTITUDE is a sequence

of matrixes of real numbers (Sig.). In the predicate , the GP_ALTITUDE is restricted to

having five GP_ALTITUDE_ELEMENT variables as its elements. The specification pattern of

the GP_ALTITUDE shows how the 3-dimensional matrix variable is defined in the Z

specification. The PE_INTEGRAL variable (Sig.) is a real number range between -100 and

100. The predicate shows how to restrain the value range of the real number variable. All of

 49

the variables used in the GCS excerpt have one (and only one) of the followings; a single-value

natural number, a single-value real number, a finite sequence (i.e., 1-dimensional array/matrix), a

2-dimensional matrix, a 3-dimensional matrix. The variable definitions different from these are

explained where they appear.

GUIDANCE_STATE_2
 RE_STATUS, RE_SWITCH: N
 TDLR_STATE, TDLR_STATUS: T_n
 TDS_STATUS: N
 TE_INTEGRAL, THETA:R

 TS_STATUS: T_n
 VELOCITY_ERROR, YE_INTEGRAL: R
 RE_STATUSe{0,1} ¶ RE_SWITCHe{0,1}
 An:N| ne1..# TDLR_STATE ¶ n¯4 • TDLR_STATE n e {0,1}
 An:N| ne1..#TDLR_STATUS ¶ n¯4 • TDLR_ STATUS n e {0,1}
 TDS_STATUSe{0,1}
 TE_INTEGRAL ˘ -100¶ TE_INTEGRAL ¯100
 THETA ˘ -π¶ THETA ¯π

 An:N| ne1..# TS_STATUS ¶ n¯2 • TS_STATUS n e {0,1}
 VELOCITY_ERROR˘ -300¶ VELOCITY_ERROR ¯20
 YE_INTEGRAL˘ -100¶ YE_INTEGRAL ¯100

Figure 22. GUIDANCE_STATE_2 schema

In signature , the variable THETA is declared as a real number. The unit of this variable is

the “radian” according to the NL-based GCS SRS. The symbol “π” is not part of the Z notations;

however, it is used with the respect to the NL-based GCS SRS. Moreover, there is no other way

to declare the value of π in real numbers other than using the symbol π.

GUIDANCE_STATE

 GUIDANCE_STATE_1
 GUIDANCE_STATE_2

Figure 23. GUIDANCE_STATE schema

 50

EXTERNAL
 AE_CMD: T_n
 AR_COUNTER: Z

 FRAME_COUNTER, RE_CMD: N
 PACKET: T_n

 An:N| ne1..#AE_CMD ¶ n¯3 • AE_CMD n e 0..127
 AR_COUNTER e -1..215-1

 FRAME_COUNTER e 1..231-1
 RE_CMD e 1..7
 An:N| ne1..#PACKET • n¯256 ¶ PACKET n e 0.. 216-1

Figure 24. EXTERNAL schema

The variables in the EXTERNAL data store in the GCS SRS are specified in Figure 24. The

AR_COUNTER variable (Sig.) is an integer of which value is limited in the predicate to

any integer between -1 and 215-1. The PACKET variable (Sig.) is declared as a sequence of

natural numbers while it is defined as an array of 2-byte integers. The units and the value range

of the PACKET elements are not declared in the NL-based GCS SRS; however the number of

the elements is specified as 256. The PACKET is the actual data packet the GCS transmit to the

orbiter. Its size and contents are determined flexibly by the Communications Processing (CP)

submodule of the GCS. Therefore, the PACKET is restrained in the predicate to have the

maximum of 256 elements of which values fit into 2 byte size. This variable has a type conflict

when it is used in the CP. The further discussions about the conflict are in the chapter 5.1.3.

The RUN_PARAMETERS schema (Figure 25) specifies the variables which are used by the

GCS excerpt and defined in the RUN_PARAMETERS data store of the NL-based GCS SRS.

 51

RUN_PARAMETERS
 AR_FREQUENCY: R
 COMM_SYNC_PATTERN: N
 CONTOUR_ALTITUDE : T_r
 CONTOUR_VELOCITY: T_r
 DELTA_T, DROP_HEIGHT, DROP_SPEED, ENGINES_ON_ALTITUDE: R
 GRAVITY, P1, P2, P3, P4: R
 MAX_NORMAL_VELOCITY, THETA1, THETA2: R
 AR_FREQUENCY ˘ 1 ¶ AR_FREQUENCY ¯2450000000
 COMM_SYNC_PATTERN˘ 0 ¶ COMM_SYNC_PATTERN ¯55370
 An:N| ne1..#CONTOUR_ALTITUDE ¶ n¯100 • CONTOUR_ALTITUDE n ˘ -.01 ¶

CONTOUR_ALTITUDE n ¯2
 An:N| ne1..#CONTOUR_VELOCITY ¶ n¯100 • CONTOUR_VELOCITY n ˘ 0 ¶

CONTOUR_VELOCITY n ¯0.5
 DELTA_T ˘ 0.005 ¶ DELTA_T ¯0.20
 DROP_HEIGHT˘ 0 ¶ DROP_HEIGHT ¯100
 DROP_SPEED˘ 0 ¶ DROP_SPEED ¯ 4.0
 ENGINES_ON_ALTITUDE˘ 0 ¶ ENGINES_ON_ALTITUDE ¯ 2000
 GRAVITY˘ 0 ¶ GRAVITY ¯ 100
 P1 ˘ 0 ¶ P1 ¯ 0.05
 P2 ˘ 0 ¶ P2 ¯ 0.05
 P3 ˘ 0 ¶ P3 ¯ 0.05
 P4 ˘ 0 ¶ P4 ¯ 0.05
 MAX_NORMAL_VELOCITY˘ 0 ¶ MAX_NORMAL_VELOCITY ¯ 3.35
 THETA1˘ 0 ¶ THETA1 ¯ 0.05
 THETA2 ˘ 0 ¶ THETA2 ¯ 0.05

Figure 25. RUN_PARAMETERS schema

The SENSOR_OUTPUT schema (Figure 26) specifies the variables which are defined in the

SENSOR_OUTPUT data store of the NL-based GCS SRS and used by the GCS excerpt.

 52

SENSOR_OUTPUT
 A_ACCELERATION: seq T_r
 AR_ALTITUDE: T_r
 ATMOSPHERIC_TEMP: R
 G_ROTATION: seq T_r
 TD_SENSED: N
 TDLR_VELOCITY: seq T_r
 A_ACCELERATION =rmetrix(4,5) ¶

As:T_r; n:N | s=^/A_ACCELERATION ¶ ne1..#s • s n˘ -20 ¶ s n ¯5
 An:N| ne1..#AR_ALTITUDE ¶ n¯5 • AR_ALTITUDE n ˘ 0 ¶ AR_ALTITUDE n ¯2000
 ATMOSPHERIC_TEMP ˘-200 ¶ ATMOSPHERIC_TEMP ¯ 25
 G_ROTATION =rmetrix(4,5) ¶

As:T_r; n:N | s=^/G_ROTATION ¶ ne1..#s • s n˘ -1.0 ¶ s n ¯1.0
 TD_SENSEDe {0,1}
 TDLR_VELOCITY =rmetrix(4,5) ¶

As:T_r; n:N | s=^/TDLR_VELOCITY ¶ ne1..#s • s n˘ -100 ¶ s n ¯100

Figure 26. SENSOR_ OUTPUT schema

5.1.2 ARSP Module

The Altimeter Radar Sensor Processing (ARSP) submodule is introduced in the Chapter 4.3.

This chapter describes the same submodule with same functionality; however, the ARSP

submodule is specified as a part of a structured system of schemas. In other words, the ARSP

submodule imports data items from the previously defined schemas rather than defines all the

variables locally.

The ARSP_RESOURCE schema (Figure 27) imports the RUN_PARAMETER schema and

the EXTERNAL schema. “X” notation (Sig. in the Figure 27) represents that the imported

schema is not being changed in the ARSP_RESOURCE schema. This means that ARSP

submodule uses the variables from the imported data store but does not modify the value of those

variables. “D” notation (Sig. in the Figure 27) represents that the ARSP_RESOURCE schema

imports the SENSOR_OUTPUT schema for modification. This means that the ARSP submodule

 53

takes input from the imported data store and exports outputs into the data store. The variables

defined in the ARSP_RESOURCE schema is local variables.

ARSP_RESOURSE
 Ξ RUN_PARAMETER

 Ξ EXTERNAL
 D SENSOR_OUTPUT

 D GUIDANCE_STATE
 AR_STATUS_NEW: N
 K_ALT_NEW: N
 AR_ALTITUDE_NEW: N
 AR_STATUS_NEWe {0,1}
 K_ALT_NEW e {0,1}
 AR_ALTITUDE_NEW ˘ 0 ¶ AR_ALTITUDE_NEW ¯2000

Figure 27. ARSP_RESOURSE schema

ARSP_FUNCTION
 D ARSP_RESOURCE
 Altitude_Polynomial: AR_ALTITUDE f AR_ALTITUDE_NEW
 AR_STATUS_Update: N x AR_STATUS f AR_STATUS
 K_ALT_Update: N x K_ALT f K_ALT
 AR_ALTITUDE_Update: N x AR_ALTITUDE f AR_ALTITUDE

An,m,i:N;s,l:seq N | ie 1..#s ¶ me 1..#l-1 ¶ #s = #l-1 ¶ n e {0,1}•

l 1 = n ¶ l (i+1) = s i ¶ AR_STATUS_Update (n, s) m = l m

 An,m,i:N;s,l:seq N | ie 1..#s ¶ me 1..#l-1 ¶ #s = #l-1 ¶ n e {0,1}•
l 1 = n ¶ l (i+1) = s i ¶ K_ALT_Update (n, s) m = l m

 An,m,i:N;s,l:seq N | ie 1..#s ¶ me 1..#l-1 ¶ #s = #l-1 ¶ n ˘0 ¶ n¯ 2000 •
l 1 = n ¶ l (i+1) = s i ¶ AR_ALTITUDE_Update (n, s) m = l m

Figure 28. ARSP_FUNCTION schema

The ARSP_FUNCTION schema (Figure 28) defines functions that are used to modify

variables inside the ARSP submodule. The operation of the Altitude_Polynomial is not defined

because it is not defined in the NL-based SRS. The predicate describes the operation of the

 54

function AR_STATUS_Update. AR_STATUS_Update function shifts the elements of the

AR_STATUS by one index, and then place a new value into the index 1.

