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Abstract

In past work, we had discussed a uniform model to represent different verification
techniques, and have shown how this model can be used to support two divide-and-
conquer strategies: How to compose eclectic verification claims; and how to decom-
pose composite verification goals. In this paper, we broaden the original model, most
notably by integrating cost considerations, and by encompassing multiple dimensions
of dependability (reliability, security, safety). We briefly illustrate our approach with
a very simple demo, that we run on a very elementary, tentative prototype. This pa-
per does not offer conclusive research results as much as it offers motivated premises,

concepts and approaches for further research.
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1 Introduction: An Eclectic Approach to Dependabil-
ity

In [13], we had presented a refinement based framework in which we cast many distinct

verification methods. Among the contributions of this work, we cite:

e A Discipline for Composing Verification Claims. A question that the framework
proposed in [13] is intended to address is the following: Given a software product P

that we have verified (using static analysis techniques) against some specification V/,



that we have tested against some oracle €2 using some test data D and that we have
made fault tolerant using some run time checks and some recovery routines, what can
we claim about the correctness of P? How can we compose the individual verification

claims into a single cumulative verification result?

e A Discipline for Decomposing Verification Goals. The framework proposed in [13] is
also intended to address the following (dual) question: Given that we have to verify
product P against a compound specification R, how can we decompose R so that if
we independently verify the correctness of P against the various components of R

(possibly using different methods), we can infer that P is correct with respect to R?

e A Discipline for Controlling Verification Costs. In the perennial debate on the relative
merits of static analysis versus testing versus fault tolerance, one simple observation
seems to have been lost: most of the time, what makes a method difficult to apply
is not the method itself, but the specification against which this method is applied.
In [13] we have characterized specifications that are good candidates for each type of

verification method.

In this paper we extend out previous work in three orthogonal directions:

e First, by replacing the logical claims of the original model with probabilistic claims, on
the grounds that all methods, even formal methods, produce claims with associated
degrees of (un)certainty, and with associated implicit conditions, which probability

theory is equipped to capture and reason about.



e Second, by expanding the model to include, not only reliability claims, but also claims
dealing with safety and security, on the grounds that these claims are interdependent,
and that from the user’s standpoint it does not matter whether the failure of a system

is due to faulty design or to malicious activity.

e Third, by integrating failure cost into the equation, on the grounds that a complex
specification typically has many components, whose failures carry widely varying

costs, that we must account for in a differential manner.

In section 2 we briefly introduce the background of our study, and highlight the main
findings of [13] as they pertain to our study. In section 3 we introduce the proposed
new model, and discuss how it can be used to support the management of dependability
claims and goals. In section 4 we complement the discussions of section 3 by showing
how we propose to capture safety claims and security claims, in addition to traditional
reliability claims. In section 5 we briefly present a tool that supports the model proposed
in section 3 and give a simple demo that illustrates our vision of how it can be used to
support dependability management. Finally, we briefly summarize and assess our findings
in section 6.

This paper does not produce results in the sense of solutions that are analyzed, validated
and deployed; rather, it offers motivated ideas and proposals, that serve as a launching
pad for further research. To enhance readability, the discussion in this paper will remain

relatively non-technical, referring the interested reader to other references as needed.



2 Background: Genesis of our Approach

In this section we will briefly present the main contributions of [13], then we discuss how
and why we propose to extend this work, thereby laying the groundwork for our subse-
quent developments. For the sake of readability, we will keep the discussion of this section
(and most of the paper, in fact) fairly non-technical, referring interested readers to biblio-
graphic sources for details; though we may sometimes present mathematical formulas, to
fix the reader’s ideas, we do not consider that understanding the details of these formulas
is required to follow our discussions. Also, while the formulas we present refer to a relation-
based refinement calculus, we submit that most of our claims hold for most specification/
refinement models. Indeed, it is possible to define the concept of refinement in any spec-
ification model, and to build our arguments from the ground up using the model-specific

refinement ordering.

