

eCGE: A MULTI-PLATFORM PETRI NET EDITOR

By

DAVID DUGAN

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2005

ii

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of

DAVID DUGAN find it satisfactory and recommend that it be accepted.

 Chair

iii

ACKNOWLEDGEMENT

The eCGE project has greatly benefited from the support and advice of a number of

individuals, most notably my advisor, Dr. Frederick Sheldon, and my family (including the cat).

Dr Sheldon was my undergraduate professor at University of Colorado at Colorado Springs in

1998 for a computer architecture class. He nominated me to work as a graduate assistant at

WSU. During my time at WSU, he has been a constant source of stimulation and encouragement

for which I am forever grateful. Dr Sheldon moved to Oak Ridge National Laboratories and is

unable to fulfill the administrative role in regard to the evaluation of the thesis. However, during

his time at Oak Ridge he continued to provide guidance for this Project and made many useful

suggestions to improve the quality of this project. I am deeply indebted to Dr Anneliese

Andrews for volunteering for that administrative role and for her support of this project.

iv

eCGE: A MULTI-PLATFORM PETRI NET EDITOR

ABSTRACT

by David Dugan, M.S.
Washington State University

May 2005

Chair: Frederick T. Sheldon

This thesis describes the design and application of the enhanced Petri Net Graphical Editor

(eCGE) application. This project implements the core features of a Stochastic Petri net modeling

tool and is implemented in Java for portability. It provides an interactive environment for

developing and visualizing a Petri net model. The user interface is graphical with highly

interactive layout and editing features, and is designed to detect syntactic errors in a Petri net

model as it is developed. This tool contains a number of improvements over the original

application, such as an improved design, which provides the ability to read and write a file in the

C-based Stochastic Petri net Language (CSPL) format, and features to help organize a model.

v

LIST OF PUBLICATIONS

Frederick T. Sheldon and David Dugan. “Stochastic Petri Nets and Discrete Event Simulation:

A Comparative Study of Two Formal Description Methods,” IEEE 3rd Workshop on Formal

Descriptions and Software Reliability, San Jose, CA, October 7, 2000.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. III

ABSTRACT .. IV

LIST OF PUBLICATIONS..V

TABLE OF CONTENTS.. VI

LIST OF FIGURES ...XII

LIST OF TABLES ...XV

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1 PROBLEM DEFINITION .. 1

1.2 MOTIVATION / GRAPHICAL EDITOR FOR PETRI NETS ... 1

1.3 SCOPE .. 3

1.4 ORGANIZATION .. 4

CHAPTER TWO .. 5

METHODS OF MODELING SYSTEM BEHAVIOR.. 5

2.1 INTRODUCTION... 5

2.2 BACKGROUND ON FORMALLY MODELING SYSTEM BEHAVIOR............................. 5

2.3 PERFORMANCE ANALYSIS AND FORMAL METHODS ... 6

2.4 DEFINING THE SYNTAX OF A MODELING LANGUAGE ... 7

2.5 ELEMENTS OF A LANGUAGE DEFINITION ... 8

vii

2.6 SYNTAX ... 9

2.7 GRAPHS ... 9

CHAPTER THREE .. 11

BACKGROUND ON PETRI NETS... 11

3.1 IN THE BEGINNING ... 11

3.2 TIME IN PETRI NETS ... 12

3.3 PETRI NETS AND PERFORMANCE MODELING ... 13

3.4 NUMERICAL ANALYSIS OF A STOCHASTIC PETRI NET MODEL 15

3.5 SURVEY OF RELATED WORK... 16

3.5.1 Petri .. 17

3.5.2 DSPNexpress2000 ... 17

3.5.3 CPN2000 ... 17

3.5.4 UltraSAN... 17

3.5.5 Doodle... 17

CHAPTER FOUR... 19

CONTRIBUTION OF THIS WORK... 19

4.1 STARTING POINT FOR THE PROJECT.. 19

4.2 IMPROVEMENTS IN READING AND SAVING A FILE ... 20

4.2.1 Background ... 20

4.2.2 File Format Compatibility ... 21

4.2.3 CSPL Conversion Example .. 22

4.3 BASIS FOR THE ENHANCED CGE ... 22

viii

4.4 PAST AND PRESENT CONTRIBUTIONS TO CGE ... 24

4.5 DESIGN OF THE ENHANCED CGE... 25

4.5.1 Design Approach ... 26

4.5.2 Levels of Abstraction ... 27

CHAPTER FIVE .. 31

ECGE TOOL OVERVIEW AND IMPLEMENTATION DETAILS....................... 31

5.1 INTRODUCTION... 31

5.2 USER INTERFACE LEVEL... 31

5.2.1 Interaction Techniques... 33

5.2.2 Drawing Window... 33

5.3 DESIGN LEVEL ... 34

5.4 ALGORITHMIC LEVEL ... 35

5.4.1 AVL Tree ... 36

5.4.2 CSPL Parser.. 36

5.4.3 Mouse Handler .. 36

5.4.4 Multiple Document Prototype .. 38

5.4.5 Arc Line Calculations .. 38

5.5 CASE STUDY 1: USE OF A PRE-EXISTING MODEL... 38

5.5.1 Importing the model into eCGE ... 39

5.5.2 Description of the Model.. 41

5.5.3 Steps used to develop the model ... 41

5.6 CASE STUDY 2: LAYOUT OF A MODEL.. 43

5.6.1 Conflict in a Petri net... 44

ix

5.6.2 Confusion in a Petri net ... 44

5.6.3 Detecting the structure of the model through the layout 45

CHAPTER SIX ... 47

THE PETRI NET LANGUAGE PRIMITIVES .. 47

6.1 ELEMENTS OF A PETRI NET ... 47

6.2 PLACES .. 47

6.3 TRANSITIONS ... 47

6.3.1 Selectively Disabling a Transition.. 48

6.4 ARCS .. 49

6.5 INTRODUCING SPNP’S C-BASED STOCHASTIC PETRI NET LANGUAGE 49

6.5.1 Specification of “options”.. 50

6.5.2 Specification of “net” .. 51

6.5.3 Assert Function.. 52

6.5.4 Other Functions: ac_init, ac_reach, and ac_final 53

CHAPTER SEVEN... 54

CONCLUSIONS ... 54

7.1 SUMMARY.. 54

7.2 FUTURE PLANS... 54

BIBLIOGRAPHY... 56

APPENDIX A.. 65

LAYOUT ALGORITHMS... 65

x

A.1 INTRODUCTION... 66

A.2 GENERAL PRINCIPLES OF A GRAPH LAYOUT ALGORITHM 66

A.2.1 Spring Algorithm ... 67

A.2.2 Tree Algorithm... 67

A.2.3 Random Algorithm... 67

A.3 INTERFACE FOR DESIGNING A GRAPH LAYOUT ALGORITHM 67

APPENDIX B.. 69

DESIGN DOCUMENTATION .. 69

B.1 INTRODUCTION... 70

B.2 ARCHITECTURAL MODEL OF THE PROJECT .. 70

B.3 MOUSE HANDLER TIMING DIAGRAMS... 73

B.3.1 Single Click ... 74

B.3.2 Double Click.. 74

B.3.3 Mouse Drag... 75

B.4 AVL TREE DOCUMENTATION... 75

B.4.1 AVL Tree Data Structures.. 75

B.4.2 Insertion .. 76

B.4.3 Deletion... 80

B.4.4 Detailed description of the list traversal functions 87

APPENDIX C.. 90

USER’S MANUAL ... 90

C.1 INTRODUCTION... 91

xi

C.2 TOOLBAR ... 91

C.3 MENU BARS ... 91

C.3.1 File Menu .. 92

C.3.2 Edit Menu .. 92

C.3.3 Functions Menu ... 92

C.3.4 Algorithms Menu ... 93

C.4 PLACES .. 93

C.5 TRANSITIONS ... 93

C.5.1 Transition Properties ... 94

C.5.2 Firing Rate .. 94

C.5.3 Guard Functions.. 95

C.6 ARCS .. 96

C.6.1 Cardinality .. 96

C.7 PARAMETERS ... 97

C.7.1 General Parameters... 97

C.7.2 Output File Parameters ... 99

C.7.3 Markov Chain Options..101

C.7.4 Simulation Options ...103

xii

LIST OF FIGURES

FIGURE 1: DATA STREAM...8

FIGURE 2: CSPL FILE CONVERSION ... 22

FIGURE 3: CGE FIRST ITERATION .. 24

FIGURE 4: CGE SECOND ITERATION... 24

FIGURE 5: CGE THIRD ITERATION ... 24

FIGURE 6: CGE FOURTH ITERATION... 25

FIGURE 7: DESIGN APPROACH.. 26

FIGURE 8: DESIGN LEVEL COMPONENTS... 29

FIGURE 9: SAMPLE ERROR DIALOG BOX .. 32

FIGURE 10: INITIAL ARRANGEMENT OF CASE STUDY MODEL .. 39

FIGURE 11: RANDOM ARRANGEMENT OF CASE STUDY MODEL... 40

FIGURE 12: ORGANIZED LAYOUT OF CASE STUDY MODEL.. 40

FIGURE 13: CASE STUDY MODEL IN CSPL FORMAT... 43

FIGURE 14: CONFLICT IN A PETRI NET .. 44

FIGURE 15: CONFUSION IN A PETRI NET .. 44

FIGURE 16: EXAMPLE OF AMBIGUITY INTRODUCED BY CONFUSION.. 44

FIGURE 17: CONFUSION IN A PETRI NET – CSPL VERSION ... 46

FIGURE 18: PN PRIMITIVES.. 47

FIGURE 19: CLASS ARCHITECTURE FOR ECGE.. 71

FIGURE 20: CLASS ARCHITECTURE FOR MOUSE HANDLER .. 72

FIGURE 21: CLASS ARCHITECTURE FOR A DOCUMENT .. 73

xiii

FIGURE 22: MOUSE HANDLER FLOW CHART .. 74

FIGURE 23: PARSING A SINGLE CLICK .. 75

FIGURE 24: PARSING A DOUBLE CLICK... 75

FIGURE 25: PARSING A MOUSE DRAG... 76

FIGURE 26: RIGHT ROTATION .. 79

FIGURE 27: DOUBLE ROTATION, LEFT SIDE ... 79

FIGURE 28: LEFT ROTATION... 80

FIGURE 29: DOUBLE ROTATION, RIGHT SIDE ... 80

FIGURE 30: AVL DELETE, CASE 1.. 82

FIGURE 31: AVL DELETE, CASE 2.. 83

FIGURE 32: AVL DELETE, CASE 3.. 83

FIGURE 33: RE-BALANCE LEFT SIDE, CASE 1 ... 85

FIGURE 34: RE-BALANCE LEFT SIDE, CASE 2 ... 86

FIGURE 35: RE-BALANCE RIGHT SIDE, CASE 1 ... 87

FIGURE 36: RE-BALANCE RIGHT SIDE, CASE 2 ... 87

FIGURE 37: FUNCTION NEXT CASE .. 90

FIGURE 38: TOOLBAR .. 92

FIGURE 39: PLACE ATTRIBUTES DIALOG BOX .. 94

FIGURE 40: TRANSITION ATTRIBUTE DIALOG BOX ... 96

FIGURE 41: GUARD FUNCTION DIALOG BOX .. 96

FIGURE 42: ARC ATTRIBUTES DIALOG BOX.. 97

FIGURE 43: GENERAL PARAMETERS ... 99

FIGURE 44: REACHABILITY GRAPH OPTIONS .. 100

xiv

FIGURE 45: OTHER OUTPUT OPTIONS ... 101

FIGURE 46: MARKOV PARAMETERS.. 103

Figure 47: Simulation Parameters ... 105

xv

LIST OF TABLES

TABLE 1: COMPONENTS OF THE ENHANCED CGE.. 23

1

CHAPTER ONE

INTRODUCTION

1.1 Problem Definition

Petri Nets are an established means of visualizing certain types of systems. The aim of this

project is to implement a graphic editor for developing and editing Petri Net models. This

graphic editor should have the ability to create and modify the graphs of the nets and, ideally, it

should demonstrate the progress of the tokens through the net. It can also assist the user in the

layout of a model.

A software-based modeling tool can provide many benefits in developing a Petri net model.

First, a model can be created quickly from a palette of pre-defined elements. Then as a model

evolves, it can be quickly modified to reflect these changes. The design and interface of these

tools have reflected the state of the art in computer software design. For example, the modeling

language of many early tools was textual. More recently developed tools have used graphical

means to represent a Petri net model.

However, modeling tools should go beyond an electronic drawing board to provide features

to help organize a model. To this end, the eCGE application provides an interface for developing

graph layout algorithms. The Spring and Tree Algorithms have been implemented to provide an

example of how to use this interface [1].

1.2 Motivation / Graphical Editor for Petri Nets

The motivation for this project is to develop a tool to generate a Stochastic Petri net model

graphically rather than textually. This is accomplished by implementing an easy to use graphical

editor, which provides a set of tools to develop and visualize a Stochastic Petri Net model. At

2

the user interface level, the goal of the project is to minimize any unnecessary effort in

translating an actual system into the Petri net formalism. Extensive consistency checking

enforces the semantic correctness of a model as it is developed. In addition, it is possible to

import a Petri Net model written in the C-based Stochastic Petri net Language (CSPL) [2].

Representing knowledge via a graph is not as trivial a task as it seems. This is especially true

when the information to represent is inherently abstract, such as many of the constructs in

systems analysis and design. For example, a process is an intangible concept that cannot be

touched or adequately visualized in terms of its inherent structure or form. Petri nets can

artificially represent the abstract concept of processes through the movement of tokens in a

model. The use of such artificial substitutes is inevitable because a direct isomorphism does not

exist between the real-world concept and its Petri net representation.

In order to represent abstract information, a decision must be made on how to partition the

real-world knowledge into the various Petri net constructs and represent the various elements

onto the drawing window so that it is intuitive. Conceptually, these basic principles for

representing abstract information fall into two main categories: information distribution and

spatial organization. These principles are used by the eCGE application in creating a visual

grammar of the Petri net modeling formalism.

Information distribution refers to the level of partitioning of information into the elementary

Petri net constructs (arcs, places, transitions, and guards). The various types of information may

be represented at different levels of granularity. For example, the main window of a Petri net

model shows the overall graphical structure of a model, while dialog boxes can be opened to

show the attributes of an individual element. Another example is hierarchical Petri nets, where a

transition can represent another Petri net model.

3

Spatial organization refers to the way meaning is conveyed through the layout within the

presentation space. For example, graph layout algorithms can be used to help organize the

elements of a model. The eCGE application currently implements two such algorithms. These

algorithms provide differing representations of the Petri net elements. Even though these

representations are isomorphic (or informationally equivalent), they will not necessarily be

equally effective in conveying the underlying meaning of a particular model [3].

The layout of a Petri net model can be useful to communicate the underlying meaning of the

net. The eCGE application provides a framework for developing a variety of graph layout

algorithms for organizing the elements of a Petri net model. It may be useful to be able to select

a particular layout based on the model at hand. The results of each algorithm provide different

perceptual cues that affect the readability of a model. Some models may be easier to develop or

less error-prone with a particular layout.

1.3 Scope

The eCGE tool presented in this paper is based on and extends the work done by Gravelle

[4]. The original CGE was a proof of concept demonstration that a graphical interface could be

built to generate the CSPL coding language constructs. The basic idea was to make the original

CGE tool easier to maintain and extend in a number of areas. This project extends the original

application in a number of areas:

• The application is written in Java to enhance portability and extensibility.

• The design is based on the concepts of object-oriented analysis/design, rather than

procedural methodology.

• The application has the ability to read and write a Petri net model in two formats: CSPL

and an application-specific format.

4

• An object-oriented interface was developed for creating a graph layout algorithm.

1.4 Organization

This document is organized as follows. Chapter 2 provides a brief introduction in the use of

formal methods in modeling a system. Chapter 3 presents some background in the Petri nets and

describes a number of related tools. Chapter 4 presents the methodology used for developing

this project and a comparison with the previous version of CGE. Chapter 5 gives an overview of

the actual design of the application. Chapter 6 describes the Petri net elements included in this

project. Chapter 7 concludes this thesis with a plan for future studies on this topic. Appendix A

provides background on the graph layout algorithms. Appendix B contains the design

documentation for the eCGE project. Appendix C provides the user’s manual for the eCGE

application.

5

CHAPTER TWO

METHODS OF MODELING SYSTEM BEHAVIOR

2.1 Introduction

The design and the correct implementation of software are difficult tasks, for which many

formal methods have been proposed and employed. The aim of such models is to give precise,

unambiguous, and complete specifications, which are of value in implementing the software

system and in proving correctness properties. Much research has gone into developing formal

methods that can rigorously demonstrate that an implementation is consistent with the

requirements. A number of these is based on existing modeling paradigms, such as state

machines, Petri nets, or process algebras.

2.2 Background on Formally Modeling System Behavior

The formal methods model encompasses a set of activities that lead to mathematical

specification of an actual system. Formal methods enable a user to specify, develop, and verify a

computer-based model by applying a rigorous mathematical notation. When formal methods are

used during design, they serve as a basis for program verification and therefore enable the user to

discover and correct errors that might otherwise go undetected.

As the size and complexity of software systems has increased, it has become increasingly

more difficult for software designers to produce a quality product that meets the end user’s

requirements in a timely manner. The problem is often a symptom of the informal nature of the

design process. Requirements informally agreed upon are often misunderstood or

misinterpreted, leading to deficiencies in the final software product. In addition, these

deficiencies are often not discovered until very late in the development process or after

6

implementation, causing delays in delivery. In order to reduce the cost of developing reliable

systems that provide the desired functionality, it is necessary to provide a means to test the

formal specification early in the software life cycle.

As a result, researchers have begun to restructure the design process, introducing approaches

and tools, such as formal specification and verification, which enable a designer to rigorously

demonstrate that an implementation is consistent with its requirements. Demonstrating that code

is consistent with its critical requirements is a difficult process. However, the process can be

made traceable by verifying the design at every step.