ARSP
 D ARSP_RESOURCE
 D ARSP_FUNCTION

FRAME_COUNTER? mod 2 = 0 ¤
AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE 2, AR_ALTITUDE) ¶
AR_STATUS’ = AR_STATUS_Update (AR_STATUS 2, AR_STATUS) ¶
K_ALT’ = K_ALT_Update (K_ALT 2, K_ALT)

FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER ˘ 0 ¤ AR_ALTITUDE’=
AR_ALTITUDE_Update (AR_COUNTER? * 300000000 div AR_FREQUENCY div 2,
AR_ALTITUDE) ¶
AR_STATUS’ = AR_STATUS_Update(0, AR_STATUS) ¶
K_ALT’ = K_ALT_Update(1, K_ALT)

FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶
tail AR_STATUS = <_,0, 0, 0, 0> ¤
AR_ALTITUDE’ = AR_ALTITUDE_Update (Altitude_Polynomial AR_ALTITUDE,
AR_ALTITUDE) ¶
AR_STATUS’ = AR_STATUS_Update(1, AR_STATUS) ¶
K_ALT’ = K_ALT_Update(1, K_ALT)

FRAME_COUNTER? mod 2 = 1 ¶ AR_COUNTER = -1 ¶
tail AR_STATUS Î <_,0, 0, 0, 0> ¤
AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE 2, AR_ALTITUDE) ¶
AR_STATUS’ = AR_STATUS_Update(1, AR_STATUS) ¶
K_ALT’ = K_ALT_Update(0, K_ALT)

Figure 29. ARSP schema

The ARSP schema describes the process of the ARSP submodule. The contents of the ARSP

schema in Figure 29 are equivalent to the contents of the ARSP schema in Figure 10. The

predicate is the same as the predicated in Figure 10. The predicate represents the

predicate and in Figure 10. The predicate specifies the predicate and in Figure 10.

The predicate describes the predicate and in Figure 10.

 55

The difference between the schemas in Figure 29 and Figure 10 is that the array variables are

defined differently. In Figure 10, the array variables are defined as cross products while they are

declared as sequences in the Figure 29.

5.1.3 CP Module

The Z specification of the Communications Processing (CP) submodule is described in this

section. The CP submodule prepares a packet for transmission to the orbiting platform. The

packet is consisted of a synchronization pattern, a sequence number, checksum, sample mask,

and data. The variable order of the data section is given by the NL-based SRS.

The CP_RESOURCE schema (Figure 32) has two sub-schemas due to the large length of the

schema definition. Those two sub-schemas, CP_RESOURCE_1 and CP_RESOURCE_2, have

definitions of the local variables that are used in CP submodule schemas. They show that CP

takes input from all four data store and places its outputs into the EXTERNAL and

GUIDANCE_STATE data stores only.

In every subframe, GCS modifies variables and is required to transmit only the changed

values of the variables since the last transmission. Therefore, it is necessary that CP keeps record

of the previous value to compare with current value of those variables which are required to be

transmitted. There are several variables defined to keep its history (i.e., array variables with time

dimension). However, all the single value variables need an extra data store to preserve the

previous values which are not defined in the NL-based SRS. This means the NL-based SRS is

incomplete because it misses those variable definitions to be used. For this case study, local

variables are defined to preserve the data history. Those variables are named starting with “P_”

and followed by a variable name that is defined in the data store (in CP_RESOURCE_1 and

CP_RESOURCE_2 schemas).

 56

CP_RESOURCE_1
 X RUN_PARAMETER
 X SENSOR_OUTPUT
 D EXTERNAL
 D GUIDANCE_STATE
 P_AE_CMD, P_K_ALT, P_TDLR_STATUS, P_AR_STATUS: T_n
 P_AR_ALTITUDE, P_GP_ALTITUDE: T_r
 P_A_ACCELERATION, P_GP_VELOCITY, P_G_ROTATION: seq T_r
 P_CONTOUR_CROSSED, P_RE_CMD, P_TD_SENSED, P_AE_STATUS: N
 P_ VELOCITY_ERROR: R
 P_A_STATUS: seq T_n
 P_C_STATUS, P_GP_PHASE: N

 An:N| ne1..3 ¶ #P_AE_CMD=3 • P_AE_CMD n e 0..127

An:N| ne1..5 ¶ #P_AR_ALTITUDE=5 • P_AR_ALTITUDE n ˘ 0 ¶ P_AR_ALTITUDE n

¯2000

P_A_ACCELERATION =rmetrix(4,5) ¶

As:T_r; n:N | s=^/P_A_ACCELERATION ¶ ne1..#s • s n˘ -20 ¶ s n ¯5

 P_CONTOUR_CROSSEDe{0,1}

An:N| ne1..5 ¶ #P_GP_ALTITUDE =5 • P_GP_ALTITUDE n ˘ 0¶ P_GP_ALTITUDE n

¯2000

 P_GP_VELOCITY =rmetrix(3,4) ¶
As:T_r; n:N | s=^/ P_GP_VELOCITY ¶ ne1..#s • s n˘ -100¶ s n ¯100

 An:N| ne1..5 ¶ #P_K_ALT=5 • P_K_ALT n e {0,1}

 P_RE_CMD e 1..7

 An:N| ne1..4 ¶ #P_TDLR_STATUS=4 • P_TDLR_ STATUS n e {0,1}

 P_TD_SENSEDe {0,1}¶ AE_STATUSe{0,1}

 P_VELOCITY_ERROR˘ -300¶ P_VELOCITY_ERROR ¯20

 An:N| ne1..5 ¶ #P_AR_STATUS=5 • P_AR_STATUS n e {0,1}

P_A_STATUS=nmetrix(3,4) ¶

As:T_n; n:N | s=^/P_A_STATUS ¶ ne1..#s • s n e{0,1}

 P_C_STATUSe{0,1}¶ P_GP_PHASEe1..5

P_G_ROTATION =rmetrix(4,5) ¶

As:T_r; n:N | s=^/P_G_ROTATION ¶ ne1..#s • s n˘ -1.0 ¶ s n ¯1.0

Figure 30. CP_RESOURCE_1 schema

 57

CP_RESOURCE_2
 X RUN_PARAMETER
 X SENSOR_OUTPUT
 D EXTERNAL
 D GUIDANCE_STATE
 P_K_MATRIX: seq (seq T_r)
 P_RE_STATUS, P_AE_TEMP, sf: N
 P_K_MATRIX, P_GP_ALTITUDE: seq (seq T_r)
 P_TDLR_VELOCITY, P_GP_ROTATION: seq T_r
 P_TE_INTEGRAL, P_YE_INTEGRAL, P_ATMOSPHERIC_TEMP, P_PE_INTEGRAL: R
 P_CHUTE_RELEASED, P_G_STATUS, P_TDS_STATUS, SEQ_NUM, CHECKSUM: N
 P_TDLR_STATE, P_TS_STATUS, SAMPLE_MASK: T_n

 An:N| ne1.. 5 ¶ #P_K_MATRIX=5 • P_K_MATRIX n = K_MATRIX_ELEMENT

 P_RE_STATUSe{0,1}¶ P_AE_TEMPe{0,1,2}

P_TDLR_VELOCITY =rmetrix(4,5) ¶

As:T_r; n:N | s=^/P_TDLR_VELOCITY ¶ ne1..#s • s n˘ -100 ¶ s n ¯100

 P_TE_INTEGRAL ˘ -100¶ P_TE_INTEGRAL ¯100

 P_YE_INTEGRAL˘ -100¶ P_YE_INTEGRAL ¯100

 P_ATMOSPHERIC_TEMP ˘-200 ¶ P_ATMOSPHERIC_TEMP ¯ 25

 P_CHUTE_RELEASEDe{0,1}¶ P_G_STATUSe{0,1}

 An:N| ne1..5 ¶ #P_GP_ALTITUDE=5 • P_GP_ALTITUDE n ˘ 0¶ P_GP_ALTITUDE n

P_GP_ROTATION =rmetrix(3,3) ¶

As:T_r; n:N | s=^/P_GP_ROTATION ¶ ne1..#s • s n˘ -1.0¶ s n ¯1.0

 P_PE_INTEGRAL˘ -100¶ P_PE_INTEGRAL ¯100

 An:N| ne1..4 ¶ # P_TDLR_STATE=4 • P_TDLR_STATE n e {0,1}

 P_TDS_STATUSe{0,1}

 An:N| ne1..2 ¶ # P_TS_STATUS=2 • P_TS_STATUS n e {0,1}

 SEQ_NUM e1..255

 An:N| ne1..#SAMPLE_MASK • SAMPLE_MASK n e {0,1}

 CHECKSUMe1..65536

 sf e1..3

Figure 31. CP_RESOURCE_2 schema

 58

CP_RESOURCE
 CP_RESOURCE_1
 CP_RESOURCE_2

Figure 32. CP_RESOURCE schema

The CP_PREP_MASK1 (Figure 33), CP_PREP_MASK2, CP_PREP_MASK3, and

CP_PREP_MASK4 shows the definitions of the functions for building a sample mask in

CP_MASK schema (Figure 34). The sample mask (SAMPLE_MASK) is a Boolean vector

where 1’s represent the variables which have been modified since the last transmission.

In Figure 33, the predicate describes how an element of the sample mask is set. AE_CMD

variable is a finite sequence of 3 natural numbers. When “P_AE_CMD 1” matches with

“AE_CMD 1”, the Prep_Mask1 function places 1 into the index 1 of the return sequence.