2.1 Refinement Calculi

Without significant loss of generality, we use homogeneous relations (i.e. relations from
some set S to itself) to represent functional specifications and program functions. Among
constant relations on some space S we consider the universalrelation (Sx.S), that we denote
by L; the identity relation ((s, s)|s € S), that we denote by I, and the empty relation ({}),
that we denote by ¢. We denote the relational product by mere concatenation, i.e. RR' as

the product of R by R', and we use the hat symbol (R) to represent relational inversion. A

relation R is said to be total if and only if I C Rﬁ; and a relation is said to be deterministic



if and only if RR C 1.
We introduce the refinement ordering between relations (interpreted as specifications)

as follows: R refines R’ if and only if

RLNRLN(RUR')=R.

We denote this property by R J R’ or R' C R and we admit that this is a partial ordering
(i.e. it is reflexive, antisymmetric and transitive). Intuitively, R refines R’ if and only if R
captures all the requirements information of R’. Also, a program P is correct with respect
to a specification R if and only if the program’s function refines R. To further convey the
meaning of the refinement ordering, we note that R refines R' if and only if any program
that is correct with respect to R is (a fortiori) correct with respect to R’

In addition to its ordering properties, the refinement relation also has lattice-like prop-
erties [3]. Two specifications R and R' are said to be consistent if they can be refined

simultaneously; in relational terms, this is written as:

RLNRL=(RNR)L.

To briefly illustrate this condition, consider that R and R’ are specifying the final values

of some variable z; if R and R’ impose, respectively, the following conditions



4<x<7,

then R and R’ are consistent, because we can satisfy them simultaneously by taking

then R and R’ would not be consistent, since no value of x satisfies both of these conditions.
The reason why consistency is important for the purpose of lattice properties is that only
consistent relations admit a join (least upper bound). If R and R' are consistent then
they admit a join with respect to the refinement ordering, which is denoted by R R’ and
defined by

RUR =RLNRURLNRURNR.

The join captures all the requirements information in R and all the requirements informa-
tion in R’ (upper bound) and nothing more (least). The join can further be characterized

by the following premise (given that R and R’ are consistent):

QIRAQIR QI (RUR).



Whereas the join is conditional, the meet is not: any two relations R and R’ have a meet

(greatest lower bound), which is denoted by R M R’ and defined by:

RMR =RLNRLN(RUR).

The meet represents all the requirements information that is captured simultaneously by

R and R'. The meet can further be characterized by the following premise:

QIRVQIR =QI(RNR).

The set of relational specifications on some space S have a universal lower bound (the
empty relation) but have no universal upper bound; instead, they have many maximal
elements (namely, all the total deterministic relations). The structure of this ordered set

is summarily illustrated in figure 1.

2.2 Composing Dependability Claims

In this section we use the lattice-like structure of the refinement ordering to discuss how to
compose dependability claims. Specifically, we consider a system that we have statically
verified for some correctness criterion, that we have tested against some functional oracle
using some test data, and that we have made fault tolerant by appropriate assertions and
recovery routines, the question we wish to ask is: How can we add up the individual claims

that each measure allows us? What claims do these measures, combined together, allow
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Figure 1: Overall Lattice Structure



us to make? How do we know whether the measures we have taken (testing, proving, fault
tolerance) are complementing each other, or whether they are testing the same aspects over
and over again?

To answer these questions, we have (in [13]) proposed a common refinement based
model, in which we cast all three families of methods (static verification, testing, and fault
tolerance); we have shown that all three methods can be interpreted as establishing that
the system being analyzed refines some specification, that depends on the method and
the method’s parameters. Using the join operator, we can then compose eclectic measures,
stemming from different methods, into a single claim. Specifically, we discuss below, briefly,
how we interpret all three families of methods by means of refinement. We let P be the

program that we are interested in.

o Static Verification. If we prove by static analysis that P is correct with respect to

some specification V', we represent this claim by:

e Testing. We assume that we have tested program P on test data D using oracle €2,
and that all tests have been executed successfully (if not, we redefine D), we claim
that this allows us to write:

P gD \Qa

where p\Q represents the (pre) restriction of Q2 to D. Details can be found in [13].