2.3 Performance Analysis and Formal Methods

Traditionally, formal correctness verification and performance analysis have been two

separate fields. Whereas the validation and verification processes are based on formal

techniques, the classical approach to performance is based on human ingenuity and experience,

and consists of devising abstract models that can be analyzed by simulation or by applying

stochastic process theory. A key problem of the traditional performance evaluation approach lies

in the credibility of the model: the functional equivalence between a model and the actual system

is almost impossible to prove. This is not the case for the model used for verification, since the

model is the specification of the actual system. This consideration suggests that formal methods

should be used for performance analysis as well as for formal verification. Combining

performance analysis with formal verification provides a number of other advantages. For

example, it makes performance prediction possible in the early design phases, thus avoiding

costly redesign, and facilitates the automation of the performance analysis process [5].

As already noted in [6], the use of a formal description language as a paradigm for

performance modeling requires the extension of the language with temporal and probabilistic

7

specifications. The temporal specifications are necessary to describe the time lapse between

consecutive events. The probabilistic specifications are necessary to describe the selection

among different possible behaviors.

Many researchers [7]-[16] have considered the two types of extensions separately, the timing

extension for formal verification of time-critical systems, and the probabilistic extension for

probabilistic verification or testing, when an exhaustive validation is impossible. Each extension

gives a reasonable insight into the related problems, but merging probabilistic and timing

information for performance modeling involves new aspects [17]. Pioneering work in this

respect was done in the area of Petri nets, with the formulation of some well-known timed and

probabilistic extensions such as stochastic Petri Nets [18]-[20] and their offspring [21]-[26], and

Timed Petri Nets [27]-[29].

2.4 Defining the Syntax of a Modeling Language

The timed and probabilistic extensions to the Petri net formalism present a challenge for the

definition of a Petri net modeling language. Much research has been done to clarify some of the

notions arising in defining a modeling language for the Petri net constructs. The timed and

probabilistic extensions to the Petri net formalism have led to a number of variations in the

modeling language. The differences between these extensions can lead to confusion.

The same basic syntax is used is used in each case, but the underlying meaning, or semantics,

differs between variants. One area of interest is distinguishing a language’s notation, or syntax,

from its meaning, or semantics, as well as recognizing the differences between variants of syntax

and semantics in their nature, purpose, style, and use [30].

8

2.5 Elements of a Language Definition

Much has been said about the distinction between the purist notation of information and its

semantic representation as data. Extracting or understanding the information encoded in data

requires an interpretation - a mapping that assigns a meaning to each (legal) piece of data.

Understanding the difference between syntax and semantics helps avoid confusion. A major

source of confusion is the mixing of the data and information notations. In one case, two pieces

of data might encode the same information, for example, “June 20, 2001” and “The last day of

the first spring in the third millennium.”

In another case [31], the same piece of data might have several

meanings and therefore denote different information for different

people or applications. An example is the sequence of hexadecimal numbers shown in Figure 1.

Taken as a raw data stream, this data has no meaning. Its meaning depends on how it is

interpreted. The following list shows a number of possible interpretations based on common

data types.

• A sequence of 1-byte characters: ‘wxyz’

• A 2-byte integer: 777816 = 30,58410

• A 4-byte integer: 7778797a16 = 2,004,384,12210

• A 4-byte floating-point number: 2.00

Just as people use natural language to communicate with each other, machines use machine-

readable languages for communication. Both kinds of language - whether they are natural,

artificial, or hardware description languages - contain a great variety of meaningful language

elements. Communication stakeholders must therefore agree on the language, which in turn

fixes the data set that they can communicate.

77 78 79 7a
Figure 1: Data Stream

9

Accordingly, a language consists of a syntactic notation, which is possibly an infinite set of

legal elements, together with the meaning of those elements, typically expressed by relating the

syntax to a semantic domain. Thus, any language definition must consist of the set of syntactic

elements, the semantic domain and a mapping from the syntactic elements to the semantic

domain [30].

2.6 Syntax

Textual languages are symbolic in spirit, and their basic syntactic expressions are put

together in linear character sequences. In contrast, the basic expressions in iconic languages are

small pictorial signs that depict elements. An iconic language can be more intuitive than a

textual language, but can be more difficult to design. Iconic and diagrammatic languages are

proving extremely helpful in software and systems development. In a theoretical sense, textual

languages and visual or diagrammatic ones have no principle difference, but when rigor and

formality are called for, properly defining diagrams seems much harder [30].

It is possible for a human reader to guess the meaning of most terms, since a good language

designer probably chooses keywords and special symbols with a meaning similar to some

accepted norm, but a computer cannot act on such assumptions. To be useful in the computing

arena, any language - whether it is textual or visual or used for programming, requirements,

specification, or design - must come complete with rigid rules that clearly state allowable

syntactic expressions and give a rigid description of their meaning.

2.7 Graphs

Visualizing information, especially information of complex and intricate nature, has for

many years been the subject of considerable work by many people. The interesting information

10

for this thesis is not quantitative, but rather of a structural, set-theoretical, and relational nature.

Consequently, the focus is on diagrammatic paradigms that are essentially topological in nature

rather than geometric.

A graph, in its most basic form, is simply a set of points, or nodes, connected by edges or

arcs. Its role is to represent a (single) set of elements S and some binary relation R on them. The

precise meaning of the relation R is part of the application and has little to do with the

mathematical properties of the graph itself. Certain restrictions on the relation R yield special

classes of graphs that are of particular interest, such as ones that are connected, directed, acyclic,

planar, or bipartite.

Graphs are used extensively in virtually all branches of computer science. The elements

represented by the nodes in these applications range from the most concrete (i.e., physical gates

in a circuit diagram) to the most abstract (i.e., complexity classes in a classification scheme).

The edges have been used to represent almost any conceivable kind of relation, including ones of

temporal, causal, functional, or epistemological nature. Graphs can be modified to support a

number of different kinds of elements and relationships [32].

11

CHAPTER THREE

BACKGROUND ON PETRI NETS

3.1 In the Beginning

A somewhat less widely used extension of graphs is the formalism of Petri nets. The Petri

net, first described in Carl Adam Petri’s dissertation in 1962 [33], is a tool for describing and

studying systems that are characterized as being concurrent, asynchronous, distributed, parallel,

non-deterministic, and/or stochastic. In general, they can be applied to any system that can be

described graphically. As a graphical tool, Petri Net can be used as a visual-communication aid

similar to flow charts, block diagrams, and networks. In addition, tokens are used in these nets

to simulate the dynamic and concurrent activities of systems. As a mathematical tool, it is

possible to set up state equations, algebraic equations, and other mathematical models governing

the behavior of systems. However, in modeling a large system the benefits of using Petri nets

tend to be lost due to an excessive amount of work needed for analysis.

Petri nets have proved to be of great value in many applications over the years. Some

examples of the successful use of Petri nets can be found in the areas of performance evaluation

and communication protocols. Many promising areas have been explored to include distributed

and concurrent systems (hardware, software, and logistical) and the analysis of complex state

systems (languages, etc.). In addition, some very far reaching ideas have been explored,

including local area networks, legal systems, human factors, neural networks, digital filters, and

decision models [17].

12

3.2 Time in Petri Nets

Petri nets were originally conceived to describe software behavior and functionalities in a

time-independent fashion. A model described a system in terms of a sequence of possible states.

The amount of time spent in each state was not considered. This is adequate when dealing with

non-time-critical applications, for example, when timing does not affect correctness, but only

performance. If this is not the case, formal methods including quantitative temporal

specifications are necessary in order to verify self-consistency, as well as the desired functional

properties. As a result, Petri nets have been extended to include the concept of time [34]-[35].

The addition of time to the Petri net formalism is accomplished by associating a firing time to

each transition. This firing time specifies the time that the transition has to be enabled before it

can actually fire. Different types of transitions can be distinguished depending on their

associated delay, for instance:

• Deterministic – The firing rate is a fixed time. This model has the concept of an

underlying clock that ticks off time and can have synchronous transition firings [36].

This approach is useful for synchronous transition firings that are predictable and

happen at regular time intervals. A special case is an immediate transition, which fires

after a zero time delay.

• Stochastic - The Stochastic Petri net model has the underlying notion of time as a

random variable where events are asynchronous. The firing time is based on a random

distribution function. The most common distribution is exponential, represented with a

timed transition. In theory, it is possible to use other distributions, as is done in

specifying regenerative simulation models. (i.e., relaxing the exponential assumption

on the transition firing rate). Stochastic Petri nets are useful for asynchronous events

13

that happen at non-predictable or random timing - for example, studying the

performance and dependability issues of a system.

• Hierarchical (or high-level Petri nets) - The firing time is based on the analysis of

another Petri net model, sometimes called a sub-net [37]. Support for hierarchical Petri

nets are not built into the current version of the CGE application.

There have been several modifications of these basic models, in addition to the various

semantic interpretations of firing rules. First, the Generalized Stochastic Petri Nets extend

Stochastic Petri nets by adding the concept of instantaneous transitions [38]. Second, the

Extended Stochastic Petri net add features to relax the exponential assumption on the transition

firing rates [24]. Third, the Generalized Timed Petri net adds a selection probability to groups of

transitions but maintains the discrete time concept [28]. Fourth, Stochastic Petri nets with ‘new

better than used’ distributions for firing times are being used to specify regenerative simulation

models [39]. All of these models have had analysis software written to support their application.

The exponential distribution models the time between independent events or a process time

which is memoryless (knowing how much time has passed gives no information about how much

additional time will pass before the process is complete); for example, the times between the

arrival of a large number of customers acting independently of each other. The exponential is a

highly variable distribution and is sometimes overused because it often leads to mathematically

tractable models. If the time between events is exponentially distributed, then the number of

events in a fixed period of time is Poisson.

3.3 Petri Nets and Performance Modeling

System reliability, maintainability, availability, and performance analyses are important and

complex. Several modeling methods, such as fault trees, Markov Chains, and Stochastic Petri

14

Nets are used for such analyses. Fault trees are easy to use in developing system models, but are

not suitable to describe systems with repairable components. The Markov chain model becomes

too complicated to specify by hand for any real-life system.

Petri nets provide a more versatile environment than fault trees and Markov Chains. Petri

nets can be used to show the dynamic behavior as well as the static aspects of a system. For

example, the addition of time to Petri nets provides a paradigm for the construction of

performance models or protocols [14].

Markov analysis provides a means of analyzing the reliability and availability of systems

whose components exhibit strong dependencies. Other system analysis methods (such as those

employed for fault tree analysis) often assume component independence which may lead to

optimistic predictions for the system availability and reachability parameters.

The major drawback of Markov models is that for large systems the underlying Markov

chain is exceedingly large and complicated and difficult to construct. However, Markov chains

may be used to analyze smaller systems with strong dependencies requiring accurate evaluation.

Other analysis techniques, such as fault tree analysis and simulation, may be used to evaluate

large systems using simpler probabilistic calculation techniques. Large systems which exhibit

strong component dependencies in isolated and critical parts of the system may be analyzed

using a combination of Markov analysis and simpler quantitative models.

When reliability and availability analyses of a system are performed, a Markov Chain is

often used [40]-[42]. If the Markov Chain is constructed manually, the analysis is often limited

to small systems modeled at the highest level. Without the proper tools, it is difficult to develop a

Markov model of a large system detailed enough to include the essential attributes of the

modeled system. A higher-level “language” is needed for the description of the system to allow

15

the automatic generation of the Markov chain. The stochastic Petri net model provides such a

language [43]. eCGE provides a graphical means to specify a stochastic Petri net model. A tool

such as SPNP can be used to automatically convert a model into a Markov chain and solved

numerically for the desired properties.

3.4 Numerical Analysis of a Stochastic Petri Net Model

Methods of obtaining numerical data from a Petri net model are based on well-developed

mathematical theory. A Stochastic Petri net is usually converted to the equivalent Markov

Chains; the Markov Chain is then used to obtain numeric results [44]-[45]. Though this

approach is widely used, its major weakness is the complexity problem: the number of states in

the converted CTMC grows exponentially with the number of reachable states of the Petri net

model. Thus, the analysis of a Stochastic Petri net with Markov Chains works well only when

the system model is relatively small.

An alternative approach is to use numerical, computer-based simulation to imitate the

behavior of the system over time. Data is collected from the simulation as if a real system was

being observed. However, simulation requires a large number of runs to obtain statistically valid

results. This can be very time consuming, especially for certain types of problems (for example,

modeling a rare event).

The actual implementation of such a numerical solver is outside the scope of this project. A

number of software packages have been developed to provide this type of analysis without the

need to translate a Petri net model into an equivalent Markov chain. It is possible to use a model

developed in eCGE as input to one such tool, the Stochastic Net Package (SPNP) [2]. It uses

analytical solutions whenever possible, and simulations when necessary. In a sense, this project

16

can be viewed as a wrapper application for SPNP, using a graphical user interface to abstract the

details of CSPL. eCGE can check for syntactic errors but it cannot check for runtime errors.

3.5 Survey of Related Work

Despite the advantages of Petri nets in modeling dynamic system behavior, Petri nets are

largely confined to academia. A number of concerns about its applicability in a business

environment are presented here:

• The development of a Petri net model tends to be quite time consuming and expensive.

Skimping on resources for modeling and analysis may result in a model that does not

sufficiently represent the actual system.

• Because few software developers have the necessary background to work with Petri

nets, extensive training is required. Translating the essential characteristics of an actual

system into a Petri net model is an art that is learned over time and through experience.

• It is difficult to use the models as a communication mechanism for technically

unsophisticated customers.

These concerns notwithstanding, it is likely that research in user-friendly tools will assist in

the increased use of Petri nets for the analysis of certain types of problems. However, while a

graphical modeling tool removes the learning curve due to language syntax, it does not remove

the need for analyzing the procedural logic of a real world system and the debugging required to

create an accurate model.

This section provides a brief survey of systems that have been developed for modeling and

analyzing Stochastic Petri nets. Studying these tools, particularly CPN2000, was useful in

gaining insight into improving the interface and design of CGE.

17

3.5.1 Petri

Petri is a tool for editing and analyzing Petri nets. It supports three forms of analyzing a Petri

net: simulation, reachability analysis, and invariant analysis. In addition, the tool provides an

interactive debugger which can be used to study the runtime behavior of a model [46].

3.5.2 DSPNexpress2000

DSPNexpress2000 takes Unified Modeling Language (UML) [47] specifications enhanced

by timing constraints, and maps them into a Generalized semi-Markov Process (GSMP). This

program can evaluate deterministic Markov chains specified as either a Petri net model or as

system specifications in UML [48].

3.5.3 CPN2000

CPN2000 is a graphical tool for editing and simulating Colored Petri Net. This tool contains

a graphical editor, as well as advanced simulation, analysis, and data collecting facilities. One

interesting aspect of this project is its use of video in the design process to research how

modelers use the program. This allowed the developers to find areas in which to improve the

user interface and design of the program [49].

3.5.4 UltraSAN

UltraSAN is a software environment for modeling computer systems and networks. Models

are specified using Stochastic Activity Network [50], a stochastic variant of Petri nets. It

supports a number of analysis and simulation-based solution techniques [51].

3.5.5 Doodle

Doodle is a declarative rule-based language for querying database objects visually. One

aspect of this language is of interest to this project: its ability to graphically display database

objects in a number of layouts. Cruz [52] discuss how to write visual programs for constructing

18

planar drawings of trees [53], series-parallel diagraphs [54], and acyclic diagraphs [55] using

doodle. These ideas may be useful is constructing layout algorithms for a Petri net model.

19

CHAPTER FOUR

CONTRIBUTION OF THIS WORK

4.1 Starting point for the project

The original CGE developed by Gravelle [4] was a proof of concept demonstration that a

graphical interface, rather than a text editor, could be utilized to generate CSPL coding language

constructs [2]. An overview of these constructs is presented in Section 6.5. The primary goal for

this project was to extend the original CGE in the following areas. The following sections

expand on each of these points.

Improvements in reading and saving a file:

• Added the ability to read in a CSPL file and display its contents graphically. The CSPL

parser is designed around SPNP version 6 [2] and is backward compatible to version 4

[55].

• Added the ability to display and edit a CSPL file that has been previously read.

• Improved the ability to save a Petri net model in CSPL format. This format is

compatible with SPNP version 6.

• Added the ability to specify graphically the parameters associated with the options

function. These parameters specify how SPNP obtains numerical results from a Petri

net model.

• Added the ability to read and save a model in a CGE format (an application-specific

format).

Improvements in the design:

20

• Developed an easy to use interface for developing a graph layout algorithm. This

capability provides a means of organizing the elements of a Petri net model in an

understandable way.

• Improved the maintainability of the design and implementation of the application.

Improvements in the user interface:

• Added the ability to specify a variable firing rate or probability.

• Improved the interface for defining a guard function.

• Added extensive consistency checking to assist the user in creating a syntactically

correct Petri net model. For example, attempts to connect two places with an arc

generates an error message.

4.2 Improvements in reading and saving a file

4.2.1 Background

A discussion of the challenges and rewards in developing a standard simulation environment

is presented by Wagner [56]. Such an environment would combine various aspects of the

simulation process into one complete powerful tool. The environment should provide the

necessary state-of-the-art advances and concepts that a modeler may require during the

simulation development and execution process. The “environment” requirements must address

the end user needs while minimizing the necessity of learning a new language, and additionally

specify the useful features, independent of different platforms and implementation languages.

Hence the opportunity exists for standardization among existing tools (or environments).

The concept of an ideal Petri net modeling environment combines different aspects of the

modeling process and analysis techniques into one powerful tool. This project explores a

number of these ideas. The application is designed using standard object-oriented methodology

21

and is implemented in Java. Perhaps more importantly, the project addresses the issue of

compatibility at the level of the modeling language.

4.2.2 File Format Compatibility

There are a number of tools on a variety of systems for developing a Petri net model.