CP_PREP_MASK1
 D CP_RESOURCE
 Prep_Mask1: P_AE_CMDxAE_CMD f T_n
 Prep_Mask2: P_AE_STATUSxAE_STATUS f T_n
 Prep_Mask3: P_AE_TEMPxAE_TEMP f T_n
 Prep_Mask4: P_AR_ALTITUDExAR_ALTITUDE f T_n
 Prep_Mask5: P_AR_STATUSxAR_STATUS f T_n

A j:N; x, y, s: T_n | x = P_AE_CMD ¶ y = AE_CMD ¶ j e 1..#y •

(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask1(x, y) = s ¶ x’ = y

A x, y:N; s:T_n | x = P_AE_STATUS ¶ y = AE_STATUS •

(x = y ¤ s = „0 Ò) ¶ (x Î y ¤ s = „1 Ò ¶ sf =2) ¤ Prep_Mask2(x, y) = s ¶ x’=y

 A x, y:N; s:T_n | x = P_AE_TEMP ¶ y = AE_TEMP •
(x = y ¤ s = „0 Ò) ¶ (x Îy ¤ s = „1 Ò) ¤ Prep_Mask3(x, y) = s ¶ x’=y

A j:N; x:P_AR_ALTITUDE; y: AR_ALTITUDE; s:T_n | j e 1..#y •

(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask4(x, y) = s ¶ x’ = y

A j:N; x, y, s: T_n | x = P_AR_STATUS ¶ y = AR_STATUS ¶ j e 1..#y •

(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask5(x, y) = s ¶ x’ = y

Figure 33. CP_PREP_MASK1 schema

 59

CP_PREP_MASK2
 D CP_RESOURCE
 Prep_Mask6: P_ATMOSPHERIC_TEMPxATMOSPHERIC_TEMP f T_n
 Prep_Mask7: P_A_ACCELERATIONxA_ACCELERATION f T_n
 Prep_Mask8: P_A_STATUSxA_STATUS f T_n
 Prep_Mask9: P_CHUTE_RELEASEDxCHUTE_RELEASED f T_n
 Prep_Mask10: P_CONTOUR_CROSSEDxCONTOUR_CROSSED f T_n
 Prep_Mask11: P_C_STATUSxC_STATUS f T_n
 Prep_Mask12: P_GP_ALTITUDExGP_ALTITUDE f T_n
 Prep_Mask13: P_GP_ATTITUDExGP_ATTITUDE f T_n
 Prep_Mask14: P_GP_PHASExGP_PHASE f T_n
 Prep_Mask15: P_GP_ROTATIONxGP_ROTATION f T_n
 A x, y:R; s:T_n | x = P_ATMOSPHERIC_TEMP ¶ y = ATMOSPHERIC_TEMP •

(x = y ¤ s = „0 Ò) ¶ (x Î y ¤ s = „1 Ò) ¤ Prep_Mask6(x, y) = s ¶ x’=y

A j:N; x, y:T_r; s:T_n | x = ^/P_A_ACCELERATION ¶ y = ^/A_ACCELERATION ¶

j e 1..#y • (x j = y j ¤ s j = 0) ¶ (x j Îy j ¤ s j = 1) ¤ Prep_Mask7(x, y) = s ¶ x’=y

A j:N; x, y, s:T_n | x = ^/ P_ A_STATUS ¶ y = ^/ A_STATUS ¶ j e 1..#y •

(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1 ¶ sf =1) ¤ Prep_Mask8(x, y) = s ¶ x’=y

 A x, y:N; s:T_n | x = P_CHUTE_RELEASED ¶ y = CHUTE_RELEASED •
(x = y ¤ s = „0 Ò) ¶ (x Îy ¤ s = „1 Ò) ¤ Prep_Mask9(x, y) = s ¶ x’=y

A x, y:N; s:T_n | x = P_CONTOUR_CROSSED ¶ y = CONTOUR_CROSSED •

(x = y ¤ s = „0 Ò) ¶ (x Î y ¤ s = „1 Ò) ¤ Prep_Mask10(x, y) = s ¶ x’=y

A x, y:N; s:T_n | x = P_C_STATUS ¶ y = C_STATUS •

(x = y ¤ s = „0 Ò) ¶ (x Îy ¤ s = „1 Ò) ¤ Prep_Mask11(x, y) = s ¶ x’=y

A j:N; x:P_GP_ALTITUDE; y: GP_ALTITUDE ; s:T_n | j e 1..#y •

(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask12(x, y) = s ¶ x’= y

 A j:N; x, y:T_r; s:T_n | x = ^/(^/P_GP_ATTITUDE) ¶ y = ^/(^/ GP_ATTITUDE) ¶
j e 1..#y •
(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask13(x, y) = s ¶ x’=y

A x, y:N; s:T_n | x = P_GP_PHASE ¶ y = GP_PHASE •

(x = y ¤ s = „0 Ò) ¶ (x Îy ¤ s = „1 Ò ¶ sf =3) ¤ Prep_Mask14(x, y) = s ¶ x’=y

 A j:N; x, y:T_r; s:T_n | x = ^/P_GP_ROTATION ¶ y = ^/ GP_ROTATION ¶ j e 1..#y •
(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask15(x, y) = s ¶ x’=y

 60

CP_PREP_MASK3
 D CP_RESOURCE
 Prep_Mask16: P_GP_VELOCITYxGP_VELOCITY f T_n
 Prep_Mask17: P_G_ROTATIONxG_ROTATION f T_n
 Prep_Mask18: P_G_STATUSxG_STATUS f T_n
 Prep_Mask19: P_K_ALTxK_ALT f T_n
 Prep_Mask20: P_K_MATRIXxK_MATRIX f T_n
 Prep_Mask21: P_PE_INTEGRALxPE_INTEGRAL f T_n
 Prep_Mask22: P_RE_CMDxRE_CMD f T_n
 Prep_Mask23: P_RE_STATUSxRE_STATUS f T_n
 Prep_Mask24: P_TDLR_STATExTDLR_STATE f T_n
 Prep_Mask25: P_TDLR_STATUSxTDLR_STATUS f T_n
 Prep_Mask26: P_TDLR_VELOCITYxTDLR_VELOCITY f T_n

A j:N; x, y:T_r; s:T_n | x = ^/ P_GP_VELOCITY ¶ y = ^/ GP_VELOCITY ¶ j e 1..#y •

(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask16(x, y) = s ¶ x’=y

A j:N; x, y:T_r; s:T_n | x = ^/P_G_ROTATION ¶ y = ^/ G_ROTATION ¶ j e 1..#y •

(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask17(x, y) = s ¶ x’=y

 A x, y:N; s:T_n | x = P_G_STATUS ¶ y = G_STATUS •
(x = y ¤ s = „0 Ò) ¶ (x Îy ¤ s = „1 Ò) ¤ Prep_Mask18(x, y) = s ¶ x’=y

A j:N; x:P_K_ALT; y: K_ALT; s:T_n | j e 1..#y •

(x j =y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask19(x, y) = s ¶ x’=y

A j:N; x, y:T_r; s:T_n | x = ^/(^/P_K_MATRIX) ¶ y = ^/(^/K_MATRIX) ¶ j e 1..#y •

(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask20(x, y) = s ¶ x’=y

 A x, y:R; s:T_n | x = P_PE_INTEGRAL ¶ y = PE_INTEGRAL •
(x = y ¤ s = „0 Ò) ¶ (x Î y ¤ s = „1 Ò) ¤ Prep_Mask21(x, y) = s ¶ x’=y

A x, y:N; s:T_n | x = P_RE_CMD ¶ y = RE_CMD •

(x = y ¤ s = „0 Ò) ¶ (x Î y ¤ s = „1 Ò) ¤ Prep_Mask22(x, y) = s ¶ x’=y

A x, y:N; s:T_n | x = P_RE_STATUS ¶ y = RE_STATUS •

(x = y ¤ s = „0 Ò) ¶ (x Îy ¤ s = „1 Ò) ¤ Prep_Mask23(x, y) = s ¶ x’=y

 A j:N; x, y, s: T_n | x = P_TDLR_STATE ¶ y = TDLR_STATE ¶ j e 1..#y •
(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask24(x, y) = s ¶ x’ = y

A j:N; x:P_TDLR_STATUS; y: TDLR_STATUS; s:T_n | j e 1..#y •

(x j =y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask25(x, y) = s ¶ x’=y

A j:N; x, y:T_r; s:T_n | x = ^/P_TDLR_VELOCITY ¶ y = ^/ TDLR_VELOCITY ¶

 j e 1..#y •
(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask26(x, y) = s ¶ x’=y

 61

CP_PREP_MASK4

 Prep_Mask27: P_TDS_STATUSxTDS_STATUS f T_n
 Prep_Mask28: P_TD_SENSEDxTD_SENSED f T_n
 Prep_Mask29: P_TE_INTEGRALxTE_INTEGRAL f T_n
 Prep_Mask30: P_TS_STATUSxTS_STATUS f T_n
 Prep_Mask31: P_VELOCITY_ERRORxVELOCITY_ERROR f T_n
 Prep_Mask32: P_YE_INTEGRALxYE_INTEGRAL f T_n
 A x, y:N; s:T_n | x = P_TDS_STATUS ¶ y = TDS_STATUS •

(x = y ¤ s = „0 Ò) ¶ (x Îy ¤ s = „1 Ò) ¤ Prep_Mask27(x, y) = s ¶ x’=y

A x, y:N; s:T_n | x = P_TD_SENSED ¶ y = TD_SENSED •

(x = y ¤ s = „0 Ò) ¶ (x Î y ¤ s = „1 Ò) ¤ Prep_Mask28(x, y) = s ¶ x’=y

A x, y:R; s:T_n | x = P_TE_INTEGRAL ¶ y = TE_INTEGRAL •

(x = y ¤ s = „0 Ò) ¶ (x Î y ¤ s = „1 Ò) ¤ Prep_Mask29(x, y) = s ¶ x’=y

 A j:N; x, y, s: T_n | x = P_TS_STATUS ¶ y = TS_STATUS ¶ j e 1..#y •
(x j = y j ¤ s j = 0) ¶ (x j Î y j ¤ s j = 1) ¤ Prep_Mask30(x, y) = s ¶ x’ = y