10



e Fault Tolerance. If we test some condition C' at run-time, and whenever the condition

does not hold we invoke a recovery routine W, then we can claim that:

PICNW,

where we take the liberty to use the same symbol (C) to represent the condition
and the relation that represents it, and to use the same symbol (W) to represent the
recovery routine and the relation that represents it. Because we do not know for each
execution whether C' holds or not, we do not know whether we can claim P J C (if
C holds) or P J W (if C does not hold). Since we are assured that P refines at least

one of them at each execution, we know that it refines their meet.

From static analysis, we infer: P J V. From (certification) testing, we infer: P J T, where
T =p \Q2. From fault tolerance, we infer: P J F, where F' = C' ' W. From lattice theory,
we infer:

P (VUTUF).

2.3 Decomposing Dependability Goals

A more interesting application of the lattice of refinement involves decomposing a complex
dependability goal into simpler subgoals. Imagine that we must prove that some product
P refines a complex specification R, and imagine that R is structured as the join of several
simpler subspecifications, say Ri, Ro, ... Ry; we had shown in [3] that the join offers a nat-
ural mechanism to structure complex specifications as aggregates of simpler specifications.
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Lattice properties provide that in order to prove P O R, it suffices to prove P O R; for all

We consider the question: which method (among static verification, testing, fault tol-
erance) is best adapted for each subspecification R;. This question is discussed in some

detail and illustrated in [13]. We summarize it briefly here:

e Static Verification. Ideal candidates for static verification are relations that are re-
flexive and transitive. Indeed, static verification usually revolves around inductive
arguments (of loops, recursive calls); the reflexivity of the specification makes the ba-
sis of induction trivial, and the transitivity of the specification makes the induction
step trivial. What makes static verification very difficult in general is the need to
invent or guess invariant assertions and intermediate assertions; when the specifica-
tion at hand is reflexive and transitive, it can be used as a sufficient (i.e. sufficiently
strong) assertion throughout the program. Verifying programs against reflexive tran-

sitive specifications is so straightforward, it can actually be readily automated.

e Testing. 1deal specifications for testing are relations that can be coded reliably, as we
do not want a faulty oracle to mislead the whole testing process. Because testing is
done off-line (in the sense: not during the normal operation of the system), execution
efficiency is not a major consideration (by contrast with executable assertions), but

reliability of the oracle is.

e Fault Tolerance. 1deal specifications for fault tolerance are unary relations, i.e. rela-

tions that refer to the current state but not to past states (for example, in a sorting

12



program, checking that the current array is sorted is a unary property, while check-
ing that the current array is a permutation of the initial array is a binary property).
What makes fault tolerance techniques inefficient is the need for saving past states
(memory overhead) and for checking the correctness of current states with respect to
past states (CPU overhead). With unary specifications, we are spared both of these

overheads.

These orthogonal requirements are summarized in table 2, which assigns to each candidate
specification a vector of three values that indicates how adapted the specification is with
respect to each of the three methods. Given a specification R;, we review one by one all
the criteria of the table (the columns); for each criterion, we select the vector (half column)
that corresponds to the attribute of R;. The sum of all these (five) vectors gives a 3-value
vector that reflects the adequacy of the three methods (Proving, Testing, Tolerance) for
the specification at hand (R;).

In [13] we show an example of application where the overall verification effort of a
program with respect to a compound specification is significantly smaller than the effort

of applying any one of the methods.

3 A Unified Representation

In this section we critique the model presented in the previous section, then propose a

generalization that addresses some of its shortcomings.
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Reflexivity Coding Execution Inductive
Features | Arity | and Transitivity | Complexity Time Reasoning
Methods 112]Y N L H L H possible | impossible
Proving 1011 -1 0 0 0 0 1 -1
Testing 07070 0 1 -1 0 0 0 1
Tolerance 1 -1]-1 1 1 -1 1 -1 1 -1

Figure 2: Assessing the Adequacy of Candidate Methods

3.1 The Need for Generalization

In order to motivate the need for generalizing the model presented in the previous section,

we briefly discuss why it is inadequate, as it stands.

e Most dependability measures are best modeled as probabilistic claims rather than

firm logical claims.