Although these environments provide similar features, they rarely use the same file format to

represent a Petri net model. A possible source of frustration for a modeler is to utilize a large

model developed by another group using an unfamiliar or different tool. Obstacles such as

learning a new paradigm, incompatible models, and incompatible data formats prevent the

exploitation of previous work. One example is an analyst who has developed a model for his/her

own use. Later, another organization (or group within the organization) discovers the model and

wants to use it on another system. Many times, consultants have models, which could be used by

clients, if the model could execute on the client’s system. In universities, students would like to

develop or use a model from a class on their home-based systems [57].

A number of ideas has been presented as to possible avenues that can be taken to ease model

exchange, re-use of models between tools, and other amenable connotations of moving towards a

more standard modeling environment [56]. The goal of creating a tool-independent modeling

language may indirectly assist in combining the best features of the available modeling tools.

One challenge in creating such a modeling language is defining a standard set of language

constructs.

The eCGE application has taken a step in the direction of file format compatibility with its

support of the CSPL (C-based Stochastic Petri-net Language) file format. This format is the

specification language for the Stochastic Petri Net Package (SPNP) [2], a tool for modeling and

analyzing complex system behaviors (such as system reliability and availability analysis).

22

Currently, the main drawback of this format is that no graphical information is encoded for the

model’s elements. The eCGE application defined it own file format, which encodes positional

data for each element as well as the attributes contained in CSPL. For example, a place saves the

name, number of tokens, and its position on the drawing window.

4.2.3 CSPL Conversion Example

Importing a CSPL file into eCGE is done in two steps. The first step reads the CSPL file to

determine the elements and attributes of the model. Since the CSPL format does not include

graphical information for its elements, eCGE assigns graphical information to each element to

display the model in a window. This step is performed with a graph layout algorithm. The Tree

Algorithm is currently used to assign a position to each element.

A simple example of the conversion process is shown in Figure 2. Part A shows the CSPL

input file. Part B shows the model after the CSPL file has been read. Part C shows the layout

after the Tree Algorithm has assigned each element a position.

4.3 Basis for the enhanced CGE

Besides the original CGE, this thesis draws from two pre-existing components: the graph

layout algorithms developed by Wen Wei, and the CSPL parser written by the author. These

components served as the foundation for accomplishing the objectives described in section 4.1.

void net(){

!place("p0");

!rateval("t0", 1.0);

!rateval("t1", 1.0);

!iarc("t0", "p0");

!iarc("t1", "p0");

} /* end net() */

Part A Part B Part C

p0

t0 t1

p0

t0t1

Figure 2: CSPL File Conversion

23

The challenge for this thesis was combining these components into a logical, consistent whole.

The framework for the enhanced CGE, along with the framework for each of its underlying

components, is shown in Table 1.

Component Language GUI
Framework

Design
Methodology

OS Supported

Original CGE C++ MS Visual
Studios

procedural MS Windows

CSPL parser C++ N/A – command
line application

object-oriented any

Spring and Tree
Algorithms

C++ N/A – selected
by a menu item

procedural any

Enhanced CGE Java AWT / Swing object-oriented any supporting
Java 1.4

Table 1: Components of the enhanced CGE

The enhanced CGE improves upon the original design through the application of object-

oriented analysis and design techniques. The design of the original CGE was procedural-based,

in which the program is viewed as a collection of objects that interact. This architecture is

relatively “flat,” rather than hierarchical. A significant percentage of the source code is grouped

into a few large files, which makes maintenance and enhancement difficult. The approach taken

to remedy this situation is described in the next section. Essentially, this process translated the

procedural-based design of the original into an object-oriented framework. The resulting design

provided a more modular solution than the original. A side effect of the improvements in the

design was the increased readability of Wen Wei’s graph layout algorithms. (A more detailed

analysis of these algorithms is given in Appendix A.)

Although the majority of the improvements to the application were at the design level, some

work was done to improve the user interface. The goal at the interface level was to simplify the

process of specifying and modifying a Petri net model. The most significant improvements at

24

this level are to the design of many dialog boxes. The ability to open and save a model was also

added.

Implementing the ability to save and read a file in eCGE format was straightforward, but

adding the ability to read in a CSPL file required implementing a parser. This one-pass parser

was based on standard compiler design techniques [55]. Accomplishing these goals required a

re-design of both the original CGE and the Spring and Tree Algorithms.

The approach taken to design and implement the enhanced application is one of the more

important differences between this project and the original application. Object-oriented

methodology was used in the design process. The Java language

provided an ideal framework for implementing this project.

4.4 Past and Present Contributions to CGE

• The first iteration of CGE, shown in Figure 3, had the

ability to graphically model a Petri net, and to save this

model as a CSPL file.

• The second iteration of CGE, shown in Figure 4,

was a class project at WSU. It added, among other things,

the ability to save and open a model in CGE format. This

allowed the ability to modify a Petri net model without

having to completely re-draw the model.

• The third iteration of CGE, shown in Figure

5, was developed when Wen Wei, in her

thesis project, implemented two graph layout

develop Petri net model

(original CGE)

CSPL file

save as

numerical analysis

package (SPNP)

analyze results
Figure 3: CGE First Iteration

develop Petri net model (original CGE)

CSPL file

save as

numerical analysis

package (SPNP)

analyze results

open as

CGE file

save as

Figure 4: CGE Second Iteration

develop Petri net model (original CGE)

CSPL file

save as

numerical analysis

package (SPNP)

analyze results

open as

CGE file

save as run

graph layout

algorithm

update
display

Figure 5: CGE Third Iteration

25

algorithms (the Spring and Tree Algorithms) to improve the aesthetics of a Petri net

model.

• The fourth iteration of CGE, shown in Figure 6, is the current version. One of the

features it adds is the ability to read in a CSPL file. Combining the CSPL parser and

the previous version of CGE required a significant amount of work at the design level.

4.5 Design of the enhanced CGE

The result of the translation process is a design

that is object-oriented, rather than procedural, and it

divides the application into a relatively large number

of classes, whereby each class implements a single

part of the overall application. This effort involved decomposing each component of the

application into classes, and defining the interaction between these classes. Conceptually, these

classes are organized hierarchically into a number of levels. This is shown in section B.2 of

Appendix B. The design decomposed the application into a collection of cooperating objects.

The remainder of this section describes each level, moving from a high to low level of

abstraction, which presents the design as a top-down, modular structure.

One of the basic problems with the original application was that the design was difficult to

understand and modify. The design of the original application was procedural-based in which

the program is viewed as a collection of functions that interact. The architecture is relatively

“flat,” with few levels of abstraction, and as evident in the implementation, a significant

percentage of the source code is grouped into a few source files. The current version of the

application improves upon the original design. These improvements are described in section

4.5.1.

develop Petri net model (original CGE)

CSPL file

save as

numerical analysis

package (SPNP)

analyze results

open as

CGE file

save as run

graph layout

algorithm

(improved

interface)

update
display

open

Figure 6: CGE Fourth Iteration

26

4.5.1 Design Approach

An original contribution of this work is related to the re-design and integration into a single

program with a user-friendly interface. The translation was done using an iterative approach as

shown in Figure 7; each step is described in detail below. This approach provided a way to

explore the possible alternatives before committing to a solution.

• The translation process started by

understanding the procedural based

design of the original CGE application.

This process was made more manageable

by first partitioning the application into

its constituent components. The

application could then be translated one

component at a time.

• One of these components in the design

was then selected for further study. This step involved determining the function and

current implementation of the selected component.

• The functionality of the original component was duplicated in the enhanced CGE.

Exploring a possible design often involved creating a prototype to determine and

correct potential flaws.

• This prototype was used to help determine whether the design represents a valid

solution. At times, the construction of a prototype was the only means through which

requirements can be effectively derived.

• The research done in the previous step was incorporated into the application as a whole.

study existing

design

one component

of the design

create/modify

abstract model

design prototype

of abstract model

functional

verification

design

validation

integrate design

/ prototype into

overall system

no : implementation
problem

no : design
problem

yes

yes

start

Figure 7: Design Approach

27

• These steps were repeated until the entire design was translated.

The focus of the iterative process was to translate the application from a procedural

framework (written in Visual Studio) into an object-oriented framework (written in Java). The

first iteration produced a skeletal application with minimal functionality. Successive iterations

developed the application one component at a time. Using an iterative approach allowed insight

into each component of the project. The process of studying one aspect of the design often

suggested a direction for the subsequent iteration: it identified new issues that required additional

research, and provided answers or justifications for particular design decisions.

The use of prototyping throughout the design process proved helpful in managing the tension

between qualitative details and design abstractions. To identify, separate, and understand the

reasoning behind an aspect of the original design, its functionality was reversed engineered. This

process often involved researching the theory behind a component’s function. Prototyping was

done to explore ideas on how to recreate this functionality in the enhanced application. Going

back and forth between a prototype and the underlying theory ensured that the design principles

were well grounded and that the design details were organized in a conceptually useful and

accessible way.

4.5.2 Levels of Abstraction

The design process involved work within two domains, the technology and use domains: The

technology domain consists of the factors that influence the architecture of the system, its

functionality, and the interaction techniques. The use domain consists of design guidelines,

overall work styles, and the individual patterns of use. Addressing the tension between these

domains has been the cornerstone of Human-Computer Interaction research for the past two

decades.

28

The goal of the design process is to manage the complexity of the application. The design is

divided into layers to separate the parts that work in computer-science terms from the part that

works in problem-domain terms. The top level of the design describes the problem that is being

solved. The actual implementation is handled at a lower level.

Most of the effort for this project went into the first domain, mainly working out the details

of the architecture and conceptual model of the updated tool. Developing the architecture

involved decomposing each component of the application into objects, and defining the

interactions between these objects. The result of the design process divides the application code

into a relatively large number of classes, whereby each class implements a single part of the

overall application. A set of class charts, shown in Appendix B, provides an overview of how

each class relates to the application as a whole.

4.5.2.1 User Interface Level

Work at this level is very abstract; it consists of determining which instruments best mediate

the interaction between a user and the objects in the interface. Many of the constructs at this

level are borrowed from (and possibly improve upon) the original application, such as:

• Interface for the graph layout algorithms

• How each Petri net construct is represented graphically: places are drawn as circles and

transitions as boxes.

• User-level layout of each dialog box

4.5.2.2 Design Level Components

Work at the design level is a multi-step process that focuses on a number of the program’s

attributes: software architecture, interface representations, and data structures. The design level

29

components into which the program is divided are shown in Figure 8 and the listed below. The

class charts in Appendix B show the design of the application in more detail.

• Menu bars contain user-selectable commands.

• The multiple document prototype coordinates the activities of a document at a high

level.

• The dialog boxes allow the user to define the

attributes of a Petri net element. Each dialog

box is implemented by a set of classes.

• The CSPL parser is used to input a CSPL file

into eCGE.

• The list classes store the elements of a Petri

net model. Three lists are maintained for a

model: one list for the set of places, one for

transitions, and one for arcs.

• The mouse handler coordinates how each semantic mouse event is processed by the

application.

4.5.2.3 Algorithmic Level

Work at this level focuses on translating the functional abstraction specified by the design

into a working implementation. At this level, decomposing the design-level abstraction into an

implementation is based on data design and procedural design approaches discussed for

conventional software engineering. Many of the individual cases involve a simple computational

or procedural sequence that is implemented in an individual class or function. Examples of

elements at this level include:

cge_app

menu bars

multiple document prototype

document class

list classes

guard functions dialog box

CSPL parameters dialog box

CSPL parser

mouse class

mouse event parser

mouse handler
Figure 8: Design Level Components

30

• Event handling code (parsing individual mouse events to form semantic events, parsing

key events)

• Implementation of the list classes (AVL tree / linked list)

• File format (eCGE / CSPL)

4.5.2.4 Java Virtual Machine

The Java Virtual Machine is at the lowest level of abstraction: it handles the interaction

between the environment and the application. The use of Java to implement the application

permits the source code to be modified and recompiled on a number of different platforms. The

set of libraries included in the language (such as Swing and file I/O) provide an industrial-

strength user interface framework for implementing the application in an architecturally neutral

manner. The most important requirement to running the eCGE on a target system is the presence

of the Java run time system. Research into these areas of the Java Virtual Machine specification

was required in the implementation of eCGE:

• Graphical library functions: the Swing and AWT libraries were used extensively in

implementing the user interface components.

• Event listeners: the virtual machine monitors the environment for events such as

keystrokes or mouse clicks. The virtual machine then reports these events to a higher-

level function.

• File Input/Output: the virtual machine handles the low-level details of how to read and

write a file on the native file system.

31

CHAPTER FIVE

eCGE TOOL OVERVIEW AND IMPLEMENTATION DETAILS

5.1 Introduction

The eCGE tool is written in Java. The user interface uses the conventions found in other

applications, such as mouse gestures, accelerator keys, placement of menus, and icons and

toolbar glyphs. A window can be moved, modified in size or shape, and closed into icon form

using the mouse as the primary input device. All drawing, menu selection, and analysis activities

are initiated by mouse key clicks. The keyboard is used mainly in situations when arbitrary text

input is needed.

5.2 User Interface Level

The basic philosophy of the user interface is simple; it should be flexible enough to permit

design creativity while removing any tedium from the activity. This is accomplished by

adopting the following principles:

• The user interface provides very rapid, easily selectable options.

• The tool does anything that is repetitious or algorithmic.

• Any operation can be undone. This capability is implemented in the dialog boxes, but

not for operations done on the drawing window.

• Options should be split into logical categories with different access for each category.

• A graphical representation of options is preferable to a textual representation.

Because a rigid syntax is critical to correct language interpretation, any attempt to

compromise it (such as connecting a transition to a transition) results in an error. Since computer

programs cannot exactly recognize the command “How many tokens are in place p?” A formal,

32

concise, and rigid set of syntactic rules is essential for precise communication. The eCGE is

designed to enforce these rules. The user is shown an error message when an illegal action is

taken, and the action is not allowed to occur. Figure 9 shows and example of an error dialog

box. Enumerated below are some of the rules:

• Transitions can only be

connected to places, and

vis-versa.

• Deleting a place or

transition deletes all of the

arcs associated with that node.

• Tokens can only be associated with places.

• Only transitions can be annotated with firing rates [59].

Incorporated in the user interface design is the principle of polymorphism, which allows

similar operations to be applied to a variety of objects. For example, double-clicking on an

element in the drawing window (such as an arc, transition, or place) opens a dialog box showing

the properties of the element. The design of the user interface follows three principles:

• Each Petri net construct and user interface construct is represented with meaningful

visual metaphors.

• Physical metaphors (such as inserting an element with the mouse) are used rather than a

complex syntax (i.e., CSPL format).

• Rapid incremental, reversible operations are used on the object of interest. The result

of the operation should be immediately visible.

Arc Error

cannot connect a place to a place

OK
!

Figure 9: Sample Error Dialog Box

33

5.2.1 Interaction Techniques

User interaction with the eCGE application uses the Windows, Icons, Menus, and Pointing

(WIMP) model [49].

• A Petri net model is developed in the main window. A dialog box is opened by double-

clicking on an element in the drawing window, or (in some cases) by selecting a menu

item. A dialog box, namely places, transitions, arcs, guard functions, and CSPL

parameters, can access a number of Petri net constructs.

• The menu bars define the operations for the applications. The eCGE adds the ability to

save and open a model.

• The mouse is used frequently for operations such as clicking or dragging elements in

the drawing window, selecting or moving a Petri net model window, or selecting an

item in the menu bar.

• The keyboard is used only to input and edit text. For convenience, some commands on

the menu bars also have a keyboard shortcut.

5.2.2 Drawing Window

The drawing window is used to create and edit a model. Making up each window are three

basic components, which are more fully described in the following sub-sections.

5.2.2.1 Toolbar

The toolbar is the following collection of icons representing drawing and editing features.

The highlighted item also appears in the drawing window’s message box.

• Select the cursor

• Create a place

• Create a transition

34

• Create an arc

5.2.2.2 Drawing Canvas

A Petri net model is developed on the drawing canvas, which performs the following

functions:

• Move an element of the Petri net model

• Edit a place

• Edit a transition (specify firing rate, etc.)

• Edit an arc

• Delete a place

• Delete a transition

• Delete an arc (Deleting a place or transition also removes all the arcs associated with

the element.)

5.3 Design Level

Work at this level deals with the design issues of the application. The design of the

application is based on the model-view-controller pattern in which the look and feel of a

component is implemented with one object and the data associated with the component is stored

in another object. The use of Java shaped the design of the application. One example is the

mouse handler, which is designed around the event-handling mechanism. Most of the work on

this project focused on this level and the implementation.

The goal at this level was specify the architecture of the system, as well as object interaction.

The design of the enhanced application is object-oriented, rather than procedural (as in the

original). The application of object-oriented analysis and design techniques significantly

improved the design of the application while maintaining the good aspects of the original. In a

35

number of cases, translating the individual pieces of the application (i.e., dialog boxes) was

relatively straightforward. In a few cases, it was as simple as figuring out how to translate the

C++ structures to Java.

Specifying the architecture involved decomposing each user-level construct (such as a dialog

box) into a set of objects, where an object performs a specific task. Each class defines an

interface through which it communicates with other classes. A major challenge was to minimize

the amount of coupling and maximize object cohesion in the design.

Design documentation was created for each component. The level of detail varies from

component to component. The dialog boxes are documented at a high level of abstraction; the

mouse handler at the algorithmic level, and AVL tree at the implementation level.

Code reuse typically occurs at the bottom levels of a system design hierarchy while design

reuse results in whole “branches” of the tree being reused. The design of the guard function

dialog box is an example of design reuse. The function_dialog class provides a template for

handling guard functions. This template can be extended (namely, by classes guard_dialog,

arc_function_dialog, and trans_function_dialog) by inheriting its specifications and

incorporating additional features.