A x, y:R; s:T_n | x = P_VELOCITY_ERROR ¶ y = VELOCITY_ERROR •

(x = y ¤ s = „0 Ò) ¶ (x Î y ¤ s = „1 Ò) ¤ Prep_Mask31(x, y) = s ¶ x’=y

A x, y:R; s:T_n | x = P_YE_INTEGRAL ¶ y = YE_INTEGRAL •

(x = y ¤ s = „0 Ò) ¶ (x Î y ¤ s = „1 Ò) ¤ Prep_Mask32(x, y) = s ¶ x’=y

 62

CP_MASK
 CP_PREP_MASK1
 CP_PREP_MASK2
 CP_PREP_MASK3
 CP_PREP_MASK4
 SAMPLE_MASK= Prep_Mask1(P_AE_CMD, AE_CMD) ^

Prep_Mask2(P_AE_STATUS, AE_STATUS) ^
Prep_Mask3(P_AE_TEMP, AE_TEMP) ^
Prep_Mask4(P_AR_ALTITUDE, AR_ALTITUDE) ^
Prep_Mask5(P_AR_STATUS, AR_STATUS) ^
Prep_Mask6(P_ATMOSPHERIC_TEMP, ATMOSPHERIC_TEMP) ^
Prep_Mask7(P_A_ACCELERATION, A_ACCELERATION) ^
Prep_Mask8(P_A_STATUS, A_STATUS) ^
Prep_Mask9(P_CHUTE_RELEASED, CHUTE_RELEASED) ^
Prep_Mask10(P_CONTOUR_CROSSED, CONTOUR_CROSSED) ^
Prep_Mask11(P_C_STATUS, C_STATUS) ^
Prep_Mask12(P_GP_ALTITUDE, GP_ALTITUDE) ^
Prep_Mask13(P_GP_ATTITUDE, GP_ATTITUDE) ^
Prep_Mask14(P_GP_PHASE, GP_PHASE) ^
Prep_Mask15(P_GP_ROTATION, GP_ ROTATION) ^
Prep_Mask16(P_GP_VELOCITY, GP_VELOCITY) ^
Prep_Mask17(P_G_ROTATION, G_ROTATION) ^
Prep_Mask18(P_G_STATUS, G_STATUS) ^
Prep_Mask19(P_K_ALT, K_ALT) ^ Prep_Mask20(P_K_MATRIX, K_MATRIX) ^
Prep_Mask21(P_PE_INTEGRAL, PE_INTEGRAL) ^
Prep_Mask22(P_RE_CMD, RE_CMD) ^
Prep_Mask23(P_RE_STATUS, RE_STATUS) ^
Prep_Mask24(P_TDLR_STATE, TDLR_STATE) ^
Prep_Mask25(P_TDLR_STATUS, TDLR_STATUS) ^
Prep_Mask26(P_TDRL_VELOCITY, TDRL_VELOCITY) ^
Prep_Mask27(P_TDS_STATUS, TDS_STATUS) ^
Prep_Mask28(P_TD_SENSED, TD_SENSED) ^
Prep_Mask29(P_TE_INTEGRAL, TE_INTEGRAL) ^
Prep_Mask30(P_TS_STATUS, TS_STATUS) ^
Prep_Mask31(P_VELOCITY_ERROR, VELOCITY_ERROR) ^
Prep_Mask32(P_YE_INTEGRAL, YE_INTEGRAL)

Figure 34. CP_MASK schema

 63

CP_FUNCTION
 D CP_RESOURCE
 X CP_ MASK
 PACKET_DATA: T_any
 DATA_SECTION: seq T_any
 Calculate_Seq_Num: Nx N f N
 Create_Data: T_n x T_any f T_any
 Calculate_Checksum: Nx NxT_nxT_anyxN f N
 DATA_SECTION= „AE_CMD, „AE_STATUSÒ, „AE_TEMP Ò, AR_ALTITUDE,

AR_STATUS, „ATMOSPHERIC_TEMPÒ, (^/A_ACCELERATION), (^/A_STATUS),
„CHUTE_RELEASEDÒ, „CONTOUR_CROSSEDÒ, „C_STATUSÒ, GP_ALTITUDE,
GP_ATTITUDE, „GP_PHASE Ò, (^/GP_ROTATION), (^/GP_VELOCITY),
(^/G_ROTATION), „G_STATUSÒ, K_ALT, (^/(^/K_MATRIX)), „PE_INTEGRALÒ,
„RE_CMDÒ, „RE_STATUSÒ, TDLR_STATE, TDLR_STATUS,
(^/TDLR_VELOCITY), TDS_STATUS, „TD_SENSEDÒ, TE_INTEGRAL,
TS_STATUS, „VELOCITY_ERRORÒ, YE_INTEGRAL Ò

Aj,k:N; s:T_n; p,q:T_any | je 1..#s ¶ k = 1..#p • (s j = 1¤ p k = q j) ¶(s j Î 1¤ p k = „Ò) ¤

Create_Data (s, q) = p
 SEQ_NUM = Calculate_Seq_Num (FRAME_COUNTER, sf)

Figure 35. CP_FUCNTION schema

The CP_FUNCTION schema (Figure 35) defines the functions to be used for create data

section and the checksum of a packet. Calauclate_Checksum is defined just with types because

the operation was not defined in the specification. However, it was referenced to use CRC-16

which is very well known function. Create_Data function is defined to create the data section of

the packet for transmission. It maps SAMPLE_MASK information with the variable data into a

new T_any type sequence.

A sequence number of a packet is required to be different for each consecutive packet

(represented in predicate of Figure 36) and it is stated in the NL-based SRS as follows; “…

the sequence number will be 0 during the first subframe of frame number 1. Sequence numbers

repeat after the 255th packet and can be calculated based on the FRAME_COUNTER and the

subframe where the present call to CP was made [25].” In the NL-based SRS, the subframe is not

 64

defined as a variable. Therefore, a variable sf is defined locally in the CP submodule representing

the subframe number (used in predicate). sf marks the subframe by checking whether the

variables that are modified uniquely in certain subframe. For example, the variable

AR_STATUS (refer the predicate in Figure 33) is only modified at subframe2. Then sf marks

2 in its value. The exact equation for the sequence number calculation is not given. For the

purpose of the development of the statecharts model the following equation is used;

((FRAME_COUNTER-1)*3 +sf) mod 256.

CP
 D CP_RESOURCE
 D CP_ FUNCTION
 X CP_ MASK
 C_STATUS’ = 0
 SEQ_NUM’ Î SEQ_NUM

PACKET’= „COMM_SYNC_PATTERN, SEQ_NUM, SAMPLE_MASK,
PACKET_DATA, CHECK_SUMÒ ¤
PACKET_DATA = Create_Data(SAMPLE_MASK, ^/DATA_SECTION) ¡ {„Ò}¶
CHECK_SUM = Calculate_Checksum(COMM_SYNC_PATTERN, SEQ_NUM,
SAMPLE_MASK, PACKET_DATA, CHECK_SUM)

Figure 36. CP schema

The CP schema in Figure 36 describes the operation of the CP submodule. A packet is

created in the CP with the communication synchronization pattern (COMM_SYNC_PATTERN),

the sequence number (SEQ_NUM), the sample mask (SAMPLE_MASK), the data section

(PACKET_DATA), and the checksum (CHECK_SUM) as described in the predicate .

According to the NL-based SRS, some of the packet variables are real numbers. The size of

real numbers is defined as 8 byte. Considering the size of a packet with real numbers and a byte-

boundary limit (2 byte integer) specified in the NL-based SRS, the data section of a packet

requires minimum of 642 bytes at the first subframe of frame number 1. However, the packet is

 65

defined to have only 512 bytes (256 * 2 byte integer) in the data dictionary of the NL-based SRS.

This means the definition and the function of the packet variable are inconsistent.

5.1.4 GP Module

The Guidance Processing (GP) submodule is defined in this section. The GP_RESOURCE

schema shows that the GP submodule takes input from all four data stores and places its output

into the GUIDANCE_STATE data store.

GP_RESOURCE
 X EXTERNAL
 X RUN_PARAMETER
 X SENSOR_OUTPUT
 D GUIDANCE_STATE

GP_FUNCTION

 D GP_RESOURCE
 IntegrationB: _ x seq T_n x _x_ ß _
 Square_root : R ß R

 Ax: R; E y:R | x˘0 • y=Square_root x

Figure 37. GP_FUCNTION schema

Using Z, one meets a difficulty specifying mathematical equations such as Integration

function in Figure 37. It is declared as an “undefined” function marked by “B” notation. In this

way, detailed implementation of integration function is remained for the system design phase.

The square root computation is not being able to be defined in Z also. It is declared in the schema

while the function implementation is remained for the system design.

The operation schema, GP_1, is a sub-schema of GP schema (shown in Figure 39). The GP

submodule has multiple operations that are required to perform in order. Therefore, the

separation of GP schema is based on the timely fashion. Operations in GP_1 take first. When the

 66

operations in GP take turns, the post condition of GP_1 is considered as the initial condition of

GP.

GP_1
 D GP_RESOURCE
 X GP_FUNCTION
 An:N| ne2..#GP_ALTITUDE • GP_ALTITUDE’ n = GP_ALTITUDE n-1
 Aa:N| ae2..5 • GP_ATTITUDE’ a = GP_ATTITUDE a-1
 Ab:N| be2..5 • GP_VELOCITY’ b = GP_VELOCITY b-1

GP_ROTATION’ 1 1 = 0 ¶ GP_ROTATION’ 1 2 = G_ROTATION 1 3 ¶
GP_ROTATION’ 1 3 = -(G_ROTATION 1 2) ¶
GP_ROTATION’ 2 1 = -(G_ROTATION 1 2) ¶ GP_ROTATION’ 2 2 = 0 ¶
GP_ROTATION’ 2 3 = G_ROTATION 1 1 ¶
GP_ROTATION’ 3 1 = G_ROTATION 1 2 ¶
GP_ROTATION’ 3 2 = -(G_ROTATION 1 1) ¶ GP_ROTATION’ 3 3=0

GP_ALTITUDE’ 1 = Integration (GP_ALTITUDE, „„0ÒÒ, -GP_ATTITUDE

xGP_VELOCITY, K_ALT*(AR_ALTITUDE-GP_ALTITUDE))

 GP_ATTITUDE’ 1 = Integration (GP_ATTITUDE, GP_ROTATION, 0, 0)

Ai:N| ie1..3 • GP_VELOCITY’ 1 = Integration (GP_VELOCITY, GP_ROTATION,

GRAVITY*GP_ATTITUDE 1 i 3+ A_ACCELERATION, K_MATRIX
x(TDLR_VELOCITY – GP_VELOCITY))

AE_SWITCH=0 ¶ GP_ALTITUDE 1¯ ENGINES_ON_ALTITUDE ¶

FRAME_ENGINES_IGNITED =0 ¶ TD_SENSED = 0 ¤
FRAME_ENGINES_IGNITED’ = FRAME_COUNTER ¶ AE_SWITCH’ =1

AE_SWITCH=1 ¶ GP_ALTITUDE 1¯ DROP_HEIGHT ¶ Square_root (2*

GRAVITY*GP_ALTITUDE 1) + GP_VELOVITY 3 ¯ MAX_NORMAL_VELOCITY
¶ TD_SENSED = 0 ¤ AE_SWITCH’ = 0 ¶ RE_SWITCH’ = 0

 AE_SWITCH=1 ¶ TD_SENSED = 1 ¤ AE_SWITCH’ = 0 ¶ RE_SWITCH’ = 0

Figure 38. GP_1 schema

The predicate in Figure 38 shows how to set the values for the matrix elements. The

variable updates (represented by the predicates and) requires cross products of matrixes. It

is marked by “x”. However, it could be ambiguous for some readers to distinguish the symbol

because Z uses the same symbol to represent a cross product of sets.