e Most claims are contingent upon implicit conditions. For example, testing is contin-
gent upon the condition that the testing environment is a faithful simulation of the
operating environment (or, more precisely, that it is at least as harsh as the oper-
ating environment). Also, static verification is contingent upon the condition that
the verification rules used in the static proof are borne out by the compiler and the
operating environment. Also, fault tolerance is contingent upon the condition that

the assertion-checking code and the recovery code are free of faults.
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e Many claims may lend themselves to more than one interpretation. For example, if
we test P against oracle ) using test data D, we can interpret this in one of two ways:
either that P refines p\Q with probability 1.0 (subject to the hypothesis discussed
above, that the testing environment subsumes the operating environment); or that P
refines  (not restricted to D this time), subject to the subsumption hypothesis, and
to the hypothesis that D is a faithful representative of the program’s domain (i.e. P
fails on D if and only if it fails on the whole domain), with some probability p less
than 1.0. While the logic, refinement based, model discussed in section 2 represents
only the first interpretation, the probabilistic model can represent both. In addition,
we will see how the proposed model allows us to keep both interpretations, and makes

use of them both (which is only fair, since they are both plausible interpretations).

e [f we admit the premise that dependability claims are probabilistic, we must now
consider failure costs. 1t is not enough to know that P refines R; with some probability
pi, over some period of operational time; we must also know what costs we will incur

in the case (probability (1 — p;)) that P fails to refine R; during that time.

e While the refinement ordering proves to be adequate for representing reliability claims
and safety claims, as we will discuss subsequently, it is not adequate for representing
security claims. We wish to generalize the the form that specifications can take, and

consequently also generalize the concept of refinement to capture security properties.
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3.2 A Generalized Model

We submit the premise that dependability methods can be characterized by the following

features:

e Property. This feature represents the property that we want to establish about P:
In section 2 we were interested exclusively in refinement, but it is possible to imagine
other properties, such as performance (with respect to performance requirements),
security (with respect to security requirements), recoverability preservation [14] (with

respect to functional requirements), etc.

e Reference. This feature represents the reference with respect to which we are claim-
ing the property cited above. This can be a functional specification (if the property is
correctness, or recoverability preservation), an operational specification (if the prop-
erty is a performance property), or a security specification (if the property is a security

property), etc.

e Assumption. This is the condition assumed by the verification method; all veri-
fication methods are typically based on a set of (often) implicit assumptions, and
are valid only to the extent that these assumptions hold. We propose to make these

assumptions explicit, so that we can reason about them.

e Certainty. This feature represents the probability with which we find that the prop-
erty holds about P with respect to the reference, conditional upon the Assumption.

The same dependability measure (e.g. testing P with respect to some oracle using

16



some test data, proving a refinement property with respect to some specification, etc)

can be interpreted in more than one way, possibly with different probabilities.

e Failure Cost. Safety and security requirements are usually associated with costs,
which quantify the amount of loss that results from failing to meet them. Safety costs
may include loss or endangerment of human life, financial loss, endangerment of a
mission, etc. Security costs may include disclosure of classified information, loss of
availability, exposure of personal information, etc. The purpose of this feature is to
quantify this cost factor, and associate it explicitly with the failure that has caused

it.

e Verification Cost. Verification costs complement the information provided by fail-
ure costs, by quantifying how much it costs to avoid failure, or reduce the probability
of failure. Together these two functions help manage risks and risk mitigation. The
table given in Figure 2 represents a first draft of verification costs, since it represents,
be it in relative terms, the cost associated with deploying each method against a

given specification.

To reflect this characterization, we represent dependability claims as follows:

(P 3 R|A) = p,

where P is the product, J is the property we claim about it, R is the specification against

which we are making the claim, A is the assumption under which we are making the claim,
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and p is the probability with which we are making the claim. We further add two cost

functions:

e Fuilure Cost: This function (which we denote by ¢) maps a property (say, J) and a
reference (say, some specification R) into a cost value (quantified in financial terms,

or in terms of human lives at risk, etc). Hence

¢(3, R)

represents the cost that we expect to incur whenever P fails to satisfy property -

with respect to R.

e Verification Cost: This function (which we denote by v) maps a property (say, J),
a reference (say, R), an assumption (say, A) and a method (say, M), to a cost value

(expressed in Person Months). Hence

v(d,R, A, M)

represents the cost of applying method M to prove that P satisfies property J with

respect to R under the assumption A.