5.4 Algorithmic Level

Work at this level deals with the algorithms that implement each design-level construct. The

approach taken at this level differs little from the data design and procedural design approaches

discussed for conventional software engineering. In many cases, the algorithm is a simple

computational or procedural sequence that is implemented in an individual class. The remainder

of this section describes the more complex of the algorithms used in the project.

36

5.4.1 AVL Tree

An AVL tree is a type of binary tree that is always ‘partially’ balanced. Each node in the tree

has a left and right sub-tree. The criteria that is used to determine balance of a tree is the

difference between the heights of the sub-trees of any node in the tree. The running time of the

lookup, insertion, and deletion operations is logarithmic for both the average and worst cases.

The details of these algorithms are discussed in detail in Appendix B.4. The efficiency of the list

classes improves the running time of the CSPL parser and the graph layout algorithms, since

these components rely heavily on the lookup operations.

5.4.2 CSPL Parser

The mechanism for importing a CSPL file into eCGE is a one-pass parser [58]. This parser is

designed to import the following CSPL functions into eCGE: net (containing the Petri net

elements), options (CSPL parameters), assert, ac_init, ac_reach, and ac_final [2]. Any other

functions in the input file are ignored. One way to improve this parser is to add the ability to

import guard functions into eCGE.

Conceptually, this parser is divided into lexical and syntactic analyses. The lexical analyzer

filters the CSPL file into tokens, eliminating any unnecessary information, such as white space

and comments, in the process. The syntax analyzer uses these tokens to determine the structure

of the underlying Petri net model. Error detection is done at the lexical and syntactic levels.

Any errors are recorded in the parser’s log files.

5.4.3 Mouse Handler

The mouse handler coordinates many of the activities in the eCGE application. Conceptually

the design of the mouse handler is divided into two layers to separate the responsibilities of

receiving user input and responding to this input. The mouse event parser, defined in

37

mouse_class.java, translates the mouse-related events generated by the Java Virtual Machine into

one of three possible cases. The mouse handler (mouse_handler.java) coordinates the program’s

response to each of these cases.

5.4.3.1 Mouse Event Parser

The low-level mouse event functions (namely mousePressed, mouseReleased, and

mouseDragged) confer a lot of information about the mouse. The mouse event parser uses

this information to form one of the following semantic events:

• A single click is used to select an element (mouse_single.java)

• A double click is used to edit the properties of an element (mouse_double.java)

• A place or transition may be moved (mouse_dragged.java). The position of any arcs

adjacent to a moved place or transition is automatically updated.

The mouse event classes as defined by the Java library include functions to detect these three

cases. Unfortunately, these methods cannot be used directly for the eCGE mouse handler. The

problem is that the built-in functions assume that the actions in each of the three cases are

mutually exclusive. This assumption does not hold for the eCGE application. For example,

during a double-click the mouse may move slightly between the two successive mouse clicks. If

the library functions are used directly, this case is interpreted as two semantic events (double

click and mouse movement) rather than one (double click).

5.4.3.2 Mouse Handler

The mouse handler receives semantic events from the mouse event parser and initiates a

response. This response can be divided into three cases: opening a dialog box (double-click),

selecting an element (single-click), or moving an element. The mouse handler delegates the

38

actual implementation for each response to other components of the project. For example,

moving a place or transition is implemented in the list classes.

5.4.4 Multiple Document Prototype

The multiple document prototype explores the possibility of having more than one Petri net

model open at once. This prototype is skeletal at this point. The implementation is based on

Java’s internal frames.

5.4.5 Arc Line Calculations

The basic approach to modeling an arc is almost identical to that of the original application.

An arc is modeled as a single line segment. The calculations for this line are based on

elementary trigonometry. At an abstract level, these calculations perform the following

functions:

• Calculate the two end points of the arc

• Calculate the position of the arrowhead (for an ordinary arc) or circle (for an inhibitor

arc).

5.5 Case Study 1: use of a pre-existing model

This case study is based on a safety and reliability analysis using stochastic Petri nets [60].

The purpose of this analysis was to determine the operational fitness of an embedded computer

system in a vehicle in terms of reliability and availability. Since the actual system is complex,

performing the analysis consisted of decomposing the overall system into a set of Petri net

models. Each model analyzes a specific aspect of the overall system. Three scenarios were

considered in the analysis: skidding, slipping, and steering. An embedded computer system

controlled each of these systems.

39

Figure 10: Initial arrangement

of case study model

• The skidding model represents the anti-lock braking system

• The slipping model considers the factors involved during the vehicle’s acceleration.

• The steering model represents the system that detects and counteracts oversteer and

understeer.

For simplicity, this case study focuses on one of these Petri net models: the “connected cyclic

reliability” (CCR) model for the anti-lock braking system. This model predicts the mean time to

failure for the system, given the failure rates for each component. The main components for this

model are the speed sensors, braking system components, and the electronic brake control

module computer.

5.5.1 Importing the model into eCGE

The CCR model was originally developed using the CSPL

language. Figures 10 – 12 show three possible arrangements of

this model in eCGE. Figure 10 shows the initial arrangement of

the elements in a drawing window. Figure 11 shows a possible arrangement of the model after

applying the Random graph layout algorithm (described in Section A.2.3). The Spring (A.2.1)

and Tree (A.2.2) Algorithms were not designed to handle a model this complex: these give

results similar to the Random Algorithm in this case. Figure 12 shows the model after it has been

layed out manually.

One existing tool for graph layout is graphviz. This tool focuses on two types of graph layout

algorithms: hierarchical layouts of trees and DAGS (directed acyclic graphs), and virtual

physical (“spring model”) layouts of undirected graphs. The theory behind this tool is described

in [61].

40

Figure 12: Organized layout of case study model

Figure 11: Random arrangement of case study model

41

5.5.2 Description of the Model

The initial marking of the CCR model consists of one token in the init place. The

failSkidSenPak, failSkidLF, failSkidLR, failSkidRF, and failSkidRR transitions represent the

probability (or rate) of component failure. These probabilities are represented in the CSPL syntax

rateval,(transition, rate); The other transitions represent the operational transitions.

The operational transitions fire alternately indicating that a particular sub-component has

functioned. This allows for the model to include the different operational dependencies that are

present in the actual system.

The firing rates assigned to the various operational transitions and failure transitions

represent a competition among the operational components and the possibility of a failure

occurring. As long as the token continues to recycle among the operational places, the system

will continue to run. If a failure transition fires, it will consume the token and the system will

have failed.

Depending on the failure rates assigned to the failure transitions, the token will eventually

enter a fail transition, representing system failure. One example is the competition between

transitions compLF and failSkidLF when place LF_Wheel is enabled. Under normal operation,

compLF fires. Component failure is represented by the firing of failSkidLF.

5.5.3 Steps used to develop the model

Originally the CCR model, shown in Figure 11, was developed in the CSPL language using a

text editor. The eCGE tool improves the situation by replacing the text editor with a graphical

editor. The stochastic analysis can be performed with another tool (SPNP) [2]. The input file for

SPNP is automatically generated by eCGE when a model is saved.

42

For backward compatibility, it is possible to import the textual version of the CCR model

(shown in Figure 11) into eCGE. The CSPL constructs that are recognized by eCGE are

described in section 6.5. For example, the line rateval("startVehicle", 1.0); creates transition

startVehicle with rate 1.0. In eCGE, the transition is shown in the drawing window and the rate

(along with startVehicle’a other attributes) can be edited in a dialog box. This dialog box is

described in Figure 40 in Appendix C.

Figure 10 shows the drawing window after the CSPL file has been imported and the elements

have been manually layed out. A future version of eCGE would lay out the elements

automatically.

#include "user.h"

void options()
{ /* options */
 iopt(IOP_ITERATIONS, 2000);
 fopt(FOP_PRECISION, 1.0E-6);
 fopt(FOP_ABS_RET_M0, 0.0);
 iopt(IOP_CUMULATIVE, VAL_YES);
 iopt(IOP_SENSITIVITY, VAL_YES);
 iopt(IOP_DEBUG, VAL_NO);
 iopt(IOP_OK_ABSMARK, VAL_YES);
 iopt(IOP_OK_VANLOOP, VAL_NO);
 iopt(IOP_OK_VAN_M0, VAL_YES);
 iopt(IOP_OK_TRANS_M0, VAL_YES);
 iopt(IOP_ELIMINATION, VAL_REDONTHEFLY);
 iopt(IOP_MC, VAL_CTMC);
 iopt(IOP_SS_METHOD, VAL_SSSOR);
 iopt(IOP_TS_METHOD, VAL_FOXUNIF);
 iopt(IOP_PR_MARK_ORDER, VAL_CANONIC);
 iopt(IOP_PR_RSET, VAL_YES);
 iopt(IOP_PR_RGRAPH, VAL_YES);
 iopt(IOP_PR_MERG_MARK, VAL_YES);
 iopt(IOP_PR_FULL_MARK, VAL_NO);
 iopt(IOP_USENAME, VAL_YES);
 iopt(IOP_PR_DERMC, VAL_NO);
 iopt(IOP_PR_MC, VAL_YES);
 iopt(IOP_PR_MC_ORDER, VAL_FROMTO);
 iopt(IOP_PR_PROB, VAL_YES);
 iopt(IOP_PR_PROBDTMC, VAL_NO);
 iopt(IOP_PR_DOT, VAL_NO);
 iopt(IOP_SIMULATION, VAL_NO);
 iopt(IOP_SIM_CUMULATIVE, VAL_YES);
 iopt(IOP_SIM_RUNS, 0);
 fopt(FOP_SIM_LENGTH, 0.0);

 fopt(FOP_SIM_ERROR, 0.0);
 fopt(FOP_SIM_CONFIDENCE, 0.95);
} /* options */

/* Stochastic Petri Net Specification */
void net(){
 /* places */
 place("init");
 init("init", 1);
 place("checkSkid");
 place("whichWheel");
 place("LF_Wheel");
 place("RF_Wheel");
 place("LR_Wheel");
 place("RR_Wheel");
 place("failABS");
 place("failSkdSenPak");

 /* transitions */
 rateval("startVehicle", 1.0);
 rateval("normalBrake", 1.0);
 rateval("skid", 1.0);
 rateval("skidLF", 1.0);
 rateval("skidRF", 1.0);
 rateval("skidLR", 1.0);
 rateval("skidRR", 1.0);
 rateval("compLF", 1.0);
 rateval("compRF", 1.0);
 rateval("compLR", 1.0);
 rateval("compRR", 1.0);
 rateval("failSkidLF", 1.0);
 rateval("failSkidRF", 1.0);
 rateval("failSkidLR", 1.0);

43

 rateval("failSkidRR", 1.0);
 rateval("failSkidSenPak", 1.0);

 /* arcs */
 iarc("startVehicle", "init");
 oarc("startVehicle", "checkSkid");
 iarc("normalBrake", "checkSkid");
 oarc("normalBrake", "checkSkid");
 iarc("skid", "checkSkid");
 oarc("skid", "whichWheel");
 iarc("skidLF", "whichWheel");
 oarc("skidLF", "LF_Wheel");
 iarc("skidRF", "whichWheel");
 oarc("skidRF", "RF_Wheel");
 iarc("skidLR", "whichWheel");
 oarc("skidLR", "LR_Wheel");
 iarc("skidRR", "whichWheel");
 oarc("skidRR", "RR_Wheel");
 iarc("compLF", "LF_Wheel");
 oarc("compLF", "checkSkid");
 iarc("compRF", "RF_Wheel");
 oarc("compRF", "checkSkid");
 iarc("compLR", "LR_Wheel");
 oarc("compLR", "checkSkid");
 iarc("compRR", "RR_Wheel");
 oarc("compRR", "checkSkid");
 iarc("failSkidLF", "LF_Wheel");
 oarc("failSkidLF", "failABS");
 iarc("failSkidRF", "RF_Wheel");
 oarc("failSkidRF", "failABS");
 iarc("failSkidLR", "LR_Wheel");
 oarc("failSkidLR", "failABS");
 iarc("failSkidRR", "RR_Wheel");
 oarc("failSkidRR", "failABS");
 iarc("failSkidSenPak", "checkSkid");
 oarc("failSkidSenPak", "failSkdSenPak");
} /* end net() */

void assert(void)
{ /* assert */
return(RES_NOERR);
} /* assert */

void ac_init(void)
{ /* ac_init */
fprintf(stderr,"\nSkidding Sub-Model");
 fprintf(stderr," Generating SRN data
...\n\n");
 pr_net_info();
} /* ac_init */

void ac_reach(void)
{ /* ac_reach */
fprintf(stderr,"\nThe reachability graph
is being generated ...\n\n");
 pr_rg_info();
} /* ac_reach */

void ac_final(void)
{ /* ac_final */
int i;
/*
 for (i = 1; i < 10; i++)
 {
 printf("\n i = %d\n", i);
 time_value((double) i);
 printf("\n i = %d\n", i);
 pr_expected("mark(ABSF)",rfunc_p);
 }
*/
} /* ac_final */

Figure 13: Case study model in CSPL format

5.6 Case Study 2: layout of a model

The main purpose of the layout of a model is to show the logical structure of a model. It is

possible to model logical constructs, such as a loop, if-then-else, or synchronization, with a Petri

net [74]. A good layout can also help in detecting potential problems in a model. This case study

focuses on detecting two types of problems: conflict and confusion.

44

5.6.1 Conflict in a Petri net

Figure 14 shows an example of conflict in a Petri net. Transitions t1

and t2 are both enabled by the presence of the token in p1. If t1 fires then

t2 is no longer enabled. Conversely, if t2 fires, t1 is disabled. Figure 14

shows a number of examples of conflict, namely between the transition representing a functional

component and the transition representing component failure.

5.6.2 Confusion in a Petri net

While conflict is a local phenomenon in the sense that only the

firing conditions of the transitions with common input places are

involved, confusion involves firing sequences. Confusion occurs when

one firing sequence leads to conflict while another one does not. Figure

15 shows an example of confusion [63]. Transitions t1 and t3 are enabled

concurrently. At this point, there is no conflict. If transition t3 fires first,

then transition t2 fires and execution terminates.

But if transition t1 fires first (case 2), there is a conflict between transitions t2 and t3. There is

an ambiguity as to which transition will fire. The sequence of markings which can occur in the

1 p1

t1

p2 p3 p4

p5 p6

t2 t3

11

Figure 15: Confusion

in a Petri net

p1

p2 p3

t1 t2

1

Figure 14: Conflict in

a Petri net

1 p1

t1

p2 p3 p4

p5 p6

t2 t3

11

p1

t1

p2 p3 p4

p5 p6

t2 t3

111

1. initial marking 2. marking after t1 fires

1

p1

t1

p2 p3 p4

p5 p6

t2 t3

1

p1

t1

p2 p3 p4

p5 p6

t2 t3

1

1

3a. marking after t2 fires 3b. marking after t3 fires

Figure 16: Example of ambiguity introduced by confusion

45

situation is shown graphically in Figure 16. If t2 fires (case 3a), a token is placed in p5 and a

token is removed from p2 and p4. If t3 fires (case 3b), a token is placed in p6 and a token is

removed from p3 and p4.

It is sometimes possible to resolve confusion. There are three possible mechanisms for

resolving the confusion in this example. The idea is to cause t3 to fire before t1.

• Transition t1 could be assigned a lower priority than t2 and t3.

• A guard function could be defined for t2 disabling it whenever t3 is enabled.

• An inhibitor arc could be defined between p4 and t1.

5.6.3 Detecting the structure of the model through the layout

A number of researchers [64]-[67] have studied what is described in the literature as a dual-

task situation. As it applies to this case study, the user’s attention will be focused on the primary

task of analyzing the structural relations of a model, but at times it may be necessary to divert

partial attention to a secondary task that involves understanding the syntax or organization of the

model. The findings imply that the introduction of a secondary task negatively impacts the

performance on a primary task.

Currently, one of the more effective methods of detecting confusion is by means of analyzing

structural relations. The graphical editor of eCGE provides a means of organizing a Petri net

model. Detecting potential concerns such as conflict and confusion is easier with an organized

layout than with a random layout. A graph layout algorithm can assist in organizing a model.

A poor graphical layout is one example of a dual-task situation. Another is the modeling

language itself: a graphical representation of a Petri net generally allows for quicker recognition

of specific information than the equivalent textual representation [68]. The structure of the

46

underlying Petri net tends to be hidden by CSPL’s textual constructs. For example, the CSPL file

in Figure 17 is equivalent to the Petri net shown in Figure 15.

place(“p1”); init(“p1”,1);
place(“p2”);
place(“p3”); init(“p3”,1);
place(“p4”); init(“p4”,1);
place(“p5”);
place(“p6”);

rateval(“t1”,1.0);
rateval(“t2”,1.0);
rateval(“t3”,1.0);

iarc(“p1”,”t1”);
iarc(“p2”,”t2”);
iarc(“p3”,”t2”);
iarc(“p3”,”t2”);
iarc(“p4”,”t3”);

oarc(“p2”,”t2”);
oarc(“p5”,”t2”);
oarc(“p6”,”t3”);

Figure 17: Confusion in a Petri net – CSPL version

47

CHAPTER SIX

THE PETRI NET LANGUAGE PRIMITIVES

6.1 Elements of a Petri Net

A Petri net is a directed bipartite graph whose nodes are

partitioned into two sets, places and transitions. Arcs can only

connect a place to a transition (input arcs), or a transition to a place

(output arc). Figure 17 shows how each Petri net element is

drawn.

6.2 Places

A place represents a constraint on the system; this constraint is represented by the concept of

tokens. Tokens are indistinguishable markers that reside in places. Each place contains zero or

more tokens. For ordinary Petri nets, the constraint is true if a token is present in the place, and

false if the place contains no tokens.

When a transition fires, one token is removed from each of its input places, and one token is

added to each of its output places. The movement of tokens in the places defines the dynamic

state of a Petri net model. A marking defines the configuration of tokens at some point in time.

The set of markings is used to obtain numerical results from a model, described in Section 3.5.