 67

GP
 D GP_1

Ai:N| i e 1..100 • CONTOUR_ALTITUDE i = GP_ALTITUDE 1 ¤

VELOCITY_ERROR = GP_VELOCITY 1 1 – CONTOUR_VELOCITY i

Ai,j:N| i e 1..100 ¶ j e 1..100 ¶ j > i • CONTOUR_ALTITUDE i ¯ GP_ALTITUDE 1¶
CONTOUR_ALTITUDE j ˘ GP_ALTITUDE 1 ¤VELOCITY_ERROR =
GP_VELOCITY 1 1 – (CONTOUR_VELOCITY i + (GP_ALTITUDE 1-
CONTOUR_ALTITUDE i)*(CONTOUR_VELOCITY j - CONTOUR_VELOCITY i
)/(CONTOUR_ALTITUDE j - CONTOUR_ALTITUDE i))

CONTOUR_ALTITUDE 1 ¯ GP_ALTITUDE 1 ¤ VELOCITY_ERROR =

GP_VELOCITY 1 1 – (CONTOUR_VELOCITY 1 - (CONTOUR_ALTITUDE 1 -
GP_ALTITUDE 1)*(CONTOUR_VELOCITY 1)/(CONTOUR_ALTITUDE 1))

CONTOUR_ALTITUDE 100 ˘ GP_ALTITUDE 1¤ VELOCITY_ERROR =
GP_VELOCITY 1 1 – (CONTOUR_VELOCITY 100 + (GP_ALTITUDE 1-
CONTOUR_ALTITUDE 100)*(CONTOUR_VELOCITY 100)/
(CONTOUR_ALTITUDE 100))

GP_ALTITUDE 1 ¯ ENGINES_ON_ALTITUDE ¶ CONTOUR_CROSSED = 0 ¶

VELOCITY_ERROR > 0 ¤ CONTOUR_CROSSED’ =1

 GP_PHASE’ = 1 ¤ GP_ALTITUDE 1 > ENGINES_ON_ALTITUDE

GP_PHASE = 1 ¶ GP_ALTITUDE 1 ¯ ENGINES_ON_ALTITUDE ¶ AE_SWITCH = 0 ¶

FRAME_ENGINES_IGNITED = 0 ¶ RE_SWITCH = 0 ¤ GP_PHASE’ = 2

GP_PHASE = 2 ¶ AE_TEMP =2 ¶ CHUTE_RELEASED = 1 ¶ TD_SENSED = 0 ¤

GP_PHASE’ = 3

GP_PHASE = 2 ¶ AE_TEMP =2 ¶ CHUTE_RELEASED = 1 ¶ TD_SENSED = 1 ¤

GP_PHASE’ = 5

GP_PHASE = 3 ¶ TD_SENSED = 0 ¶ GP_ALTITUDE 1¯DROP_HEIGHT ¶

TDS_STATUS = 0 ¶ Square_root (2* GRAVITY*GP_ALTITUDE 1) +
GP_VELOVITY 1 ¯ MAX_NORMAL_VELOCITY ¤ GP_PHASE’ = 4

GP_PHASE = 3 ¶ TD_SENSED = 0 ¶ GP_ALTITUDE 1¯DROP_HEIGHT ¶

TDS_STATUS = 1 ¤ GP_PHASE’ = 5

 GP_PHASE = 3 ¶ TD_SENSED = 1 ¤ GP_PHASE’ = 5 ¶ RUN_DONE’=1
 GP_PHASE = 4 ¶ TD_SENSED = 1 ¤ GP_PHASE’ = 5 ¶ RUN_DONE’=1
 GP_PHASE = 4 ¶ TDS_STATUS = 1 ¤ GP_PHASE’=5

CL = 1 ¶ GP_VELOCITY 1 < DROP_SPEED ¶ E1x: N | x e 1..100 •

CONTOUR_VELOCITY x..100 = DROP_SPEED ¤ CL’=2 ¶ TE_INTEGRAL’ = 0.0

Figure 39. GP schema

 68

The GP submodule is required to do the following operations in order;

Operations Predicates in GP_1
1. Rotate GP_ALTITUDE, GP_ATTITUDE, and GP_VELOCITY. , ,
2. Setup the GP_ROTATION matrix

3. Calculate new values of GP_ALTITUDE, GP_ATTITUDE, and
GP_VELOCITY with given equations in NL-based SRS. , ,

4. Determine Axial and Roll engine should be on or off , ,

Operations Predicates in GP
5. Determine velocity error , , ,
6. Determine if contour has been crossed

7. Determine guidance phase , , , , , ,
, ,

8. Determine which set of control law parameter to use

The predicates listed next to the operations carry the operations in the respected schema.

5.1.5 RECLP Module

The Roll Engine Control Law Processing (RECLP) submodule is represented in this chapter. The

RECLP submodule gets inputs from all the data stores and puts its operation results into

RUN_PARAMETER, GUIDANCE_STATE, and EXTERNAL data store.

RECLP_FUNCTION
 D RUN_PARAMETER
 X SENSOR_OUTPUT
 D GUIDANCE_STATE
 D EXTERNAL
* THETA’=THETA + (DELTA_T*G_ROTATION 1 1)

In RECLP_FUNCTION schema, the predicate describes the integration method that is

specified to be used to calculate THETA variable. The whole specification for the RECLP

submodule was very ambiguous. The DELTA_T and G_ROTATION variable was listed as input

 69

for this submodule with no description of usage. A variable “p” was presented on the graph that

describes derivation values of THETA without specific description of the variable. Euler’s

method integration is noted to be used for THETA while appropriate inputs are already provided

but without specified instructions (G_ROTATION 1 1 is a slope, the p value, of the actual

function and DELTA_T is a time slot size). It would be better to provide specific equations

rather than to give information and make the reader figure out what the specification really

means.

RECLP
 D RECLP_FUNCTION
 RE_SWITCH=0 ¤ RE_CMD’ =1 ¶ RE_STATUS’ = 0

(G_ROTATION 1 1> P3 ¶ G_ROTATION 1 1< P4 ¶ THETA<0) v
(G_ROTATION 1 1 < -P3 ¶ G_ROTATION 1 1> -P4 ¶ THETA>0) v
(G_ROTATION 1 1>0 ¶ G_ROTATION 1 1 < P3 ¶ THETA < 0 ¶
THETA > -THETA2) v (G_ROTATION 1 1<0 ¶ G_ROTATION 1 1> -P3 ¶
THETA > 0 ¶ THETA < THETA2) v (G_ROTATION 1 1>0 ¶
G_ROTATION 1 1< P1 ¶ THETA > 0 ¶ THETA < THETA1) v
(G_ROTATION 1 1<0 ¶ G_ROTATION 1 1> -P1 ¶ THETA < 0 ¶
THETA > -THETA1) ¤ RE_CMD’ = 1 ¶ RE_STATUS’ = 0

G_ROTATION 1 1> -P1 ¶ G_ROTATION 1 1 < 0 ¶THETA > -THETA2 ¶

THETA< -THETA1 ¤ RE_CMD’ = 2 ¶ RE_STATUS’ = 0

G_ROTATION 1 1< P1 ¶ G_ROTATION 1 1> 0 ¶THETA < THETA2 ¶ THETA >

THETA1 ¤ RE_CMD’ = 3 ¶ RE_STATUS’ = 0

G_ROTATION 1 1>-P2 ¶ G_ROTATION 1 1<-P1 ¶THETA >-THETA2 ¶ THETA<0

¤ RE_CMD’ = 4 ¶ RE_STATUS’ = 0

G_ROTATION 1 1< P2 ¶ G_ROTATION 1 1> P1 ¶THETA < THETA2 ¶ THETA>0

¤ RE_CMD’ = 5 ¶ RE_STATUS’ = 0

G_ROTATION 1 1< -P4 v (G_ROTATION 1 1< -P2 ¶ THETA < 0) v

(G_ROTATION 1 1< P3 ¶ THETA < -THETA2)
¤ RE_CMD’ = 6 ¶ RE_STATUS’ = 0

G_ROTATION 1 1> P4 v (G_ROTATION 1 1> P2 ¶ THETA > 0) v

(G_ROTATION 1 1> - P3¶ THETA > THETA2)
¤ RE_CMD’ = 7 ¶ RE_STATUS’ = 0

 70

The RECLP schema describes the operations of the RECLP submodule. The RECLP

required to set RE_STATUS variable and to determine if engines are on (the predicate in

RECLP schema). The pulse intensity and directions, and roll engine commands are specified in

the predicate - . Boundary values are ambiguous (p=p1, p=p2, etc).

5.1.6 GCS Schema

The GCS schemas are the highest level schemas of the GCS excerpt. GCS_RESOURCE schema

defines control variables and state variables of the GCS system. The INIT_GCS, RUN_GCS, and

END_GCS! variables are mentioned in the high level specification part while actual definition of

the variable is not specified in the data dictionary. START_SIGNAL? variable is self descriptive;

however, it is necessary to provide complete information for each of variables used in the SRS.

SUBFRAME1, SUBFRAME2, and SUBFRAME3 are defined as local variable for the GCS

schema because they are not defined as state variable in the NL-based GCS data dictionary.

Those subframes are referred frequently and even used to calculate some data in some

submodules in the NL-based SRS, yet they were not specified as variables. This reveals the fact

that the SRS is incompletely specified.

The gcs_control function is defined to map two Boolean variables with 1 when they have the

same value.

 71

GCS_RESOURCE
 INIT_GCS, RUN_GCS, END_GCS!: N
 START_SIGNAL?: N
 SUBFRAME1, SUBFRAME2, SUBFRAME3 : N
 gcs_control: N x NfN
 INIT_GCS e {0,1} ¶ RUN_GCSe {0,1} ¶ END_GCS!e{0,1}
 START_SIGNAL?e {0,1} ¶ INIT_DONEe {0,1} ¶ RUN_DONEe {0,1}
 SUBFRAME1e {0,1} ¶ SUBFRAME2e {0,1} ¶ SUBFRAME3e {0,1}
 Ax,y:N| xe{0,1}¶ y e{0,1}¶ x = y • gcs_control x y = 1

GCS_INIT

 D GCS_RESOURCE
 INIT_GCS = 1 ¶ RUN_GCS = 0 ¶ END_GCS! =0
 INIT_DONE’ = 1 ¶ RUN_DONE = 0
 SUBFRAME1 = 0 ¶ SUBFRAME2 = 0 ¶ SUBFRAME3 = 0

GCS_INIT schema represents the initialization of the GCS excerpt.

GCS_SUBFRAME1
 D ARSP
 D CP
 SUBFRAME1=1

GCS_SUBFRAME2
 D GP
 D CP
 SUBFRAME2=1

GCS_SUBFRAME3
 D RECLP
 D CP
 SUBFRAME3=1

GCS_SUBFRAME1, GCS_SUBFRAME2, and GCS_SUBFRAME3 schemas are the state

schemas showing the system running status based on the subframes. They represent the same

 72

information of the Table 2. The GCS_CONTROL schema is the operation schema of the GCS.