Although this model appears on the face of it to deal only with claims that pertain to the
whole system P, we can in fact use it to represent verification steps taken on components
of P [19]. We use an illustrative example: We let P be the composition of two components,
say P, and P,, and we assume that we have used some method to establish the following

18



claim:

We submit that this can be written as a property of P (rather than merely a property of
Py) if we add an assumption about P,. Hence, for example, we can infer a claim of the
form

II(P 3 (RiRy)[ANP, O Ry) =7,

for some reference R, and some probability p’. We submit that this model enables us to
collect every piece of information that we can derive from dependability measures, so that
all the verification effort that is expended on P can be exploited (to support queries, as we

will discuss in section 5).

3.3 Implications of the Model

The first implication of this probabilistic model is that verification claims are no longer
additive, in the sense that we discussed in section 2. While in the logic, refinement-
based model we could sum up all our claims in a single refinement property, in the new
probabilistic model it is generally not possible to do so. Nor is it desirable, in fact, as the
result would probably be so complex as to be of little use. What we advocate instead is
to use an inference system where all the collected claims can be stored, and subsequently
used to answer queries about the dependability of the system. This will be illustrated in
section 5 through a simple example.

The second implication of this model is that it allows us to introduce a measure of

19



dependability that integrates cost information. When we say that a system P has a given
MTTF, it is with respect to some implicit specification, say R. It is also with respect to
some implicit understanding of failure cost, i.e. how much we stand to lose if our system
fails to satisfy R. If we consider that R is an aggregate of several subspecifications, say R,
R, ... Ry, it is conceivable that the components R, R, ... Ry have different failure costs
associated with them; for example, failing to refine R; will cost significantly more than
failing to refine Ry, but the MTTF does not reflect this, as it considers both as failures to
refine R. We introduce the concept of Mean Failure Cost (MFC), which combines terms of
the form

(PO R;) x ¢(3, R;)

where the term II(P 1 R;) represents the probability that P fails to refine R; and ¢(3, R;)

represents the cost that we incur when it does.

4 Capturing Dependability Measures

In this section we discuss the representation of dependability claims using the model pre-

sented above, and extensions of it.
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4.1 Reliability and Safety

We consider a specification R and a software product P that is developed to satisfy R; we

assume that R is decomposed as the join of several subspecifications, i.e.

R:R1UR2|_|...|_|Rk.

Also, we let

Ty, Ty, .. T

be the failure costs associated with specifications R;, i.e.

Further, we let () be a safety requirement that P must also satisfy, in addition to satisfying

R, and we let [ be the failure cost associated with @), i.e.

$(3,Q)=T".

Program P is considered reliable if it refines R and safe if it refines ). But most generally,
R refines (), which seems to suggest, superficially, that if P is reliable then it is safe —which
is not the case, of course. What is missing from this inference is the implicit assumption
that P must refine R and @) with different degrees of certainty, because they are associated

with vastly different failure costs.
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We argue that there is no difference between reliability and safety; both are modeled by
the property that P refines some specification, with some associated failure cost. Figure 3
illustrates the refinement relationships between reliability specifications and safety specifi-
cations. Specification () is not necessarily comparable to the subspecifications R;, but R,
which the join of the R;, refines ). The R; may have varying failure costs associated with
them; what sets () apart is that its failure cost is very high.

We argue that rather than quantify reliability and safety by means of two separate
MTTF’s, we can quantify both of them by means of the Mean Failure Cost (MFC), which

is a combination of terms of the form

II(P 3 Sp) x ¢(3, Sp).

The higher the term ¢(3, Sp), the lower the term II(P J Sp) must be to keep the mean
failure cost low. To reduce the term II(P 3 Sp) we must increase the term II(P I Sp),
whence the need to ensure that we satisfy safety requirements with a higher probability

than reliability requirements.