6.3 Transitions

The Stochastic Petri net model defines two types of transitions: timed and immediate. The

firing time of a timed transition is based on an exponential distribution; the firing time of an

immediate transition is zero. Timed transitions are useful in describing the time lapse between

place

timed transition

immediate transition

arc

inhibitor arc
Figure 18: PN Primitives

48

consecutive events. Immediate transitions provide a probabilistic way of describing the selection

among different possible events. This distinction provides a useful method of defining complex

types of behavior in a single model.

The Petri net formalism provides a mechanism for selectively enabling which transitions may

fire in a given marking. A transition is enabled when all of the listed conditions are met. The

following sub-section describes each of these conditions in more detail.

• The number of tokens in each input place is at least equal to the multiplicity of the input

arc from that place.

• The number of tokens in each input place with an inhibitor arc is less than the

multiplicity of the input inhibitor arc from that place.

• The enabling function of the transition (if assigned) returns true.

• The priority of a transition is a factor in whether it is enabled in a marking.

6.3.1 Selectively Disabling a Transition

Additional constructs are used to selectively disable a transition in a marking that would

otherwise enable it. Many types of behavior can be specified in a compact way using these

constructs.

6.3.1.1 Priority

A priority is associated with each transition. If S is the set of transitions enabled in a marking

and if the transition with the highest priority among them is k, then any transition in S with

priority lower than transition k will be disabled. To avoid theoretical difficulties, timed and

immediate transitions cannot have the same priority [45],[63].

6.3.1.2 Inhibitor Arc

49

Another way to disable a transition is to define an inhibitor arc from a place to a transition.

An inhibitor arc allows a model to test for the absence of tokens in a place. The enabling

conditions for an inhibitor arc are the reverse of those of a standard arc: the transition is disabled

(rather than enabled) by the presence of tokens in the associated place. Stated more formally, an

inhibitor arc from place p to transition t with multiplicity m will disable t in any marking where p

contains at least m tokens [2].

6.4 Arcs

A directed arc represents the relationships between constraints (places) and events

(transitions). Input arcs and inhibitor arcs connect places to transitions and output arcs connect

transitions to places. The firing of a transition is conditioned by the presence of tokens in each

of its input places. It is possible to condition this firing by the absence of tokens in an input

place:s this is represented by an inhibitor arc. An inhibitor arc from a place to a transition has a

small circle rather than an arrowhead at the transition.

A multiplicity (positive integer) may be attached to each arc, which is then called a multiple

arc. A multiple arc with multiplicity k can be thought of as k arcs having the same source and

destination.

The multiplicity of an arc may be defined as a function of the current marking rather than a

constant value. This type of function can be used to define behavior that would otherwise

require defining a complex set of inhibitor arcs and transition priorities.

6.5 Introducing SPNP’s C-based Stochastic Petri net Language

It is possible to import a Petri Net model developed in CSPL. This language provides a

textual representation of a Stochastic Petri net model, and allows a large variety of probabilistic

50

and deterministic system behaviors to be specified. The syntax and the semantics of CSPL are

based on the ANSI C language. What distinguishes CSPL from ANSI C is a set of predefined

functions available for the definition of Stochastic Petri net elements.

A CSPL file must specify the following functions: options, net, assert, ac_init, ac_reach,

and ac_final. Each of these functions is designed to carry out one (or several) specific task(s) by

calling some relevant subroutines (functions). The tasks for each of these functions are

described in sub-sections 6.5.1 through 6.5.2. The implementation of these functions in eCGE is

described in detail in Appendix C.

6.5.1 Specification of “options”

SPNP [2] defines a number of options which allow the user to customize how numerical

results are obtained from a Petri net model. The various options are set in the options function of

a CSPL file. The function for setting an option has two parameters: the option and the value. The

option parameter is a constant defined by SPNP. These option parameters are described in datail

in Appendix C. The value is user-defined. The data type of the value is either Boolean, integer,

or floating point number. Function iopt is used for Boolean and integer data types; fopt is used

for a floating point parameter.

The eCGE application provides an abstraction by allowing the user to set these options via a

dialog box rather than working with these functions directly. The Parameters section of the

User’s Manual in Appendix C describes these dialog boxes. When eCGE saves a model in CSPL

format, the settings in the dialog box are automatically translated into function calls to iopt and

fopt.

51

6.5.2 Specification of “net”

The net function includes a set of functions to define a Petri net model. The functions

described in this section are recognized by the CSPL parser.

6.5.2.1 Place Functions

• void place(char *p); defines a place with name p.

• void init(char *p, int n); defines the initial number of tokens in place p to be n. By

default, the number of tokens in a place is zero.

6.5.2.2 Transition Functions

• void imm(char *t); defines an immediate transition. (A timed transition is defined with

rateval or probval.) The default firing weight for an immediate transition is 1.0.

• void rateval(char *t, double val); defines the firing rate of timed transition t as a

constant value val. This function implicitly defines a timed transition.

• void ratedep(char *t, double val, char *p); defines the firing rate of transition t to be

val times the number of tokens in place p.

• void probval(char *t, double val); defines the firing weight (an un-normalized

probability) of immediate transition t as a constant value val.

• void probdep(char *t, double val, char *p); defines the firing weight of transition t to

be val times the number of tokens in place p.

• void priority(char *t, int prio); defines the priority for transition t to be prio. A timed

transition has the lowest priority (0) by default.

Note: For ratedep and probdep, it is an error for a firing rate or firing weight to be zero in a

marking where its associated transition is enabled. Hence these methods cannot be used for an

element that is not an input place for a transition and can have 0 tokens.

52

6.5.2.3 Arc Functions

• void iarc(char *t, char *p); defines an input arc from place p to transition t with

multiplicity one.

• void oarc(char *t, char *p); defines an output arc from place p to transition t with

multiplicity one.

• void harc(char *t, char *p); defines an inhibitor arc from place p to transition t with

multiplicity one.

• void miarc(char *t, char *p, int mult); defines an input arc from place p to transition t

with multiplicity mult.

• void moarc(char *t, char *p, int mult); defines an output arc from place p to transition t

with multiplicity mult.

• void mharc(char *t, char *p, int mult); defines an inhibitor arc from place p to

transition t with multiplicity mult.

6.5.3 Assert Function

This function is called by SPNP during the reachability graph construction to check the

validity of each newly found marking. It returns RES_ERROR if the marking is illegal or

RES_NOERR if the marking is legal. If RES_ERROR is returned, then SPNP halts.

The assert function allows the evaluation of a logical condition on a Petri net model. This

function can especially be useful with debugging a large and complex model, since it is possible

to discover simple errors, such as a missing arc or an incorrect cardinality specification. The

purpose of this function is made partially obsolete with a graphical editor such as eCGE, since

these tools can be designed to check for certain types of errors as a model is developed. For

example, the place dialog box displays an error message if the user attempts to assign a negative

53

number of tokens to a place.

6.5.4 Other Functions: ac_init, ac_reach, and ac_final

These functions are useful for gathering information about a Petri net model during the

numerical analysis of the model. The first step in performing the numerical analysis is to

generate the set of all reachable markings, called the reachability graph. The functions ac_init

and ac_reach are called before and after the reachability graph has been generated. The ac_final

function is called after the solution has been calculated. These functions can be used to output

information about the markings generated from a model.

54

CHAPTER SEVEN

CONCLUSIONS

7.1 Summary

This thesis introduced the eCGE tool, the enhanced version of a software package for

developing a Stochastic Petri net model and has presented the design approach and functionality

of this tool. This thesis combines the work of a number of contributors, and provides a

framework for future development.

7.2 Future Plans

Although eCGE provides significant enhancements to the original application, there are a

number of areas where the tool could be further developed. The following list describes a

number of examples:

• Add other graph layout algorithms. One example would be to have an algorithm which

lines up each place or transition in a model with an invisible grid so that instead of

being close to lining up it becomes exactly lined up. A case study found in [69]

provides a comparison between a number of algorithms.

• The CSPL format does not contain graphical information. When a CSPL file is opened,

the parser assigns a default value to each Petri net element. One idea to extend this

version of eCGE would be to develop a graph layout algorithm to lay out properly the

elements of the opened model.

• Have more than a simple line segment for each arc. One example would be to use

splines. One possibility would be to implement an algorithm to minimize arc crossings.

55

• Add support for multiple open documents. A partially working prototype has been

implemented. However, this prototype should be taken as a general framework rather

than a functional solution - there are still a number of problems to be worked out.

• Make the file format compatible with other Petri Net modeling tools. This may assist

in the re-use of previous work developed using other tools that support this format.

(http://www.oasis-open.org/cover/pnml.html describes a proposal for a Net Markup

Language based on XML)

• Analyze similar applications to utilize the best qualities of each in a newly enhanced

application.

• Allow a transition to represent a separate Petri net model, rather than a single element

(that is, add support for hierarchical modeling of systems).

• Add scroll bars to a document window to increase the potential “work space” for

developing a model.

• Document the design of the application using some formal method. Some design

documentation has been developed, but it is incomplete. Examples include high level

abstractions (i.e., class diagrams or dialog boxes) or the algorithms of individual pieces

(i.e., the AVL tree).

• Add the ability to select and move a number of elements at once. (In the current

version, only one element at a time can be selected or moved.) This ability can be

useful in editing a model.

• Emperical evaluation <new bullet point>

56

BIBLIOGRAPHY

1. Wei, W., Adaptation, Implementation and Integration of Graph Layout Algorithms for

a Petri Net Graphical Editor, MS Thesis in Computer Science, School of EECS,

Washington State University May 2001, 80 p.

2. Travedi, K., Stochastic Petri Net Package (SPNP) User’s Manual Version 6.0, Duke

University, 1999, 184 p.

3. Hahn, J. and Kim, J., “Why Are Some Representations (Sometimes) More Effective?”

ACM Transactions on Computer-Human Interaction, Volume 6, Number 3, 1999,

p. 181-213.

4. Gravelle, N., The C-Based Stochastic Petri Net Language (CSPL) Graphical Editor, A

project submitted to the Graduate Faculty of the University of Colorado at Colorado

Springs in partial fulfillment of the requirements for the degree of Master of

Engineering in Software Systems Engineering, Master of Engineering Program Office,

1999.

5. Douglas, J. and Kemmerer, R., Aslantest: A Symbolic Execution Tool for Testing Aslan

Formal Specifications, International Symposium on Software Testing and Analysis,

Seattle Washington, August 1994, p. 15-27.

6. Bockman, G.V., Vaucher, J., “Adding Performance Aspects to Specification

Languages,” Protocol Specification, Testing, and Verification VIII, New York, Elsevior

Science, 1988.

7. Quemada, J., and Fernandez, A., “Introduction of quantitative relative time into

LOTOS,” Protocol Specification, Testing, and Verification VII, New York, Elsevier

Science, 1987.

57

8. Reed, G. and Roscoe A., “A timed model for communicating sequential processes,”

Proceedings of the 13th ICALP, LNCS 226, Springer-Verlag, 1986, p. 314-321

9. Gerth, R. and Boucher, A., “A timed failures model for extended communicating

processes,” Proceedings of the 13th ICALP, LNCS 267, Springer-Verlag, 1987, p. 95-

114.

10. Moller, F. and Tofts, C., “A temporal calculus of communicating systems,” Lecture

Notes in Computer Science 458, Springer-Verlag, 1990, p. 401-415.

11. Yi, W., “Real-time behavior of asynchronous agents,” Lecture Notes in Computer

Science 458, Springer-Verlag, 1990, p. 502-520.

12. Maxemchuk, N., and Sabnani, K., “Probabilistic verification of communication

protocols,” Protocol Specification, Testing, and Verification VII, New York, Elsevier

Science, 1987.

13. Dimitrijevic, D. and Chen, M., “An integrated algorithm for probabilistic protocol

verification and evaluation,” Proceedings of IEEE INFOCOM ’89, Ottawa, Ont.

Canada, 1989.

14. Giacalone, A., Jou, C., and Smolka, S., “Algebraic reasoning for probabilistic

concurrent systems,” Proceedings of IFIP TC2 Working Conference Programming

Concepts and Methods, 1989.

15. Larsen, K. and Skou, A., “Bisimulation through probabilistic testing,” Proceedings of

the 16th ACM Symposium Principles Programming Languages, 1989.

16. Van Glabbeek, R., Smolka, S., Steffen, B., and Tofts, C., “Reactive, generative, and

stratified models of probabilistic processes,” Proceedings of the 5th IEEE International

Symposium on Logic Computer Science, 1990.

58

17. Marsan, M.A., Bianco, A., Ciminiera, L., Sisto, R., Valenzano, A., “A LOTOS

Extension for the Performance Analysis of Distributed Systems,” IEEE/ACM

Transactions on Networking, Vol. 2 No. 2, 1994, p. 151-165.

18. Symons, F.J.W., “Introduction to numerical Petri nets, a general graphical model of

concurrent processing systems,” Australian Telecommun. Res., vol. 14, no. 1, 1980, p.

28-33.

19. Florin, G. and Natkin, S., “Les Reseaux de Petri Stochastiques,” Technique et Science

Infomaniques, vol.. 4, no. 1, 1985.

20. Molloy, M., “Performance analysis using stochastic Petri Nets,” IEEE Transactions on

Computers, vol. 31, 1982, p. 913-917.

21. Marsan, M, Balbo, G., and Conte, G., “A class of generalized stochastic Petri nets for

the performance anaysis of multiprocessor systems,” ACM Transactions in Computing

Systems, vol. 2, 1984.

22. Marsan, M., Balbo, G., Chiola, G., and Conte, G., “Generalized stochastic Petri nets

revisited: Random switches and priorities,” Proc. International Workshop Petri nets

Performance Models, IEEE-CS Press, Madison, WI, 1987, p. 44-53.

23. Marsan, M., Balbo, G., Chiola, G., Conte, G., and Cumani, A., “The effect of execution

policies on the semantics and analysis of stochastic Petri nets,” IEEE Transactions in

Software Engineering, vol. 15, 1989, p. 832-846.

24. Dugan, J., Trivedi, K., Geist, R., Nicola, V., “Extended Stochastic Petri nets:

Applications and analysis,” Proceedings Performance 1984, Paris, 1984.

59

25. Marsan, M. and Chiola, G., “On Petri nets with deterministic and exponentially

distributed firing times,” Advances in Petri Nets ’87, New York: Springer-Verlag,

LNCS, vol. 266, 1987, p. 132-145.

26. Meyer, J., Movaghar, A., and Sanders, W., “Stochastic activity networks: Structure,

behavior, and application,” Proceedings of the International Workshop on Timed Petri

Nets, IEEE-CS Press, Torino, Italy, 1985.

27. Razouk R. and Phelps, C., “Performance analysis using timed Petri Nets,” Proceedings

of the International Conference on Parallel Processing, 1984, p. 126-129.

28. Holliday, M., and Vernon, M., “A generalized timed Petri net model for performance

analysis,” Proceedings of the International Workshop on Timed Petri Nets, IEEE-CS

Press, Torino, Italy, 1985.

29. Zuberek, W., “M-timed Petri Nets, priorities, preemptions, and performance evaluation

of systems,” Lecture Notes in Computer Science: Advances in Petri Nets 1985, vol.

222, 1986, p. 478-498.

30. McConnell, S., Code Complete, Microsoft Press, 1993, 857 p.

31. Harel, D., Rumpe., B., “Meaningful Modeling: What’s the Semantics of

‘Semantics’?”IEEE Computer, 2004, p. 64-72.

32. Harel, D., “On Visual Formalisms,” Communications of the ACM, Volume 31, Number

5, 1988, p. 514-530.

33. Kommunikation mit Automaten. Petri, C.A., Bonn: Institut für Instrumentelle

Mathematik, Schriften des IIM Nr. 2, 1962, Second Edition:, New York: Griffiss Air

Force Base, Technical Report RADC-TR-65--377, Vol.1, 1966.

60

34. Ramchandani, C., Analysis of Asynchronous Concurrent Systems by Petri Nets,

Technical Report, MIT, Laboratory of Computer Science, Cambridge, Massachusetts,

1974.

35. Sifakis, J., “Structural Properties of Petri Nets,” Mathematical Foundations of

Computer Science, New York, 1978, p. 474-483.

36. Holliday, M.A. and Vernon, M.K., A Generalized Timed Petri Net Model for

Performance Analysis, Proceedings of the International Workshop on Timed Petri Nets,

1995, p. 181-190.

37. Wilhoft, G., Petri net Evaluation using APL2, Proceedings of the International

Conference on APL, ACM Press, 1992, p. 286-300.

38. Marsan, M., Balbo, G., and Conte, G., “A Class of Generalized Stochastic Petri Nets,”

ACM Transactions on Computer Systems, Vol. 2, May 1984, p. 93-122.

39. Haas, P., Shcdlcr. G., Regenerative Simulation of Stochastic Petri Nets, Proceedings of

the Workshop on Timed Petri Nets, Torino, Italy, IEEE Computer Society Press, July

1985.

40. Jajodia, S. and Mutchler, D., “Dynamic Voting,” ACM SIGMOD, 1987, p. 227-238

41. Påris, JF, “Voting with a Variable Number of Copies,” Proceedings of the Sixteenth

International Symposium on Fault-Tolerant Computing, 1986, p. 50-55.

42. Påris, JF, “Voting with Witnesses: A Consistency Scheme for Replicated Files,”

Proceedings of the Sixth International Conference on Distributed Computing Systems,

1986, p. 606-612.

43. Dugan, J. and Ciardo, G., “Stochastic Petri net Analysis of a Replicated File System,”

IEEE Transactions on Software Engineering, Vol. 15, No. 4, 1989, p. 394-401.

61

44. Mureta, T., “Petri Nets: Analysis, and Applications,” (in Japanese) Kindai-Kagakusha,

Tokyo, Japan, 1992.

45. Ciardo, G. and Trivedi, K., “A Decomposition Approach for Stochastic Reward Net

Models,” Performance Evaluation, Vol. 18, No. 1, 1993, p. 37-59.