The GCS is initiated when the START_SIGNAL? input variable turns 1. After initialization, the

GCS updates its global state variable INIT_DONE to 1 and running the GCS system starting

from subframe1. The GCS system takes infinite loop between subframes until GP updates the

global state variable RUN_DONE to 1. When the RUN_DONE set to 1, the GCS system state set

to END_GCS and the output END_GCS! returns.

GCS_CONTROL
 D GCS_INIT
 D GCS_SUBFRAME1
 D GCS_SUBFRAME2
 D GCS_SUBFRAME3
 gcs_control START_SIGNAL? 1 ¤ INIT_GCS = 1
 gcs_control INIT_DONE 1 ¤ RUN_GCS = 1
 gcs_control RUN_DONE 1 ¤ END_GCS! = 1
 gcs_control INIT_GCS 1 v gcs_control SUBFRAME3 1 ¤ SUBFRAME1’= 1 ¶

SUBFRAME2’ = 0 ¶ SUBFRAME3’ = 0

 gcs_control SUBFRAME1 1 ¤ SUBFRAME2’= 1 ¶ SUBFRAME1’ = 0 ¶
SUBFRAME3’ = 0

 gcs_control SUBFRAME2 1 ¤ SUBFRAME3’= 1 ¶ SUBFRAME1’ = 0 ¶
SUBFRAME3’ = 0

GCS
 D GCS_CONTROL
 START_SIGNAL? = 1

The GCS schema imports GCS_CONTROL schema to modify and starts the initialization

process with START_SIGNAL? =1.

5.2. Executable Models

The Z specification shown in Chapter 5.1 is developed in the Statemate environments. First, a

 73

module chart is developed to represent the structure of the GCS excerpt for reference. Then

Activity/State charts are developed for specification testing and fault injection.

5.2.1 Module Chart

The module charts derived from the Figure 3 is shown in Figure 40. The module chart presented

in the Figure 41 is the correct version of the module chart. The difference between two figures is

because the NL-based SRS provides incomplete data transition directions with the Figure 3.

 SENSOR_DATA

CONTROL_TELEMETER_OUTPUT

ARSP

RECLP

GP

CP

SENSOR_OUTPUT

RUN_PARAMETER

GUIDANCE_STATE

Figure 40. A module chart of the GCS excerpt

 74

Figure 41. Actual module chart of the GCS excerpt

5.2.2 Activity Charts

In a GCS project created in the Statemate, the GCS activity chart is developed. Figure 42 shows

the GCS activity chart with four data stores which contains the data definitions. The GCS

activity is representing the GCS schemas in Chapter 5.1.6. The data stores contain the same

variable definitions of Z schemas. The @GCS_CONTROL state represents a link with the

GCS_CONTROL statechart. The @ARSP, @CP, @ GP, and @ RECLP activities are link to

their own activity charts. Every activity requires to have only one control state.

 75

Figure 42. GCS activity chart

5.2.3 Statecharts

The GCS_CONTROL statecharts represents the GCS_CONTROL schemas. The default

transition represent the moment START_SIGNAL? input for the GCS schema set to 1. The

INITIALIZATION state is equivalent to the GCS_INIT schema. @SUBFRAME1,

@SUBFRAME2, and @SUBFRAME3 states represent the local state variable defined in the

GCS_RESOURCE schema. Every subframe has its own state charts linked to the superstate.

 76

Figure 43. GCS_CONTROL statechart

Figure 44. SUBFRAME1 statechart

 77

The SUBFRAME1 statechart is representing the operation of the GCS_SUBFRAME1

schema. The SUBFRAME2 statechart shows the GCS excerpt operation at the subframe 2.

Figure 45. SUBFRAME2 statechart

Figure 46. SUBFRAME3 statechart

 78

The SUBFRAME3 statechart represents the GCS_SUBFRAME3 schema. However, it has a

controlled termination because the GCS excerpt has many of shared data items with other

undefined submodule. Without correct interaction, we cannot predict exact data item test results.

Therefore, the simulation in this case study did not run over time.

5.3. Specification Test Results

In this section, the specification test results using simulations are presented. The test results from

Finite State Machine Approach (FSMA) and Data Item Approach (DIA) are described in the

following subsections.

5.3.1 Test Results

The GCS project has GCS activity charts and four sub-activity chart. Each activity chart has one

control state that is linked to a control state chart. Most of the control statecharts are divided into

several statecharts using superstates to reduce the complexity. In this section, the test results only

high level GCS activity and state transition are presented. Detailed statecharts and activity charts

are located in the appendices.

Table 8 shows the execution orders of the GCS excerpt high-level schemas. Those schemas

are equivalent to the Z specification placed in the GCS schema chapter. The finite state machine

approach test results show the statecharts model does not have absorbing states/activities. In

other words, all the activities and states are reachable and there is no inconsistency in the model.

These charts do not involved with any data item; therefore, the data item approach test is not

presented here. The data item approach with the linked activities and states are placed in the

appendix.

 79

Table 8. GCS excerpt high-level activity/state charts simulation result

Name of Chart Activity/State Name Activity/State Transition order
@GCS_CONTROL En1 Ex33
@ARSP En4 Ex7
@GP En14 Ex17
@RECLP En24 Ex27

GCS

@CP En9 Ex12 En19 Ex22 En29 Ex31

INITIALIZATION En2 Ex3
@SUBFRAME1 En5 Ex13
@SUBFRAME2 En15 Ex23

GCS_CONTROL

@SUBFRAME3 En25 Ex33
RUN_ARSP En6 Ex8

SUBFRAME1
RUN_CP En10 Ex11
RUN_GP En16 Ex18

SUBFRAME2
RUN_CP En20 Ex21
RUN_RECLP En26 Ex28

SUBFRAME3
RUN_CP En30 Ex32

En i: entering the activity/state on ith order, Exi: exiting the activity/state on ith order.

5.3.2 Fault Injection Results/Discussion

First, one has to identify the module whether it can cause a system failure or not. For example,

the CP is not taking any position for system failure of the GCS system function because it does

not change any system variable values. Even when it fails, system can still run the operation and

produces correct outputs. Therefore, the fault injection step is skipped for the CP submodule.

This means that the submodules, which do not have ability to cause catastrophic system failures,

are tested using simulations based on its operational profile only.

The GCS state/activity charts presented in the result section has only one path. Any failure of

performing transition between activities and statecharts means system failure. It is because the

scheduling of the sub-module processes. This requires changing the functional schedule to

 80

tolerate failures that is caused by unnecessary sub-functionality (i.e., CP). By specifying CP as a

concurrent process with the next submodule, the system failure caused by CP failure can be

tolerated.

 81

CHAPTER SEVEN

CONCLUSIONS

The result of this analysis revealed that it is possible to construct a complete and consistent

specification using this method (Z-to-Statecharts). In the process, some ambiguous

specifications are uncovered, which are associated with the reader’s interpretation of the NL-

based specification.

The outputs from the modules were examined and shown to be consistent with the

expectations by running simulations based on the Statecharts/Activity-charts. All of the state

activation/transition paths were in the correct order as expected for all test cases. Moreover, no

nondeterministic state transitions were detected for all simulation runs (based on the conditions

provided). In this context, the simulation has provided a means for determining the consistency

of the requirements.

The output values from the simulation were checked and compared against the requirements,

then found to be valid. There are several issues indicating that the SRS is incomplete some are

found with the Z specification and others are found during various simulations including fault

injection. In addition, some fault-prone states were identified where faults were injected into the

GCS excerpt system model (i.e., Statecharts) while the models were executed using simulations.

Though the GCS NL-based SRS did not specify fault tolerance, one can conclude that the system

would not be able to tolerate certain system faults. Through the whole process of this case study,

the SRS for the excerpt are found to be inconsistent, incomplete and not completely fault-

tolerant. Therefore, the findings indicate that one can better understand the implications of the

system requirements using this approach (Z-Statecharts) to facilitate their specification and

 82

analysis. While developing Z specification, the task of following up variables for their data store

and analyzing the functional specifications of submodules are time consuming. When the

specification is written with the concerns of traceability, the effort and the amount of time spent

for the specification analysis can be reduced for this approach. Consequently, this approach can

help to avoid the problems that result when incorrectly specified artifacts (i.e., in this case

requirements) force corrective work.

 83

BIBLIOGRAPHY

1. Kotonya, G., and Sommerville, I., Requirements Engineering: Process and Techniques.

1998: Wiley.

2. Shaw, A.C., Real-Time Systems and Software. 2001: Wiley. 33-38.

3. Sommerville, I., Software Engineering. 6th ed. 2000, Reading, MA: Addison-Wesley.

742.

4. Mars Climate Orbiter Mishap Investigation Board Phase I Report. 1999.

5. Schwalbe, K., Information Technology Project Management. 2000: Course Technology.

6. Collard, R., Software Testing and Quality Assurance, working paper. 1997.

7. Fitch, D., Software Safety Engineering (S2E) Program Status. 2001.

8. Pradhan, D.K., Fault-Tolerant Computer System Design. 1996: Prentice Hall. 428-477.

9. Potter, B., Sinclair, J., and Till, D., An Introduction to Formal Specification and Z. Int'l.

series in CS. 1996: Prentice Hall.

10. Leveson, N., Safeware - system safety and computers. 1995: Addison Wesley.

11. Czerny, B. Integrative Analysis of State-Based Requirements for Completeness and

Consistency. PhD dissertation in Computer Science, Michigan State University. 1998.

12. Gaudel, M.-C., and Bernot, G., ed. The Role of Formal Specifications. IFIP State-of-the-

Art Report: Algebraic Foundations of Systems Specification, ed. E. Astesiano, Kreowski,

H.-J., and Krieg-Bruckner, B. 1999, Springer.

13. Vliet, H.V., Software Engineering: Principles and Practice. 2000: Wiley.

14. Sannella, D., and Tarlecki, A., ed. Algebraic Preliminaries. IFIP State-of-the-Art Reports:

Algebraic Foundations of Systems Specification, ed. E. Astesiano, Kreowski, H.-J., and

Krieg-Bruckner, B. 1999, Springer.

 84

15. Fabbrini, F., Fusani, M., Gnesi, S., and Lami, G. An Automatic Quality Evaluation for

Natural Language Requirements. Seventh International Workshop on Requirements

Engineering: Foundation for Software Quality (REFSQ) 2001. Accessed from:

www.ifi.uib.no/conf/refsq2001/papers/p3.pdf. Accessed on: Mar. 25, 2002.