4.2 Modeling Security

Even though logically, system reliability is driven exclusively by the existence and possi-
ble manifestation of faults, empirical observations regularly show a very weak correlation
between faults and reliability. In [15], Mills and Dyer discuss an example where they find

a variance of 1 to 50 in the impact of faults on reliability; i.e. some faults cause system
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Prob(Reliable,Safe)=
0.99

R =
Ry UR, U.. LURy

Prob(Not Reliable, Safe)=
0.0099

Ry R, Ry_1 Ry,
Q
Prob(Not Reliable, Not Safe)=
0.0001

Figure 3: Refinement Relations, Reliability and Safety
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failure 50 times more often than others; while their experiment highlights a variance of 1
to 50, we have no doubt that actual variance is in fact unbounded. Also, they find that
they can remove 60 percent of a system’s faults and improve its reliability by only ... 3
percent.! In a study of IBM software products, Adams [1] finds that many faults in the
system are only likely to cause failure after hundreds of thousands of months of product
usage.

We argue that the same may be true for security: vulnerabilities in a system may have
widely varying impacts on system security. In fairness, the variance may be wider for relia-
bility than for security, because in malicious security violations high impact vulnerabilities
may be more attractive targets than lower impact vulnerabilities, but wide variances are
still quite plausible. Wide variances, to the extent that they are borne out, have broad

impacts on security management:

e In practice, security ought not be defined as the absence of vulnerabilities, no more
than reliability is defined by the absence of faults (low impact vulnerabilities do not

affect security in a meaningful way).

e In practice, security ought not be measured/ quantified by the number of vulnerabil-
ities, just as it is widely agreed (as highlighted by Adams’ [1] and Mills’ [15] work)
that faults per KLOC is an inappropriate measure of reliability. Though fault density

is commonly used as a measure of programmer productivity/ product quality, it has

LGiven that typically system level testing consumes nearly 50% of life-cycle costs and hardly comes close
to discovering 60% of system faults, this finding is a resounding condemnation of random fault-chasing,
and advocates instead a discipline that leads us towards the most influential faults first.
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long been discredited as a measure of reliability.

e Security cannot be improved by focusing on vulnerabilities, as we have no way to tell
whether a given vulnerability has low (1) or high (50) impact on security. Rather,
security should be managed by pursuing a policy that leads us to the highest impact
vulnerabilities first (a similar approach to usage pattern testing [16, 15, 9, 10, 2, 8,

6, 18]).

In light of these observations, we argue in favor of modeling security in a way that reflects
its visible, measurable, observable attributes, rather than its hypothesized causes. To this

effect, we introduce the following features:

e A notation for security specification, which details how to capture security require-

ments of a system.

e A formula for security certification, which formulates the condition under which a
system meets a given set of security requirements (represented by security specifica-

tions).

In [17] Nicol et al. discuss a number of dimensions of security, including: data confiden-
tiality, data integrity, authentication, survivability, non-repudiation, etc. In the context
of this paper, we focus our attention on survivability, and readily acknowledge a loss of
generality; other dimensions of security are under investigation. Survivability is defined in
[7] as the capability of a system to fulfill its mission in a timely manner, in the presence

of attacks, failures, or accidents [17]. We discuss in turn how to represent security (surviv-
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ability) requirements, and how to represent the claim that a system meets these security

requirements.

4.2.1 Specifying Security Requirements

We note that there are two aspects to survivability: the ability to deliver some services, and
the ability to deliver these services in a timely manner; to accommodate these, we formula
security requirements by means of two relations, one for each aspect. Using a relational
specification model presented in [4, 5] we propose to formulate functional requirements as

follows:

e An input space, that we denote with X'; this set contains all possible inputs that may
be submitted to the system, be they legitimate or illegitimate (part of an attack/

intrusion).

e Using space X, we define space H, which represents the set of sequences of elements
of X; we refer to H as the set of input histories of the specification. An element h of

H represents an input history of the form

~hn.hn_i.. hs.ho.hi by,

where hg represents the current input, h; represents the previous input, A represents

the input before that, etc.

e An output space Y, which represents all possible outputs of the system in question.
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e A relation § from H to Y that specifies for each input history A (which may include
intrusion/ attack actions) which possible outputs may be considered correct (or at
least acceptable). Note that § is not necessarily deterministic, hence there may be
more than one output for a given input history. Note also that this relation may be
different from relation R which specifies the normal functional requirements of the
system: while R represents the desired functional properties that we expect from the
system, [ represents the minimal functional properties we must have even if we are
under attack; hence while it is possible to let 5 = R, it is also possible (perhaps even

typical) to let there be a wide gap between them.