46. Forman, I., “Petri - A UNIX Tool for the Analysis of Petri Nets,” Proceedings of 1986

ACM Fall joint computer conference, Dallas, 1999, p. 1092 – 1098.

47. Fowler, M., UML Distilled: Applying the Standard Object Modeling Language,

Addison-Wesley, 1997.

48. Lindemann, C., Thummler, A., Klemm, A., Lohmann, M., Waldhort, O., “Quantitative

System Evaluation with DSPNexpress 2000,” Proceedings of the Second International

Workshop on Software and Performance, 2000, p. 17-19.

49. Mackay, W., Ratzer, A., Janecek, P., “Video Artifacts for Design: Bridging the Gap

Between Abstraction and Detail,” Symposium on Designing Interactive Systems, 2000,

p. 72-82.

50. Movaghar, A., Meyer, J.F., Performability Modeling with Stochastic Activity networks,

Proc. of the 1984 Real-Time Systems Symp., Austin, TX, 1984, p. 215-224.

51. Sanders, W., Obal, W., Qureshi, A., and Widjanarko, K., “The UltraSAN modeling

environment,” Performance Evaluation, vol. 24, no. 1-2, 1995, p. 89-115.

52. Cruz, I. And Garg, A., "Drawing Graphs by Example Efficiently: Trees and Planar

Acyclic Digraphs,” Graph Drawing '94, Princeton, New Jersey, October 1994, p. 404-

415.

53. Cruz, I., “Doodle: A Visual Language for Object-Oriented Databases, ACM-SIGMOD

International Confrence on Management of Data, 1992, p. 71-80.

62

54. Cruz, I., User-defined Visual Query Languages, IEE Symposium on Visual Languages,

1994.

54. Cruz, I., Expressing Constraints for Data Display Specifications: A Visual Approach,

Principles and Practice of Constraint Programming, The MIT Press, 1995, p. 443-468.

55. Travedi, K., Stochastic Petri Net Package (SPNP) User’s Manual Version 4.0, Duke

University, 1994, 57 p.

56. Wagner, M., Tew, J.D., Manivannan, S., Sadowski, D.A., and Seila, A.F., A Standard

Simulation Environment: A Review of Preliminary Requirements, Proceedings of the

1994 Winter Simulation Conference, Lake Buena Vista, Florida USA , 1994, p. 664-

672.

57. Schwetman, H., Portable Simulation Models, Proceedings of the 1994 Winter

Simulation Conference, Lake Buena Vista, Florida USA, 1994, p. 671-672.

58. Aho, A., Sethi, R., Ullman, J., Principles of Complier Design, Addison-Wesley, 1986.

59. Molloy, M., A CAD Tool for Stochastic Petri Nets, Proceedings of 1986 ACM Fall joint

computer conference, 1986, p. 1082-1091.

60. Sheldon, F., Brake-Safe Analysis Final Report: Safety and Reliability Analysis Using

Stochastic Petri Nets.

61. Gansner, E., Koutsofios, E., North, S., and Vo, K., “A Technique for Drawing Directed

Graphs,” IEEE Transactions in Software Engineering, vol. 19, no 3, 1993, p. 214-230.

62. Heiner, M., “Petri Net Based Software Validation: Prospects and Limitations,” no. TR-

92-022, Berkeley, CA, 1992, 69 p.

63

63. Dutheillet, C. and Haddad, S., “Conflict Sets in Colored Petri Nets,” Proceedings of the

5th International Workshop on Petri Nets and Performance Models, Toulouse, France,

1993, p. 76-85.

64. Czerwinski, M., Cutrell, E., and Horvitz, E., “Instant Messanging: Effects of Relevance

and Time,” People and Computers XIV: Proceedings of HCI 2000, Vol. 2, British

Computer Society, 2000, p. 71-76.

65. Maglio, P. and Campbell, C.S., “Tradeoffs in Displaying Peripheral Information,”

Proceedings of the ACM Conference on Human Factors in Computing Systems, 2000.

66. Somervill, J., Srinivassan, R., Woods, K., and Vasniak, O., “Measuring Distraction and

Awareness Caused by Graphical and Textual Displays in the Periphery,” Proceedings

of the 39th Annual ACM Southeast Conference, Athens, GA, 2001.

67. Tessendorf, D., Chewar, C.M., Ndiwalana, A., Pryor, J., McCrickard, D.S., and North,

C., “An ordering of secondary task display attribuites,” submitted to Conference

Companion of the ACM Conference on Human Factors in Computing Systems, 2002.

68. Somervell, C.M., Chewar, D., McCrickard, D., “Evaluating Graphical vs. Textual

Secondary Displays for Information Notification,” 40th Annual ACM Southeast

Conference, Raleigh, NC — April 26-27, 2002, pp. 153-160

69. Purchase, H.C., Carrington, D. and Allder, J., Empirical Evaluation of aesthetics-based

graph layout, Empirical Software Engineering, 7(3), pp 233-255, Kluwer Academic

Publishers, 2002.

70. Cruz, I., and Tamassia, R., “Graph Drawing Tutorial,” IEEE 10th International

Symposium on Visual Languages, VL '94, St. Louis, October 1994.

71. Eades, P., A heuristic for graph drawing, Congressus Numerantium, 1984, p. 146-160

64

72. Reingold, E. and Tifford, J., Tidier drawing of trees, IEEE Transactions on Software

Engineering, 1981, p. 223 – 228.

73. Tamassia, R., “On embedding a graph in the grid with the minimum number of bends,”

SIAM Journal of Computing, 1987, p. 421 – 444.

74. Coleman, M.K. and Stott-Parker, D., “Aesthetics-based graph layout for human

consumption,” Software – Practice and Experience, 1996, p. 1415 – 1438.

APPENDIX A

LAYOUT ALGORITHMS

66

A.1 Introduction

A Petri net model, whether it is developed on paper or using a computer-based tool, shows a

syntactic representation of a system. It is theoretically impossible to exactly show the underlying

meaning of the model. However, a good layout can make it easier to convey the meaning. One

of the goals in the design of the application has been to create an easy-to-use architecture for

developing a layout algorithm. This section provides an overview of two such algorithms: the

Spring and Tree Algorithms developed by Wen Wei [1].

A.2 General Principles of a Graph Layout Algorithm

There are several aesthetics for obtaining an attractive layout of a graph. The project

currently supports three such algorithms: the Spring Algorithm [1], Tree Algorithms [1], and

Random Algorithm. A graph layout algorithm can provide an approximate solution for

competing aesthetics. However, some readability aspects require knowledge about the semantics

(as discussed in Section 2.5) of the specific graph. The main aesthetic goals are as follows. Note

that some of these goals are in conflict (such as the second and third ones) [70].

• Displaying symmetry – where possible, a symmetric view of the graph should be

displayed [71].

• Minimizing the number of edge crossings in a drawing [72].

• Minimizing bends – the total number of bends in polyline edges should be minimized

[73].

• Distributing nodes uniformly [74].

67

A.2.1 Spring Algorithm

The Spring Algorithm is based on the concept of the “spring embedder” algorithm [60],

which is a heuristic approach to graph drawing based on a physical system. This algorithm

simulates a mechanical system consisting of springs (arcs) and nodes (places and transitions).

From the initial configuration or ring positions, the system oscillates until it stabilizes at a

minimum-energy configuration. It has been noted that in such a configuration, all the edges

typically have relatively uniform length and nodes not connected tend to be far apart.

A.2.2 Tree Algorithm

A.2.3 Random Algorithm

The Random Algorithm is much more simple than the other two algorithms. This algorithm

simply assigns each place and transition a random position on the drawing window. Its main

purpose it to provide a starting point for organizing a model imported from CSPL format.

A.3 Interface for Designing a Graph Layout Algorithm

eCGE provides an environment for the development of graph layout algorithms. This

environment is based on the use of lists. This section provides an overview of this interface; a

more detailed description is found in section B.4.4. One of the purposes of including the Spring

and Tree Algorithms was to give examples of how to use this interface.

The elements of a Petri net model are stored in three lists: PlaceList, TransList, and ArcList.

Each element of a Petri net model is assigned a unique integer index. Each list defines a number

of functions for working with the elements of a Petri net model. Section B.4.4 describes each of

these functions in more detail. Conceptually, these functions can be divided into two categories:

68

querying functions and list traversal functions. Querying functions are used to retrieve / modify

the attributes of an element.

List traversal functions are for traversing the list in order of the index. Each of the lists

maintains a variable (initially null) to the currently selected element. This variable is updated

each time one of the following traversal functions is called:

 • first() initializes the traversal variable to start at the element with the smallest index.

 • last() initializes the traversal variable to start from the element with the largest index.

 • prev() backs up to the previous element in the list.

 • next() advances to the next element in the list.

Example: Suppose the following elements are in ArcList: 1, 2, 5, 6, and 8. Calling

ArcList.first() sets the pointer variable to 1. Repeated calls to ArcList.next() returns 2, then 5,

then 6, then 8. If next() is called at this point, a null value (defined by constants.invalid) is

returned.

APPENDIX B

DESIGN DOCUMENTATION

70

B.1 Introduction

Appendix B shows the design documentation for this project. The first section shows the

architectural model of the design. The second section shows the timing diagrams for the mouse

handler.

B.2 Architectural Model of the Project

The three charts in this section show the architecture of the implementation. These diagrams

show the hierarchical structure of the classes. The boxes represent major system elements.

Figure 19 shows a top-level chart. Figure 20 shows the classes in the mouse handler. Figure 21

shows the structure of a document.

save_check_dialog

document_manager
class node {
 drawing_internal_frame
 document
 node next }
node data;int size; cgeFileFilter
parser_prefs (preferences_dialog)
functions_menu (menu_class)
algorithms_menu (menu_class)
window_menu (menu_class)

document_internal_frame
JTextField message

tool_bar
mouse_class
(document_internal
 _frame)

internal_frame_listener
document_manager
(main_frame)

document_select

1many

document_panel
place_prefs (preferences
 _dialog)

cge_app
JDesktopPane desktop
document_manager

Multiple Document Prototype

Preferences Dialog Box

file_menu
documents_manager
JDesktopPare desktop
(main_frame)

edit_menu

function_menu

algorithms_menu
drawing_manager
(drawing_frame)

window_menu
drawing_manager
(drawing_frame)

menu_class
algorithms_menu
window_menu

look_and_feel_prefs

parser_prefs
parser_prefs_listener

preferences_dialog
preferences_listener
preferences_key_listener

launch_prefs

place_prefs

mouse_class

document_class

Menu Bars

Figure 19: Class Architecture for eCGE

71

Mouse

Event

Parser

mouse_dragged

mouse_select

mouse_single

arc_click_class

mouse_id

inhibit_click_class

mouse_mode
JTextFiled message
(document_internal_frame)

mouse_timeout

mouse_timing

mouse_delta

mouse_class

mouse_hander

trans_guarded
trans_guarded_listener
checkbox_listener
function_list (guard_dialog)

trans_dependent

trans_dialog
trans_listener
trans_key_listener
arc_list, place_list,
trans_list
(document_class)

trans_firing
trans_firing_listener
function_list (trans_
function_dialog)

trans_fixed

trans_function

trans_name

arc_name

arc_cardinality
arc_cardinality_listener

arc_fixed

arc_variable

place_dialog
place_listener
place_key_listener
document_panel

arc_dialog
arc_listener
arc_key_listener

mouse_double

Transition Dialog Box

Arc Dialog Box

Mouse Handler

Figure 20: Class Architecture for the mouse handler

72

function_dialog
function_listener
function_key_listener

function_list

function_node

Guard Function Dialog Box

function_name_mouse

function_name
function_name_focus

function_edit

new_function_dialog
new_function_listener
new_function_key_listener

function_edit_dialog
function_edit_listener
function_edit_key_listener

1

many

trans_function_dialog

arc_function_dialog

guard_dialog

pn_function
pn_function_listener
pn_function_key_listener

CSPL Parameters Dialog Box

parameters_general

ParamGeneralIterations

ParamGeneralPrecision

ParamGeneralAbsorb

parameters_class
param_listener
param_key_listener
param_tab_listener

parameters_markov

ParamMarkovTSSM

ParamMarkovType

ParamMarkovElim

ParamMarkovSSSM

parameters_simulation

ParamSimConfidence

ParamSimRuns

ParamSimLength

ParamSimError

parameters_output

ParamReachability

ParamMarkOrder

ParamMarkovChain
ParamMarkovListener

ParamPrintReach

document_class

expr_tree

expr_class
statement_class
(syntax)

syntax
local_list_class
print_echo

array_subscript

function_class
assignment
local_list_class (syntax)
array_subscript (syntax)
statement_class (syntax)

array_decl_class
local_list_class (syntax)

lexical
print_echo

PNstmts_class

parameter_class

print_class

statement_class
assignment
array_subscript (syntax)
expr_class (syntax)
function_class (syntax)

symbol_node

symbol

trans_node
arc_list_class

trans_list 1
many

place_list place_node
arc_list_class

1 many

arc_nodearc_list 1
many
List Classes

CSPL Parser

1

many

Figure 21: Class Architecture for a Document

73

B.3 Mouse Handler Timing Diagrams

The Java event handler mechanism provides a number

of low-level mouse event functions (namely mousePressed,

mouseReleased, and mouseDragged). These functions

confer a lot of information about a mouse at a given time.

Figure 22 shows how the mouse handler parses this

information. This section describes how the mouse handler

parses this information into three semantic events: single

click, double click, and mouse drag. The mouse event

parser uses a number of constants, which currently are hard-

coded into the program.

• mouse.click_time – a bound on the time between

pressing and releasing the mouse button (for

distinguishing between a simple mouse click and

moving an element)

• mouse.double_click_time – the maximum time allowed between two successive clicks

for a double-click

• mouse.max_timeout – maximum time allowed for a single click (for distinguishing

between a single click and a double click)

N

N

mousePressed

mouse moved

Y

case

mouse

drag
Y

mouseReleased

click_interval <=

mouse.click_time

N

Y

NmousePressed within

mouse.double_click_time

case

single

click

mouse moved

Y

click_interval <=

mouse.click_time

N

Y

case

double

click

case

single

click

case mouse drag and

case single click

mouseReleased

Figure 22: Mouse Handler

Flow Chart

74

B.3.1 Single Click

Parsing a single click has two cases, as shown by Figure 23. Case 1 represents a simple

mouse click: click_interval <= mouse.max_timeout. Mouse movement between pressed and

released is ignored.

In case 2, there is an arbitrary amount of time between when the mouse button is pressed and

when it is released. This case has two assumptions. One assumption is that no mouse movement

between these two events (otherwise the sequence of events is interpreted as mouse movement).

The second assumption is that a mouse pressed event does not occur within time interval.

B.3.2 Double Click

A double click is basically two single clicks occurring within a certain interval. Figure 24

shows the sequence of events required for a double click. These events are bounded by the

following temporal conditions:

• released1 – pressed1 <= click_interval

• released2 – pressed2 <= click_interval

max_timeout

releasedpressed

click_interval interval

releasedpressed

case 1 case 2

Figure 23: Parsing a Single Click

time_between_clicks

pressed2 released2released1pressed1

click_interval click_interval

Figure 24: Parsing a Double Click

75

• pressed2 – released1 <= time_between clicks (mouse movement during this time frame

is ignored)

B.3.3 Mouse Drag

The basic assumption for this case is mouse movement

between the time the mouse button is pressed and the time

the button is released. What distinguishes this case from a

single click is the duration between the mouse pressed event and the mouse released event

(click_interval > mouse.max_timeout). This is shown graphically in Figure 25.

B.4 AVL Tree Documentation

An AVL tree is a data structure that is very well suited to storing data that supports ordering,

such as names, or other miscellaneous things. Due to the fact that it is a balanced tree, very fast

access to the data is supported, including inserting, deleting, finding, and querying operations.

The following discussion is based on a freely available public domain AVL tree library

originally written in C++. The algorithms and implementation are presented here under the terms

of the GNU General Public License as published by the Free Software Foundation. The

remainder of this section describes the most complex of these operations in detail: insertion,

deletion, and tree traversal.

B.4.1 AVL Tree Data Structures

The implementation of an AVL tree uses two basic data structures: the node class and the list

class. The node class stores the data and link information for a single node. The list class

contains an ordered set of nodes.

The AVL node class has a balance field in addition to the usual members needed for any

binary search tree. This balance factor is the maximum height of its right sub-tree minus the

max_timeout

releasedpressed

click_interval

Figure 25: Parsing a Mouse Drag

76

maximum height of its left sub-tree. A node with balance factor -1, 0, or 1 is considered

balanced. A node with balance factor -2 or 2 is considered unbalanced and requires rebalancing

the tree.

public class avl_node{
 public avl_node left,right; /* pointer to the node’s sub-trees */
 public avl_node up; /* pointer to the node’s parent */
 public byte balance; /* balance factor */

 public int m_id; /* key field */
 /* ------------- */ /* other fields */
} /* class avl_node */

public class avl_list{
 private avl_node data = null; /* pointer to the tree’s root node */
 private avl_nade curr = null; /* traversal variable: points to the current node */
 private int size = 0; /* number of nodes in the tree */
} /* class avl_list */

B.4.2 Insertion

This implementation divides the algorithm for insertion into three main steps:

• Search for the location to insert the new item.

• Insert the item as a new leaf.

• Update balance factors in the tree that were changed by the insertion. Then rebalance

the tree, if necessary.