16. Heitmeyer, C., Kirby, J. Jr., Labaw, B., Archer, M., and Bharadwaj, R., Using

Abstraction and Model Checking to Detect Safety Violations in Requirements

Specification. IEEE Transactions on Software engineering, 1998. 24(11): p. 927-948.

17. Heimdahl, M.P.E., Leveson, Nancy G., Completeness and consistency in Hierarchical

State-Based Requirements. IEEE Trans on SE, 1996. 22(N0.6, June 1996).

18. He, X., PZ nets - a formal method integrating Petri nets with Z. Information and Software

Technology, 2001. 43: p. 1-18.

19. Hierons, R.M., Sadeghipour, S., Singh, H., Testing a system specified using Statecharts

and Z. Information and Software Technology, 2001. 43(Feb).

20. Bussow, R., Weber, M., ed. A Steam-boiler Control Specification with Statecharts and Z.

LNCS 1165. 1996.

21. Grieskamp, W., Heisel, M., and Dorr, H., ed. Specifying Embedded Systems with

Statecharts and Z: An Agenda for Cyclic Software Components. LNCS 1382. 1998.

22. Damm, W., Hungar, H., Kelb, P., and Schlor, R., ed. Statecharts - Using Graphical

Specification Languages and Symbolic Model checking in the Verification of a

Production Cell. LNCS 891. 1995. 131-149.

23. Bussow, R., Geisler, R., and Klar, M., ed. Specifying Safety-Critical Embedded Systems

with Statecharts and Z: A Case Study. LNCS 1382. 1998.

24. Castello, R. From Informal Specification to Formalization: an Automated Visualization

 85

Approach. PhD dissertation in Computer Science, University of Texas at Dallas. 2000.

25. NASA, Software Requirements - Guidance and Control Software Development

Specification Version 2.2 with the formal mods 1-8. 1993, NASA, Langley Research

Center.

26. Woodcock, J., and Davies, J., Using Z: Specification, Refinement, and Proof. Series of

Computer Science. 1996: Prentice Hall International.

27. Jacky, J., The Way of Z : practical programming with formal methods. 1997: Cambridge

University Press.

28. Harel, D., Statecharts: A Visual Formalism for Complex Systems. Science of Computer

Programming, 1987. 8: p. 231-274.

29. Harel, D., and Politi, M., Modeling Reactive Systems with Statecharts. 1998: McGraw-

Hill.

30. Bogdanov, K., and Holcombe, M., Statechart testing method for aircraft control systems.

Software Testing, Verification & Reliability, 2001. 11(1): p. 39-54. J. Wiley.

31. Voas, J., McGraw, G., Kassab, L., and Voas, L., A Crystal Ball for Software Liability.

IEEE Computer, 1997. 30(6): p. 29-36.

32. Sheldon, F., and Kim, H. Y. Validation of Guidance Control Software Requirements

Specification for Reliability and Fault-Tolerance. Proceedings of Annual Reliability and

Maintainability Symposium. 2002. Seattle, WA. USA: IEEE.

33. Sheldon, F., Kim, H. Y., and Zhou, Z. A Case Study: Validation of the Guidance Control

Software Requirements for Completeness, Consistency, and Fault Tolerance. Proceedings

of IEEE 2001 Pacific Rim International Symposium on Dependable Computing. 2001.

Seoul, Korea: IEEE Computer Society.

APPENDIX A

 87

Figure 47. ARSP activity chart

 88

Figure 48. ARSP_CONTROL state chart

 89

The Figure 47 and Figure 11 are the equivalent activity charts. Figure 48 represents the Z

specification of the ARSP submodule shown in Figure 29. Statecharts model in the chapter 4.3

has the ARSP activity, the CALCULATE sub-activity and two control states. The ARSP

submodule statecharts model in this section is consists of one activity and one control state based

on the Z specification presented in the chapter 5.1.2.

This ARSP model has 4 distinctive path. The simulation results of the state transition path are

as presented in the following table.

Activity/State Transition Paths
Name of Chart Activity / State Name

1 2 3 4
ARSP E1 E1 E1 E1

ARSP
@ARSP_CONTROL E2 E2 E2 E2
ARSP_START E3 E3 E3 E3
KEEP_PREVIOUS_VALUE E4 - - -
ESTIMATE_ALTITUDE - E4 - -
CALCULATE_ALTITUDE - - E4 -
KEEP_PREVIOUS - - - E4

ARSP_CONTROL

DONE E5 E5 E5 E5
 Ei entered in ith order, - not activated.

The test results using DIA are the same as shown in the chapter 4.3.3.2. The fault injection

results are described in the following table.

Altered state variable

FRAME_COUNTER AR_COUNTER AR_STATUS
Case Case Case

 Fault injected State

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
ARSP_START x x x x x x x x x x x x x x x

KEEP_PREVIOUS_VALUE b b b b b b b b b b b b b b b
ESTIMATE_ALTITUDE b b b b b b b N/A b b b b N/A b b

CALCULATE_ALTITUDE b b b b b b b b x b b b b b b
KEEP_PREVIOUS b b b b b b b b b b b b b b b

DONE b b b b b b b b b b b b b b b

 90

 91

 92

 93

@SETUP_GP_ROTATION

en (ALL_ROTATED)

en (GP_ROTATION_SET)

CALCULATE_GP_AL_AT_VE CALCULATION_COMPLETE @ENGINE_ON_OFF

en (ENGINES_SET)

@DET_VELOCITY_ERROR @CONTROL_CHECK en (ERROR_DONE) @DET_PHASE
en (CONTOUR_CHECKED)

@CLP T

en (PHASE_SET)

en (CLP_SET)

GP_CONTROL
@ROTATION

 94

/ GP_ALTITUDE(5) := GP_ALTITUDE(4);
GP_ALTITUDE(4) := GP_ALTITUDE(3);
GP_ALTITUDE(3) := GP_ALTITUDE(2);
GP_ALTITUDE(2) := GP_ALTITUDE(1)

ROTATE_GP_ALTITUDE

EN(GP_ATTITUDE_DONE)

@ROTATE_GP_ATTITUDE

@ROTATE_GP_VELOCITY

ALL_ROTATED

EN(GP_VELOCITY_DONE)

ROTATION

 95

/ GP_ATTITUDE(45) := GP_ATTITUDE(36); GP_ATTITUDE(44) := GP_ATTITUDE(35);
GP_ATTITUDE(43) := GP_ATTITUDE(34); GP_ATTITUDE(42) := GP_ATTITUDE(33);
GP_ATTITUDE(41) := GP_ATTITUDE(32); GP_ATTITUDE(40) := GP_ATTITUDE(31);
GP_ATTITUDE(39) := GP_ATTITUDE(30); GP_ATTITUDE(38) := GP_ATTITUDE(29);
GP_ATTITUDE(37) := GP_ATTITUDE(28)

GP_ATTITUDE_5

GP_ATTITUDE_4

GP_ATTITUDE_3

GP_ATTITUDE_DONE

/ GP_ATTITUDE(36) := GP_ATTITUDE(27); GP_ATTITUDE(35) := GP_ATTITUDE(26);
GP_ATTITUDE(34) := GP_ATTITUDE(25); GP_ATTITUDE(33) := GP_ATTITUDE(24);
GP_ATTITUDE(32) := GP_ATTITUDE(23); GP_ATTITUDE(31) := GP_ATTITUDE(22);
GP_ATTITUDE(30) := GP_ATTITUDE(21); GP_ATTITUDE(29) := GP_ATTITUDE(20);
GP_ATTITUDE(28) := GP_ATTITUDE(19)

ROTATE_GP_ATTITUDE

/ GP_ATTITUDE(18) := GP_ATTITUDE(9); GP_ATTITUDE(17) := GP_ATTITUDE(8);
GP_ATTITUDE(16) := GP_ATTITUDE(7); GP_ATTITUDE(15) := GP_ATTITUDE(6);
GP_ATTITUDE(14) := GP_ATTITUDE(5); GP_ATTITUDE(13) := GP_ATTITUDE(4);
GP_ATTITUDE(12) := GP_ATTITUDE(3); GP_ATTITUDE(11) := GP_ATTITUDE(2);
GP_ATTITUDE(10) := GP_ATTITUDE(1)

/ GP_ATTITUDE(27) := GP_ATTITUDE(18); GP_ATTITUDE(26) := GP_ATTITUDE(17);
GP_ATTITUDE(25) := GP_ATTITUDE(16); GP_ATTITUDE(24) := GP_ATTITUDE(15);
GP_ATTITUDE(23) := GP_ATTITUDE(14); GP_ATTITUDE(22) := GP_ATTITUDE(13);
GP_ATTITUDE(21) := GP_ATTITUDE(12); GP_ATTITUDE(20) := GP_ATTITUDE(11);
GP_ATTITUDE(19) := GP_ATTITUDE(10)

 96

/ GP_VELOCITY(15) := GP_VELOCITY(12);
GP_VELOCITY(14) := GP_VELOCITY(11);
GP_VELOCITY(13) := GP_VELOCITY(10)

GP_VELOCITY_5

GP_ VELOCITY _4

GP_ VELOCITY _3

GP_ VELOCITY _DONE

/ GP_VELOCITY(12) := GP_VELOCITY(9);
GP_VELOCITY(11) := GP_VELOCITY(8);
GP_VELOCITY(10) := GP_VELOCITY(7)

/ GP_VELOCITY(9) := GP_VELOCITY(6);
GP_VELOCITY(8) := GP_VELOCITY(5);
GP_VELOCITY(7) := GP_VELOCITY(4)

/ GP_VELOCITY(6) := GP_VELOCITY(3);
GP_VELOCITY(5) := GP_VELOCITY(2);
GP_VELOCITY(4) := GP_VELOCITY(1)

ROTATE_GP_VELOCITY

 97

/ GP_ROTATION(1) := 0;
 GP_ROTATION(2) := G_ROTATION(3);
GP_ROTATION(3) := -G_ROTATION(2)

GP_ROTATION_1

GP_ROTATION_2

GP_ROTATION_SET

/ GP_ROTATION(4) := -G_ROTATION(2);
 GP_ROTATION(5) := 0
GP_ROTATION(6) := G_ROTATION(1);

/ GP_ROTATION(7) := G_ROTATION(2);
 GP_ROTATION(8) := -G_ROTATION(1);
GP_ROTATION(9) := 0

SETUP_GP_ROTATION

 98

SET_ENGINES

AE_RE_1

ENGINES_SET

[AE_SWITCH=0] and
[GP_ALTITUDE(1) <= ENGINES_ON_ALTITUDE] and
[FRAME_ENGINES_IGNORED=0] and
[TD_SENSED=0] / AE_SWITCH :=1;
FRAME_ENGINES_IGNORED := FRAME_COUNTER