As for representing timeliness requirements, we propose the following model:

e The same input space X, and history space H.

e A relation from H to the set of positive real numbers, which represents for each input
history h the maximum response time we tolerate for this input sequence, even in the

presence of attacks. We denote this relation by w.

In the sequel, we discuss under what condition do we consider that a system S satisfies the

security requirements specified by the pair (3, w).

4.2.2 Certifying Security Properties

Given a security requirements specification of the form (f,w), we want to discuss under
what condition we consider that a program S that takes inputs in X and produces outputs
in Y can be considered to satisfy these security requirements. Space limitations preclude
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us from a detailed modeling of attacks/ intrusions, hence we will, for the purposes of this

paper, use the following notations:

e Given a legitimate input history h, we denote by v(h) an input history obtained from
h by inserting an arbitrary intrusion sequence (i.e. sequence of actions that represent

an intrusion into the system).

e Given an input history A (that may include intrusion actions) we denote by (S, h)

the response time of S on input history h.
Using these notations, we introduce the following definition.

Definition 1 A system S is said to be secure with respect to specification (B,w) if and
only if

1. For all legitimate input history h,

(h, S(h)) € B = (v(h), S(v(h))) € B.

2. For all legitimate input history h,

0(S, h) < w(h) = 0(S, v(h)) < w(h).

The first clause of this definition can be interpreted as follows: if system S behaves correctly
with respect to 8 in the absence of an intrusion, then it behaves correctly with respect to
B in the presence of an intrusion. Note the conditional nature of this clause: we are not
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saying that S has to satisfy S at all times, as that is a reliability condition; nor are we
saying that S has to satisfy [ in the presence of an intrusion, as we do not know whether
it satisfies in the absence of an intrusion (surely we do not expect the intrusion to improve
the behavior of the system —all we hope for is that it does not degrade it). Rather we are
saying that if S satisfies § in the absence of an intrusion, then it satisfies it in the presence
of an intrusion.

The second clause articulates a similar argument, pertaining to the response time: if
the response time of S was within the boundaries set by w in the absence of an intrusion,
then it remains within those bounds in the presence of an intrusion.

At the risk of overloading the refinement symbol (), we resolve to use it to represent
the property that a system P is secure (according to the definition above) with respect to
a security specification (8,w). The form of the specification, when it is explicit, resolves

the ambiguity. Hence we write

P (B,w)

to mean that P is secure with respect to (3, operationalpart).

4.2.3 Integrating Security

The definition that we propose here is focused entirely on effects rather than causes, and
gives meaning to the concept of security failure. Using this concept, we can now quantify

security by adding terms of the form

(P 3 R) x ¢(3, R)
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to the mean failure cost, producing a function that quantifies the expected failure cost,
without distinction on whether the failure is due to a design fault (reliability, safety) or a
an intrusion (security). In [20] Stevens et al. present measures of security in terms of MTTD
(D: vulnerability discovery) and MTTE (E: exploitation of discovered vulnerability). By
contrast with our (re) definition, these definitions are focused on causes (rather than effect);
in fairness, Stevens et al. propose them as intruder models rather than security models.
The difference between our effect-based measure and Stevens’ cause-based measure is that
a vulnerability may be discovered without leading to an intrusion, and an intrusion may

be launched without leading to a security failure in the sense of our definition.

5 Illustration: Dependability Queries

In the previous section we discussed how we can represent dependability claims in a unified
model; in this section, we briefly discuss how to deploy claims represented in this manner
to support queries. We will first discuss, in broad terms, some inference rule; then we show

a sample example of illustration.