Steps 1 and 2 are the same as for insertion into an ordinary binary tree. These two steps may

lead to a violation of the tree’s balancing rule. If this is the case, the third step rearranges nodes

and modifies their attributes to restore the AVL balancing rule. An insertion requires at most

one single rotation or double rotation.

void add(node new_node)
{ /* add */
 boolean found;
 arc_node curr,up;
 boolean height;
 arc_node p1;
 int dir;

77

 up = null;
 curr = data;
 found = false;
 dir = 0;

 while((curr != null) && (found==false)){
 if(new_node.m_id < curr.m_id){
 dir = 0;
 up = curr;
 curr = curr.left;
 } /* if */
 else if(new_node.m_id > curr.m_id){
 dir = 1;
 up = curr;
 curr = curr.right;
 } /* else if */
 else{
 found = true;
 } /* else */
 } /* while */

Step 1: Search the tree for the insertion point
of the new node. The new node will initially
be a child of curr.

 if(found == false){
 new_node.up = up;
 size++;

 if(up != null){
 switch(dir){
 case 0:
 up.left = new_node;
 break;
 case 1:
 up.right = new_node;
 break;
 } /* switch */
 height = false;
 } /* if(up != null) */
 else{
 data = new_node;
 height = true;
 } /* else */

Step 2: Insert the node into the tree. There is a
special case for a node inserted into an empty
tree.

 curr = new_node;
 while((curr != data)&&(height==false)){
 up = curr.up;

 /* case LEFT */
 if(up.left == curr){
 switch(up.balance){
 case 1:
 up.balance = 0;
 height = true;
 curr = up;
 break;
 case 0:
 up.balance = -1;
 curr = up;
 break;

Steps 3 and 4: Update balance factors and
rebalance the tree. Update balance factors and
re-balance the tree, starting from the inserted
node and moving upward to the root. At each
level, update the balance as necessary.

Case 1: Re-balance tree after insertion in left
sub-tree. The cases for rebalancing are
distinguished based on the balance factor of the
child of the unbalanced node on its taller side.

78

a

d

up

b c

p1

curr
c

d

up

a b

p1
a b

p1

c d

upcurr

curr

initial state after left rotation after right rotation
Figure 27: Double rotation, left side

 case -1:
 p1 = up.left;
 if(p1.balance == -1){
 curr = p1;
 up.left = p1.right;
 p1.right = up;
 p1.balance = 0;
 up.balance = 0;
 p1.up = up.up;
 up.up = p1;
 if(up.left != null)
 up.left.up = up;
 } /* if(p1.balance == -1) */

When p1 has a negative balance factor, a single
right rotation at up is required. This is shown
in Figure 26.

 /* else: p1.balance != -1 */
 else{
 curr = p1.right;
 p1.right = curr.left;
 curr.left = p1;
 up.left = curr.right;
 curr.right = up;

 switch(curr.balance){
 case -1:
 p1.balance = 0;
 up.balance = 1;
 break;
 case 0:
 p1.balance = 0;
 up.balance = 0;
 break;
 case 1:
 p1.balance = -1;
 up.balance = 0;
 break;
 } /* switch(curr.balance) */

 curr.balance = 0;
 curr.up = up.up;
 p1.up = up.up = curr;

When p1 has a positive balance factor, a
double rotation is required, composed of a left
rotation at p1 followed by a right rotation at up.
This is shown in Figure 27.
Along with this double rotation comes a small

bulk discount in parent pointer assignments.
The parent of curr changes in both rotations,
but the intermediate value can be ignored.

 if(p1.right != null)
 p1.right.up = p1;
 if(up.left != null)
 up.left.up = up;
 } /* else: p1.balance != -1 */

 height = true;
 break;
 } /* switch(up.balance) */
 } /* case LEFT */

a

a

c

up

p1

b

p1

b c

up

initial state after rotation
Figure 26: Right Rotation

79

 /* case RIGHT */
 else{ /* up.right == curr */
 switch(up.balance){
 case -1:
 up.balance = 0;
 height = true;
 curr = up;
 break;
 case 0:
 up.balance = 1;
 curr = up;
 break;

Case 2: Re-balance tree after insertion in right
sub-tree. This case is symmetric to re-
balancing a left sub-tree, but is included for
completeness.

 case 1:
 p1 = up.right;
 if(p1.balance == 1){
 curr = p1;
 up.right = p1.left;
 p1.left = up;
 p1.balance = 0;
 up.balance = 0;
 p1.up = up.up;
 up.up = p1;
 if(up.right != null)
 up.right.up = up;
 } /* if */

A positive balance factor at p1 requires a single
left rotation at up, as shown by Figure 28.

 /* else: p1.balance != 1 */
 else{
 curr = p1.left;
 p1.left = curr.right;
 curr.right = p1;
 up.right = curr.left;
 curr.left = up;

 switch(curr.balance){
 case -1:
 p1.balance = 1;
 up.balance = 0;
 break;
 case 0:
 p1.balance = 0;
 up.balance = 0;
 break;
 case 1:
 p1.balance = 0;
 up.balance = -1;
 break;
 } /* switch */

When p1 has a negative balance, a double
rotation is required. This is composed of a
right rotation at p1 followed by a left rotation
at up. Figure 29 shows this graphically.

 curr.balance = 0;
 curr.up = up.up;
 p1.up = up.up = curr;

 if(p1.left != null)
 p1.left.up = p1;
 if(up.right != null)
 up.right.up = up;

b

a

up

p1

c a

c

p1

b

up

initial state after rotation
Figure 28: Left Rotation

d

a

up

b c

p1

curr
b

a

up

c d

p1

curr

initial state after right rotation

a b c d

up

curr

after left rotation

p1

Figure 29: Double rotation, right side

80

 } /* else: p1.balance != 1 */

 height = true;
 break;
 } /* switch(up.balance) */
 } /* case RIGHT */
 } /* while */

 if(curr.up != null){
 if(curr.up.left == up)
 curr.up.left = curr;
 else
 curr.up.right = curr;
 } /* if */

 else{
 data = curr;
 } /* else */
 } /* if(found == false) */
} /* add */

B.4.3 Deletion

Deletion in an AVL tree is very similar to insertion. The steps that are analogous:

• Search for the item to delete.

• Delete the item.

• Update balance factors and rebalance the tree, if necessary.

• Finish up and return.

When rebalancing does become necessary after a deletion, its effects are limited to the nodes

along or near the direct path from the inserted or deleted node up to the root of the tree. Usually,

only one or two of these nodes are affected, but, at most, a single rotation is performed at each of

the nodes along this path. The actual updating of balance factors and rebalancing steps are

similar to those used for insertion.

public boolean remove(final int m_id)
{ /* remove */
 boolean found;
 boolean root;
 arc_node curr,up;
 arc_node r,s;
 arc_node y;
 arc_node w,x;
 int dir;

81

 boolean height;
 dir = 0;
 curr = data;
 found = false;
 while((curr!=null) && (found==false)){
 if(m_id < curr.m_id){
 curr = curr.left;
 dir = 0;
 } /* if */
 else if(m_id > curr.m_id){
 curr = curr.right;
 dir = 1;
 } /* else if */
 else{
 found = true;
 } /* else */
 } /* while */

Step 1: Find the node to delete. This node is
pointed to by curr.

if(found == true){
 up = curr.up;
 if(up == null){
 up = data;
 dir = 0;
 root = true;
 } /* if */

Step 2: Delete the node. At this point, we’ve
identified curr as the node to delete. It is more
difficult to remove some nodes from a tree than
to remove other nodes. This is the actual
deletion step. There are three distinct cases,
described in detail below.

 else{
 root = false;
 } /* else */

 if(curr.right == null){
 if(dir == 0){ /* left side */
 up.left = curr.left;
 if(up.left != null)
 up.left.up = curr.up;
 } /* if */

 else{ /* right side */
 up.right = curr.left;
 if(up.right != null)
 up.right.up = curr.up;
 } /* else */
 } /* if(curr.right == null) */

 /* else: curr.right != null */

Case 1: the node has no right child. It is trivial
to delete a node with no right child. The
pointer leading to curr is replaced with curr’s
left child, if it has one, or by a null pointer, if
not. In other words, the deleted node is relaced
by its left child. Figure 30 shows this case
graphically.

a

a b

up

curr

null

b

up

null

curr

right, before case 1left, before case 1 after case 1

ba

up

Figure 30: AVL Delete, case 1

82

 else{
 r = curr.right;

 if(r.left == null){
 r.left = curr.left;

 if(dir == 0)
 up.left = r;
 else
 up.right = r;

 r.up = curr.up;
 if(r.left != null)
 r.left.up = r;

 r.balance = curr.balance;
 up = r;
 dir = 1;
 } /* if(r.left == null) */

Case 2: the node’s right child has no left child.
This case deletes any node curr with a right
child r that itself has no left child. In this case,
r is moved into curr’s place, attaching curr’s
former left sub-tree, if any, as the new left sub-
tree of r. The process is shown in Figure 31.

/* else: r.left != null */
 else{
/* find curr’s in-order successor */
 s = r.left;

 while(s.left != null){
 s = s.left;
 } /* while */

/* update pointers for r and s */
 r = s.up;
 r.left = s.right;
 s.left = curr.left;
 s.right = curr.right;

 if(dir == 0)
 up.left = s;
 else
 up.right = s;

Case 3: the node’s
right child has a left
child. This is the
“hard” case, and is
shown in Figure 32.
The algorithm can
be divided into the
following steps to
make it easier to
understand:
1. Let curr’s in-
order successor, that
is, the node with the
smallest key value
greater that curr, be
s.
2. Detach s from its current position in the tree and
put it into the spot formerly occupied by curr, which
disappears from the tree.

 if(s.left != null)
 s.left.up = s;

 s.right.up = s;
 s.up = curr.up;

 if(r.left != null)
 r.left.up = r;

 s.balance = curr.balance;
 up = r;
 dir = 0;
 } /* else: r.left != null */
 } /* else: curr.right != null */

Node s exists because otherwise this would be
case 1 or case 2 (the reason is related to how
the current node’s successor is found). It is
easy to detach s from its position for a more
subtle reason: s is the in-order successor of
curr and is therefore has the smallest key value
in curr’s right sub-tree, so s cannot have a left
child. (If it did, then this left child would have
a smaller value than s, so it, rather than s,
would be curr’s in-order successor.) Since s
doesn’t have a left child, s can simply replace it
by its left child, if any. This is the mirror
image of case 1.

curr

bnull

a r
ba

r

initial state after delete
Figure 31: AVL Delete, case 2

c

null b

s

a

…

r

curr

initial state

cb

a

s

after delete

…

r

Figure 32: AVL Delete, case 3

83

 size--;
 if(root == true){
 if(size > 0){
 data = data.left;
 height = true;
 } /* if */

Special Case: deleting the root node.
Removing the root node is a special case. This
section updates data (the root pointer for the
tree) after such a deletion.

 else{
 data = null;
 height = false;
 } /* else */
 curr = null;
 } /* if */

 else{
 curr = null;
 height = true;
 } /* else */

Step 3: Update balance factors and re-balance the tree, if necessary. Rebalancing begins at
node up, from whose side dir node curr was deleted.

 while((up!=data) && (height == true)){
 y = up;

 if(y.up != null)
 up = y.up;
 else
 up = data;

 /* re-balance the on left side */
 if(dir == 0){
 if(up.left == y)
 dir = 0;
 else
 dir = 1;

 switch(y.balance){
 case -1:
 y.balance = 0;
 break;
 case 0:
 y.balance = 1;
 height = false;
 break;

Node up at the beginning of the iteration
becomes node y, the root of the balance factor
update and rebalancing. Variable dir,
initialized at the beginning of each iteration, is
used to separate the left-side and right-side
deletion cases.

The loop also updates the values of up and dir
for rebalancing and for use in the next iteration
of the loop, if any. These new values can only
be assigned after the old ones are no longer
needed, but must be assigned before any
rebalancing so that the parent link to y can be
changed. For up this is after up receives up's
old value and before rebalancing. For dir, it is
after the branch point that separates the left-
side and right-side deletion cases, so the dir
assignment is duplicated in each branch. The
code used to update up is discussed later.

Re-balance tree after deletion in left sub-tree

84

 case 1:
 x = y.right;

 if(x.balance == -1){
 w = x.left;

 x.left = w.right;
 w.right = x;
 y.right = w.left;
 w.left = y;

 switch(w.balance){
 case -1:
 x.balance = 1;
 y.balance = 0;
 break;
 case 0:
 x.balance = 0;
 y.balance = 0;
 break;

Case 1: x has a – balance. When x has a
negative balance, a double rotation is required.
This is composed of a right rotation at x
followed by a left rotation at y, as shown in
Figure 33.

 case 1:
 x.balance = 0;
 y.balance = -1;
 break;
 } /* switch(w.balance) */

 w.balance = 0;
 w.up = y.up;
 x.up = y.up = w;

 if(x.left != null)
 x.left.up = x;
 if(y.right != null)
 y.right.up = y;

 if(dir == 0)
 up.left = w;
 else
 up.right = w;
 } /* if(x.balance == -1) */
Case 2: x has a + or 0 balance factor.

d

a

y

b c

x

w
b

a

y

c d

x

w

initial state after right rotation

a b c d

y

w

after left rotation

x

Figure 33: Re-balance left side, case 1

85

 /* else: x.balance != -1 */
 else{
 y.right = x.left;
 x.left = y;
 x.up = y.up;
 y.up = x;

 if(y.right != null)
 y.right.up = y;

 if(dir == 0)
 up.left = x;
 else
 up.right = x;

 if(x.balance == 0){
 x.balance = -1;
 y.balance = 1;
 height = false;
 } /* if */
 else{
 x.balance = 0;
 y.balance = 0;
 y = x;
 } /* else */
 } /* else: x.balance != -1 */
 break;
 } /* switch(y.balance) */
 } /* if(dir == 0) */

If x has a positive or 0 balance factor, a left
rotation at y is required. This case is shown in
Figure 34. If x started with a balance factor of
0, then the re-balancing step is done.
Otherwise, x becomes the new y for the next
loop iteration, and re-balancing continues.

Re-balance tree after deletion in right sub-tree
 /* else: dir == 1 */
 else{
 if(up.left == y)
 dir = 0;
 else
 dir = 1;

 switch(y.balance){
 case 1:
 y.balance = 0;
 break;
 case 0:
 y.balance = -1;
 height = false;
 break;

b

a

y

x

c a

c

x

b

y

initial state after rotation
Figure 34: Re-balance left

side, case 2

86

 case -1:
 x = y.left;

 if(x.balance == 1){
 w = x.right;

 x.right = w.left;
 w.left = x;
 y.left = w.right;
 w.right = y;

 switch(w.balance){
 case -1:
 x.balance = 0;
 y.balance = 1;
 break;
 case 0:
 x.balance = 0;
 y.balance = 0;
 break;
 case 1:
 x.balance = -1;
 y.balance = 0;
 break;
 } /* switch(w.balance) */

Case 1: x has a positive balance factor. When
x has a positive balance factor, a double
rotation is required. This is composed of a left
rotation at x followed by a right rotation at y, as
shown in Figure 35.

 w.balance = 0;
 w.up = y.up;
 x.up = y.up = w;

 if(x.right != null)
 x.right.up = x;
 if(y.left != null)
 y.left.up = y;
 if(dir == 0)
 up.left = w;
 else
 up.right = w;
 } /* if(x.balance == 1) */

 /* Case 2: x.balance != 1 */
 else{
 y.left = x.right;
 x.right = y;
 x.up = y.up;
 y.up = x;

 if(y.left != null)
 y.left.up = y;

 if(dir == 0)
 up.left = x;
 else
 up.right = x;

Case 2: x has a – or 0 balance. If x has a
negative or 0 balance factor, a right rotation at
y is required. Figure 36 shows this operation.
If x started with a balance factor of 0, then the
re-balancing step is done. Otherwise, x
becomes the new y for the next loop iteration,
and re-balancing continues.

 if(x.balance == 0){
 x.balance = 1;
 y.balance = -1;
 height = false;

a

d

y

b c

x

w
c

d

y

a b

x
a b

x

c d

yw

w

initial state after left rotation after right rotation
Figure 35: Re-balance right side, case 1

a

c

y

x

b

a

x

b c

y

initial state after rotation
Figure 36: Re-balance right side, case 2

87

 } /* if */
 else{
 x.balance = 0;
 y.balance = 0;
 y = x;
 } /* else */
 } /* else: x.balance != 1 */
 break;
 } /* switch(y.balance) */
 } /* else: dir == 1 */
 } /* while(up != data) */
 } /* if(found == true) */
 return found;
} /* remove */

B.4.4 Detailed description of the list traversal functions

This section provides a detailed description of the list traversal functions presented in section

A.3 of Appendix A. The functions first, last, next, and prev can be used to perform a walk of the

elements in a tree. An enumeration can be in ascending or descending order, starting from the

smallest item, the largest item, or somewhere in the middle. The current item is either an item in

the tree or the “null item.” From the viewpoint of the tree’s user, the “null item” is represented

by constants.invalid.

These traversal functions continue to work when the tree is modified. Any number of

insertions and deletions may occur in the tree without affecting the currently selected item, with

this exception: deleting the current item invalidates the traversal variable (even if the item is later

re-inserted).

B.4.4.1 Starting at the first node

Sets the current pointer to the node with the smallest key field. Finding the smallest node in

the tree is simply a matter of starting from the root and descending as far to the left as possible.

int first()
{ /* first */
 int m_id;

 if(data != null){
 current = data;
 while(current.left != null){

88

 current = current.left;
 } /* while */
 m_id = current.m_id;
 } /* if */
 else{
 m_id = constants.invalid;
 } /* else */
 return m_id;
} /* first */

B.4.4.2 Starting at the last node

Sets the current pointer to the node with the largest key field. The code for this case is the

mirror image of starting from the least item.

int last()
{ /* last */
 int m_id;

 if(data != null){
 current = data;
 while(current.left != null){
 current = current.right;
 } /* while */
 m_id = current.m_id;
 } /* if */
 else{
 m_id = constants.invalid;
 } /* else */
 return m_id;
} /* last */

B.4.4.3 Advancing to the next node

Returns the next item in the tree. "Next" is defined as the item after the current item in

alphabetical order. By convention, if there's no current item, the first item in the tree is returned

The algorithm of next(), the function for finding a successor, divides neatly into three cases.

int next()
{ /* next */
 int m_id;
 arc_node p,q;
 boolean found;

89

/* case 1 */
 if(current == null){
 m_id = first();
 } /* if(current == null) */

The current node is null. In this case the
smallest node in the tree is returned.