AE_RE_2

AE_RE_3

[AE_SWITCH=1] and
[GP_ALTITUDE(1) <= DROP_HEIGHT] and
[(SQRT (2*GRAVITY*GP_ALTITUDE(1))+GP_VELOCITY(3)) <=
MAX_NORMAL_VELOCITY] and
[TD_SENSED=0] / AE_SWITCH :=0; RE_SWITCH :=0

ENGINE_ON_OFF

[AE_SWITCH=1] and
 [TD_SENSED=1] / AE_SWITCH := 0;
RE_SWITCH := 0

 99

COMPARE

INSIDE_CONTOUR

ERROR_DONE

[GP_ALTITUDE(1) < CONTOUR_ALTITUDE(1)]

BETWEEN _ELEMENTS

OUTSIDE_CONTOUR

LOWER

MATCH_W _ELEMENTS
UPPER

[GP_ALTITUDE(1) <= CONTOUR_ALTITUDE(100)] or
[GP_ALTITUDE(1) >= CONTOUR_ALTITUDE(1)]

[GP_ALTITUDE(1) =
BETWEEN_CONTOUR_ALTITUDE_ELEMENTS]
/VELOCITY_ERROR := GP_VELOCITY(1) –
ESTIMATED_VALUE_BETWEEN

[GP_ALTITUDE(1) <= CONTOUR_ALTITUDE(100)]
/VELOCITY_ERROR := GP_VELOCITY(1) –
ESTIMATED_VALUE_LOW

[GP_ALTITUDE(1) = MATCH]
/VELOCITY_ERROR := GP_VELOCITY(1)
– CONTOUR_VELOCITY($N)

DET_VELOCITY_ERROR

[GP_ALTITUDE(1) <=
CONTOUR_ALTITUDE(100)]
/VELOCITY_ERROR := GP_VELOCITY(1)
– ESTIMATED_VALUE_LOW

 100

COMPARE_CONTOUR

CONTOUR_CHECKED

[GP_ALTITUDE(1) <= ENGINES_ON_ALITUDE] and
[CONTOUR_CROSSED = 0] and
[VELOCITY_ERROR > 0] / CONTOUR_CROSSED:=1

[GP_ALTITUDE(1) > ENGINES_ON_ALITUDE] or
[CONTOUR_CROSSED = 1] or
[VELOCITY_ERROR <= 0]

CONTOUR_CHECK

 101

PHASE2

COMP_VARIABLES

PHASE3

PHASE4

PHASE5

KEEP_PHASE1

[GP_PHASE=1] and [GP_ALTITUDE(1) <= ENGINES_ON_ALTITUDE]
and [AE_SWITCH=0] and [RE_SWITCH=0] / GP_PHASE := 2

PHASE_SET

TERMINATE_GCS

 [GP_ALTITUDE(1) > ENGINES_ON_ALTITUDE]
/ GP_PHASE := 1

[GP_PHASE=2] and [AE_TEMP=2] and [CHUTE_RELEASED=1] and
[TD_SENSED=0] / GP_PHASE := 3

[GP_PHASE=3] and [TD_SENSED=0] and
[GP_ALTITUDE(1) <= DROP_HEIGHT] and
[(SQRT(2*GRAVITY*GP_ALTITUDE(1))+GP_VELOCITY(1)) <=
MAX_NORMAL_VELOCITY] / GP_PHASE := 4

([GP_PHASE=2] and [AE_TEMP=2] and [CHUTE_RELEASED=1] and
[TD_SENSED=1]) or ([GP_PHASE=3] and [TD_SENSED=0] and
 [GP_ALTITUDE(1) <= DROP_HEIGHT] and [TDS_STATUS=1]) or
([GP_PHASE=4] and [TDS_STATUS=1]) / GP_PHASE := 5

([GP_PHASE=3] and [TD_SENSED=1]) or
([GP_PHASE=4] and [TD_SENSED=1])
 / GP_PHASE := 5; RUN_DONE := 1

DET_PHASE

 102

CL_VALUE

CLP_SET

[CL = 2] or
[GP_ALTITUDE(1) >= DROP_SPEED]

[CL = 1] and [GP_ALTITUDE(1) < DROP_SPEED]
and [DROP_SPEED_IN_CONTOUR_VEL]
/ CL := 2; TE_INTEGRAL := 0.0

CLP

 103

 104

@RE_CMD_UPDATE
T

[RE_SWITCH=1]

/ THETA := THETA + DELTA_T * G_ROTATION(1)

RECLP_START

[RE_SWITCH=0]

/ RE_CMD := 1; RE_STATUS:=0

RECLP_CONTROL

 105

T

([G_ROTATION(1) > P3] and [G_ROTATION(1) < P4] and [THETA < 0]) or
([G_ROTATION(1) < -P3] and [G_ROTATION(1) > -P4] and [THETA > 0]) or
([G_ROTATION(1) > 0] and [G_ROTATION(1) < 0] and [THETA < 0] and
[THETA>-THETA2]) or ([G_ROTATION(1) < 0] and [G_ROTATION(1) > -P3]
and [THETA > 0] and [THETA < THETA2]) or ([G_ROTATION(1) > 0] and
[G_ROTATION(1) < P1] and [THETA > 0] and [THETA<THETA1]) or
([G_ROTATION(1) < 0] and [G_ROTATION(1) > -P1] and [THETA < 0] and
[THETA > -THETA1]) / RE_CMD:=1; RE_STATUS:=0

RE_CMD2

[G_ROTATION(1) > -P2] and [G_ROTATION(1) < -P1] and
[THETA > -THETA2] and [THETA < 0] / RE_CMD:=4; RE_STATUS:=0

SET_RE_CMD

RE_CMD3

RE_CMD4

RE_CMD5

RE_CMD6

RE_CMD1

RE_CMD7

[G_ROTATION(1) > -P1] and [G_ROTATION(1) < 0] and
[THETA > -THETA2] and [THETA < -THETA1] / RE_CMD:=2 ; RE_STATUS:=0

[G_ROTATION(1) < P1] and [G_ROTATION(1) > 0] and
[THETA < THETA2] and [> THETA1] / RE_CMD:=3 ; RE_STATUS:=0

[G_ROTATION(1) < P2] and [G_ROTATION(1) > P1] and
[THETA < THETA2] and [THETA > 0] / RE_CMD:=5; RE_STATUS:=0

[G_ROTATION(1) < -P4] or ([G_ROTATION(1) < -P2] and [THETA < 0]) or
([G_ROTATION(1) < P3] and [THETA <-THETA2])
/ RE_CMD:=6; RE_STATUS:=0

[G_ROTATION(1) > P4] or ([G_ROTATION(1) > P2] and [THETA > 0]) or
([G_ROTATION(1) > - P3] and [THETA > THETA2])
/ RE_CMD:=7; RE_STATUS:=0

RE_CMD_UPDATE

 106

The CP submodule contains too much of inconsistency to develop complete Statecharts

model. Moreover, the bit wise transactions to build the packet mask are too complicated to

transform into statecharts (Covered by CP_PREP_MASK1-3 and CP_MASK schemas in Z).

Therefore, the CP statecharts model is build with events that represents the functional sequences

that CP follows according to the SRS. CP has only one state transaction path which is tested

using FSMA. The fault injection and DIA test are not performed for this submodule because CP

model did not have enough data processing functionality and CP is not a submodule that can

create catastrophic failure for the system.

The GP submodule has multiple functions to perform. All the sequences of functions are

transformed into Statecharts model. However, it was impossible to test all the data input and

output with realistic variable values because the initial values of all the variables are not clearly

given. Therefore, FSMA test was performed to entire GP model while DIT test is performed on

some parts of GP model that uses only the variables processed inside of the GCS excerpt.

The RECLP is comparable complete and has several data initiated function processes.

Therefore, FSMA and DIT test and Fault injections are performed on this submodule. The test

results are as presented in the following tables.

 107

Activity/State Transition Paths
Name of Chart Activity / State Name

1 2 3 4 5 6 7 8
RECLP E1 E1 E1 E1 E1 E1 E1 E1 RECLP
@RECLP_CONTROL E2 E2 E2 E2 E2 E2 E2 E2
RECLP_START E3 E3 E3 E3 E3 E3 E3 E3 RECLP_CONTROL
@RE_CMD_UPDATE - E4 E4 E4 E4 E4 E4 E4
SET_RE_CMD - E5 E5 E5 E5 E5 E5 E5
RE_CMD1 - E6 - - - - - -
RE_CMD2 - - E6 - - - - -
RE_CMD3 - - - E6 - - - -
RE_CMD4 - - - - E6 - - -
RE_CMD5 - - - - - E6 - -
RE_CMD6 - - - - - - E6 -

RE_CMD_UPDATE

RE_CMD7 - - - - - - - E6

Variable values (constants)

Variable name Values

DELTA_T 0.005

P1 0.005

P2 0.010

P3 0.015

P4 0.020

THETA1 0.010

THETA2 0.020

 Variable Case 1 Case 2 Case 3 Case 4
G_ROTATION 1 0.016 -0.016 0.01 -0.01

Input
THETA -0.00500 0.005 -0.005 0.01
THETA -0.00492 0.00492 -0.00495 0.00995
RE_CMD 1 1 1 1 Output
RE_STATUS 0 0 0 0

 108

 Variable Case 5 Case 6 Case 7 Case 8
G_ROTATION 1 0.001 -0.001 -0.001 0.001

Input
THETA 0.005 -0.005 -0.015 0.015
THETA 0.005005 -0.005005 -0.015005 0.015005
RE_CMD 1 1 2 3 Output
RE_STATUS 0 0 0 0

 Variable Case 9 Case 10 Case 11 Case 12
G_ROTATION 1 -0.006 0.006 -0.025 -0.015

Input
THETA -0.01 0.01 0 -0.001
THETA -0.01003 0.01003 -0.000125 -0.001075
RE_CMD 4 5 6 6 Output
RE_STATUS 0 0 0 0

 Variable Case 13 Case 14 Case 15 Case 16
G_ROTATION 1 0.01 0.025 0.015 -0.01

Input
THETA -0.021 0 0.01 0.025
THETA -0.02095 0.000125 0.010075 0.02495
RE_CMD 6 7 7 7 Output
RE_STATUS 0 0 0 0

Where the boundary values of each variable belong are not clearly specified in the SRS. Due

to that reason, the fault injection results are not conclusive.