/* case 2 */
 else if(current.right == null){
 p = current;
 q = p.up;
 found = false;
 m_id = constants.invalid;

 while(found == false){
 if((q == null) || (p == q.left)){
 current = q;
 found = true;

 if(current != null){
 m_id = current.m_id;
 } /* if */
 } /* if */

 else{
 p = q;
 q = q.up;
 } /* else */
 } /* while(found == false) */
 } /* else if(current.right == null) */

In this case the current node has no right child.
What happens here is that the current pointer
moves up the tree, one node at a time, until it
turns out that the pointer moved up to the right
(as opposed to up the left)
The code uses q to move up the tree and p as
q's child, so the termination condition is when
p is q's left child or q becomes a null pointer.
There is a non-null successor in the former
case; Figure 37 shows the situation in this case.

/* case 3 */
 else{
 current = current.right;

 while(current.left != null){
 current = current.left;
 } /* while */

 m_id = current.m_id;
 } /* else */
 return m_id;
} /* next */

The current node has a right child. The
successor is found by stepping to the right, then
to the left until it isn’t possible go any farther
(the successor is the smallest item in the node’s
right sub-tree).

B.4.4.4 Backing up to the next node

Returns the previous item in the tree. "Previous" is defined as the item before the current

item in alphabetical order. By convention, if there's no current item, the last item in the tree is

returned. This is the same as advancing to the next node, except that the direction is reversed

(reverse left for right).

a b

cp

q current

Figure 37: case for advancing to the next node

APPENDIX C

USER’S MANUAL

91

C.1 Introduction

A Petri net model has a main window displaying the elements of the model. The attributes of

a particular element are available for editing by a pop-up dialog box. A dialog box appears when

an element is selected. A text field shows any errors in the input.

C.2 Toolbar

The tool bar shown in Figure 38 is used extensively in developing and editing a Petri net

model. The following list describes the use of each of the icons on the tool bar.

• The Cursor is used to edit a Petri net model

• Add a place to a Petri net model.

• Add a timed transition to a model.

• Add an immediate transition to a model.

• Add an arc to a model. An arc can be between a place and a transition (input arc), or

from a transition to a place (output arc).

• Add an inhibitor arc to a model. An inhibitor arc can only be between a place and a

transition.

C.3 Menu Bars

Many of the operations for the eCGE application can be accessed via the menu bars. The

menu bar contains the File, Edit, Function, and Algorithm menus.

Figure 38: Toolbar

92

C.3.1 File Menu

The File menu focuses on commands to work with files. These commands are as follows:

• New - Creates a new (empty) document.

• Open - This command opens an existing Petri net model in an edit window. The model

can be in eCGE or CSPL format.

• Close – This command closes the active window. Any changes to the model can be

saved.

• Save - The save command saves the file in the active edit window to disk.

• Quit - This command quits eCGE. Any open files will be saved before the application

exits.

C.3.2 Edit Menu

The Edit menu currently contains one command. In the future, this menu will be extended to

include the standard editing commands (Cut, Copy, and Paste). These commands will be

implemented after eCGE has been upgraded to support multiple documents.

C.3.3 Functions Menu

C.3.3.1 Parameters

The Parameters dialog boxes provides a way to set the CSPL parameters for a Petri net

model. Each of these parameters is described in section C.7.

C.3.3.2 Guard Functions

At times, inhibitor arcs or transition priorities can specify a given behavior only through

awkward subnets that only obfuscate the logic of the model. An alternative in these cases is the

definition of a marking-dependent enabling function (or guard). This dialog box provides a way

93

to define and edit guard functions. Once a guard function is defined, it can be associated with a

transition (see the section on Transitions).

C.3.3.3 Transition Functions

This dialog box is used to specify guard functions. A guard function is used to selectively

disable a transition based on marking-dependant quantities (for example, the number of tokens in

a place).

C.3.4 Algorithms Menu

The eCGE application currently supports three graph layout algorithms: the Spring

Algorithm, the Tree Algorithm, and the Random Algorithm. These algorithms are described in

Appendix A.

C.4 Places

Figure 39 shows the dialog box for defining

the attributes of a place. Two fields are

defined: the name and the number of tokens.

Each place may contain any non-negative

number of tokens. The default is zero. In this

example, the CSPL functions generated would be: place(“p0”); init((“p0”,0);

C.5 Transitions

In a Stochastic Petri net model, only two distribution types are allowed: exponential and

deterministic with value 0. Transitions with an associated exponential distribution are said to be

timed (drawn as a box); transitions with zero time distribution are said to be immediate (drawn as

a solid bar).

name

of tokens

Place Attributes

p0

0

OK Cancel

Figure 39: Place Attributes Dialog Box

94

Timed transitions are useful in describing the time lapse between consecutive events.

Immediate transitions provide a probabilistic way of describing the selection among different

possible events. A transition is enabled if all of the following conditions (enabling rules) are

met:

• The number of tokens in each input place is at least equal to the multiplicity of the input

arc from that place.

• The number of tokens in each input place with an inhibitor arc is less than the

multiplicity of the input inhibitor arc from that place.

• The enabling function of the transition (if any is assigned) returns true – which is the

default if a function in not assigned to the transition.

C.5.1 Transition Properties

Figure 40 shows the dialog box for defining the attributes of a transition. The first field

defines the name of the transition. The second field sets the priority: this is one method of

selectively disabling a transition in a marking that would otherwise enable it. If S is the set of

transitions enabled in a marking and if the transition with the highest priority among them is k,

then any transition in S with priority lower than that of transition k will be disabled. The priority

can be used to define explicit precedence relationships within a model. The third field associates

a transition with a previously defined guard function.

C.5.2 Firing Rate

The Firing Rate panel allow the user to specify the firing rate for a transition. This value can

be fixed (constant), dependent on a marking-dependent quantity, or defined by an arbitrary

function. An example of a marking-dependent quantity is to define firing rate to be proportional

to the number of tokens in a place.

95

In many other cases, though, a more general type of marking dependency is required. This is

achieved by defining a marking-dependent function of type double. This function is evaluated

whenever an associated transition may be

enabled. The value this function returns

specifies the firing rate or firing

probability for the transition in the

current marking.

C.5.3 Guard Functions

At times, inhibitor arcs or transition

priorities can specify a given behavior

only through awkward sub-nets that only

obfuscate the actual logic of a model. In

these cases, the definition of a marking-dependent enabling function (or guard) may be

Fixed

Dependent

Function-Based

Rate

Base Rate

Place

Function

Firing Rate

Guarded

Name

Priority

t0

0

1.0

1.0

<none>

<none>

<none>

Transition Attributes

OK Cancel

Figure 40: Transition Attribute Dialog Box

Remove

Guard Name Edit Window

Guard Functions

return 1;

}

int test()
{

CloseNew

Figure 41: Guard Function Dialog Box

96

preferable. If the selected function evaluates to 0 in a marking, then the transition is disabled in

the current marking. The dialog box for specifying a guard function is shown in Figure 41.

C.6 Arcs

Places and transitions are connected by directed arcs. Input arcs and inhibitor arcs connect

places to transitions and output arcs connect transitions to places. The firing of a transition is

conditioned by the presence of tokens in each of its input places. It is possible to condition this

firing by the absence of tokens in an input place; this is represented by an inhibitor arc. An

inhibitor arc from a place to a transition has a small circle rather than an arrowhead ad the

transition. Arcs can only connect a place to a transition (input arcs), or a transition to a place

(output arcs). Figure 42 shows the dialog box for defining the properties of an arc.

C.6.1 Cardinality

This panel defines the cardinality of an arc. The cardinality can be a fixed value or based on

a marking-dependent function.

Arc Type

Source

Target

Cardinality

Fixed

Variable <none>

Value

Function

1

Arc Properties

p0

t0

Input

OK Cancel

Figure 42: Arc Attributes Dialog Box

97

C.6.1.1 Fixed

A multiplicity (positive integer) may be attached to each arc. A multiple arc is an arc where

the multiplicity is greater than one. Intuitively, a multiple arc with multiplicity k can be thought

of as k arcs having the same source and destination.

C.6.1.2 Variable (or Marking Dependent) Cardinality

At times, inhibitor arcs or transition priorities can specify a given behavior only through

awkward subnets that only obfuscate the actual logic of a model. In these cases, the definition of

a marking-dependent enabling function is preferable. The dialog box for defining a marking-

dependent enabling function for an arc is similar to defining a guard function for a transition

(described in section C.5.3).

C.7 Parameters

The CSPL parameters dialog box contains settings to direct how the how SPNP translates the

specified Petri net model into the underlying Markov chain for analysis, and to direct how the

analysis is run. The various CSPL parameters are divided between four panels: General (Figure

43), Output (Figures 44-45), Markov (Figure 46), and Simulation (Figure 47). The following

sections describe each of these panels in more detail.

C.7.1 General Parameters

Iterations specifies the maximum number of iterations allowed for the numerical solution.

Any nonnegative integer can be specified. iopt(IOP_ITERATIONS, 2000);

98

The Precision specifies the minimum precision required from the numerical solution. The

numerical solution will stop either if the precision is reached, or if the maximum number of

iterations is reached. fopt(FOP_PRECISION, 1.0e-6);

The Absorbing Marking Value specifies

the value of the rate from each absorbing

marking back to the initial marking. If this rate

is positive, these markings will not correspond

to absorbing states in the continuous time

Markov Chain. This is useful to model a

situation that would otherwise require a large

number of transitions to model this “restart.”

The numerical results will depend on the value

specified for this option. fopt(FOP_ABS_RET_M0, 0.0);

The first check box specifies whether the cumulative probabilities should be computed:

iopt(IOP_CUMULATIVE,VAL_YES);. The next check box specifies whether sensitivity

analysis should be performed. Note: if this option is selected, the solution methods type

(Markov panel) must have the Continuous Time value, and vanishing markings must be

eliminated during the reachability graph construction (Markov panel). At present, the

application does not explicitly check these constraints.

If Debug Mode On is selected, SPNP outputs (on the “stderr” stream) the markings as they

are generated. This feature is extremely useful when debugging a Petri net model. The next

options specify respectively whether absorbing markings, transient vanishing loops, a

vanishing initial marking, and a transient initial marking are acceptable or not.

!

!

Iterations

Precision

Absorbing Marking Value

2000

1.0E-6

0.0

Calculate Cumulative Probs

Perform Sensitivity Analysis

Debug Mode On

Absorbing Markings OK

Vanishing Initial Marking OK

Vanishing Loops OK

Transient Initial Marking OK

!

Figure 43: General Parameters

99

• If an option is selected, the program will signal such occurrences, but it will continue

the execution if it is possible.

• If an option is not selected, the program will stop if the condition is encountered.

C.7.2 Output File Parameters

Figure 44 shows the output options for the reachability graph. The Marking Print Order

specifies the order in which the markings are printed. Three orderings are defined canonic,

lexical, and matrix.

• With Canonic order, markings are printed in the order they are found, in a breadth-first

search starting from the initial marking and in increasing order of enabled transition

indices. It is the most natural order and it is particularly helpful when debugging a

model.

• With Lexical order, markings are printed in increasing order, where markings are

compared as words in a dictionary. This order may be useful when searching for a

particular marking in a model with a large state space.

Reachability Graph Options

Print Reachability Graph

Merge Tangible and Vanishing Markings

Print Full Markings

Print Place and Transition Names

Print CTMC Derivative

!

Eliminate Vanishing Markings

Yes

No

Only Tangible Markings

Marking Print Order

Canonic

Lexical

Matrix

Figure 44: Reachability Graph Options

100

• With Matrix order, markings are printed in the same order as the states of the two

internal Markov chains: the discrete time Markov chain (DTMC) corresponds to the

vanishing markings, and the continuous time Markov chain (CTMC) corresponds to the

tangible markings. This corresponds to the following ordering: vanishing, tangible

non-absorbing, and tangible absorbing, each of these groups ordered in canonical order.

Eliminate Vanishing Markings specifies whether the set of vanishing markings should be

printed. The third selection indicates that only the tangible markings should be printed. The

Print Reachability Graph check box specifies whether the reachability graph should be printed.

The Merge Tangible and Vanishing Markings option specifies whether these two classes of

markings are printed as one list or in two separate lists. Print Full Markings specifies whether

the markings are printed in long format, where some of the markings have zero number of tokens

in all the places; or short format, where for each printed out marking, there is at least one place

which has non-zero tokens.

Print Place and Transition Names specifies whether the names should be used to indicate

the places and transitions involved when printing the reachability set and graph, instead of the

index. Using names increases the size of the output file, but it is useful when debugging a Petri

net model. Print CTMC Derivative specifies

whether the derivative with respect to the model

parameters should be printed in the “.mc” output file.

The Markov Chain File Options, shown in

Figure 45, specifies whether the Markov chain

(“.mc”) file should be generated. This file describes

the Markov chain (continuous time or deterministic

Markov Chain File Options

Generate Markov Chain File

Use From-To Format

Use To-From Format

Generate Probability File

Generate DTMC Probability File

Generate Dot Graph File
Figure 45: Other Output Options

101

time, depending on the settings) derived from a Petri net model; the vanishing markings are

absent and only numeric rates appear. There are two formats for the data in this file:

• Use From-To Format prints the transition matrix.

• Use To-From Format prints the transpose of the transition matrix.

Generate Probability File specifies whether or not the “.prb” file is generated. This output

file describes the transient and steady-state probability for each tangible marking; it corresponds

to the result of the CTMC solution (even when the actual solution used is a DTMC).

Generate DTMC Probability File specifies whether or not the “.prbdtmc” file is generated.

This output file contains the numeric results of the embedded Discrete Time Markov Chain

(DTMC). Generate Dot Graph File specifies whether or not the “.dot” file is generated or not.

This output file contains a description of the Petri net in the dot graph language.

C.7.3 Markov Chain Options

The Markov Chain Options are shown in Figure 45. Eliminating Vanishing Markings

specifies the method by how vanishing markings are managed and eventually eliminated. The

three options are described in the list below. Users are encouraged to use the first option, as this

usually results in the fastest solution and the lowest memory requirements. However, these are

rare pathological cases where this option will actually result in larger memory requirements than

for the “Never” option.

• Specifying During Reachability Graph Construction means that vanishing markings

are eliminated during the reachability graph construction. With this option, any type of

solution is possible, but vanishing (non-absorbing) loops are considered an error and

measures related to intermediate transitions are not computed.

102

• Specifying After Reachability

Graph Construction means that the

reachability graph constructed includes

explicitly the vanishing markings, but

these are then eliminated numerically

before generating the underlying CTMC.

With this option, any type of solution is

possible, and vanishing (non-absorbing)

loops present no problem, but measures

related to immediate transitions are not

computed.

• Specifying Never means that the

stochastic process being considered

explicitly regards the vanishing markings as ordinary states. With this option, only a

steady-state solution is possible. Using an embedded DTMC, measures related to

immediate transitions are computed, and vanishing (non-absorbing) loops present no

problem.

The solution Type specifies the solution method for solving a Petri net model. There are two

solution types, continuous time and discrete time, which are described in the following list.

• Using Continuous Time will transform the Stochastic Reward Net into a CTMC.

SPNP can perform transient and sensitivity analysis only by reducing the underlying

Stochastic Reward Net for a Petri net model to a CTMC. Hence this setting should be

used when these type of analysis is needed.

Eliminate Vanishing Markings

Type

Steady State Solution Method

Transient State Solution Method

During Reachability Graph Construction

After Reachability Graph Construction

Never

Continuous Time

Discrete Time

SOR

Power

Gauss-Seidel

Transient/Uniformization

Poisson
Figure 46: Markov Parameters

103

• Using Discrete Time will use an alternative solution approach, where the vanishing

markings are not eliminated and an embedded DTMC is solved instead.

SPNP provides three methods for solving the steady-state solution of a Markov chain.

These algorithms are described in the following list.

• SOR for Steady-State SOR (Successive Overrelaxation). This is generally the fastest

algorithm.

• Gauss-Seidel for Steady-State Gauss-Seidel. This algorithm is useful is those cases

where SOR does not converge, and vise-versa.

• Power for Steady-State Power-Series Algorithm. This algorithm has a better

convergence performance than the other two, but is much slower.

There are two options for solving the transient-state solution method for a continuous time

Markov chain. Transient/Uniformization is used for Transient Solution using Standard

Uniformization. The second specifies a Poisson distribution, calculated using the Fox and Glynn

method. (A Poisson distribution models the number of independent events that occur in a fixed

amount of time or space: for example, the number of customers that arrive to a store during one

hour, or the number of defects found in 30 square meters of sheet metal.)

C.7.4 Simulation Options

The SPNP package allows the use of discrete-event simulation to study the behavior of a

system at or up to a point in time. At present, the eCGE application only supports the

specification of the following CSPL options. These are shown in Figure 47. The Simulate

System check box option toggles whether the solution to a Petri net model is calculated

numerically or with discrete-event simulation.

104

The Cumulative Simulation Time

option toggles between two modes of data

collection. If the field is set, the data is to be

collected cumulatively (from zero to

Maximum Iteration Run Time). Otherwise

the data is collected at a point of time

(Maximum Iteration Run Time). This field

is set by default (VAL_YES).

Number of Runs specifies the maximum number of simulation runs to be performed to

obtain meaningful statistics. Maximum Error specifies the target width of the confidence

interval relative to the point estimate. The Confidence Interval specifies the confidence to be

used when computing the confidence interval. The default value is 95%.

If the maximum error is set to zero, then SPNP will perform as many runs as needed to

achieve the specified relative error. If the number of runs is defined, then SPNP runs the

simulation for this number of iterations. If neither the maximum error or the number of runs is

defined, the simulation is run until a five percent relative error is reached.

Simulate System

Cumulative Simulation Time!

90%

95%

99%

Confidence Interval

Number of Runs

Maximum Iteration Run Time

Maximum Error

0

0.0

0.0

Figure 47: Simulation Parameters