5.1 Inference Rules

We envision a database in which we cumulate all the verification claims that we obtain,
from various methods, applied to various components (though typically the whole system),
against various specifications (functional specifications, security specifications, etc), reflect-

ing various properties (correctness, security, recoverability preservation, etc). Queries are
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submitted to this database and inference rules allow us to determine how to answer the

query in light of available claims. We classify inference rules into a number of categories:

e Probability Rules. This category includes all the rules that stem from probability

theory, including especially identities that pertain to conditional probability.

e Refinement Rules. This category includes all the rules that stem from the partial
order structure of the refinement ordering. For example, if R refines R’, then we

know, by transitivity of the refinement ordering, that

II(P 3 R|A) <II(P 3 R'|A).

e Lattice Rules. This category includes all the rules that stem from the lattice structure
of the refinement ordering. For Example, if R; and R, are specifications that admit

a join, we have

(P 3 (R U Rp)|A) > II(P T Ry) x II(P 3 Ry).

e (Conversion Rules. This category includes the rules that reflect relationships between
the various properties that we wish to claim (correctness, recoverability preservation,
security, etc). Examples of relations that we capture by these rules include: the fact
that if P is correct with respect to R, it is recoverability-preserving with respect to R;
the fact that the security of P is contingent upon the correctness of the components

that enforce its security policies; etc.
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5.2 A Tool Prototype

We have developed a wvery sketchy prototype of a tool that stores claims and supports
queries. In its current form, the prototype includes only probability rules, hence has very
limited capability. Nevertheless, it allows us to discuss our vision of its function and its

operation. The first screen of the prototype offers the following options:

e Record a Reliability/ Safety Claim. Clicking on this tab prepares the system for
receiving details about a dependability claim (reliability, safety, etc) with respect to

a functional specification. Given that such claims have the general form:

(P 3 R|A) = p,

the system prompts the user to fill in fields for the property (3), the reference (R),

the assumption (A), and the probability (p).

e Record a Security Claim. Clicking on this tab presents an entry screen that prompts
the user for a security specification (two fields: a functional requirement and an
operational requirement 4.2.1), a field for an assumption, and a field for a probability.
There is no need for a property field, since the property is predetermined by the choice

of tabs.

e Record Cost Information. As we recall, there are two kinds of cost information that we
want to record: failure cost, and verification cost. Depending on the user’s selection,

the system presents a spreadsheet with four columns (Property, Reference, Cost,
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Unit —for failure cost), or six columns (Property, Reference, Method, Assumption,
Cost, Unit —for verification cost). This information is stored in tabular form to

subsequently answer queries on failure costs or verification costs.

e Record Domain Knowledge. Because dependability claims are formulated using domain-
specific notations, a body of domain-specific knowledge is required to highlight rele-
vant properties and relationships, and to enable the inference mechanism to process
queries. This domain knowledge is recorded by selecting the appropriate tab on the

system.

e Queries. Clicking on the tab titled Submit Query prompts the user to select from a
list of query format. The only format that is currently implemented is titled Validity

of a Claim, and its purpose is to check the validity of a claim formulated as

II(P 3 R|A) > p,

for some property 3, reference (Specification) R, Assumption A, and probability
p. Notice that we do not have equality, but inequality; this feature can be used if
we have taken a number of dependability measures and wish to check whether they
are sufficient to allow us to claim that P refines R with a greater certainty than a

threshold probability p.

To answer a query, the system composes a theorem that has the query as goal clause, and

uses recorded dependability claims and domain knowledge as hypotheses. The theorem
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prover we have selected for this purpose is Otter [21, 11, 12].

5.3 A Sample Demo

To illustrate the operation of the tool, we take a simple example. We will present, in turn,
the dependability claims that we submit to this system, then the domain knowledge, and
finally the query; this example is totally contrived and intends only to illustrate what we
mean by composing diverse dependability claims. Also, even though the model that we
envision has inference capabilities that are based on many types of rules (probabilistic iden-
tities, refinement rules, lattice identities, relations between various refinement properties,
etc), in this demo we only deploy probabilistic rules.

For the purposes of this example, we summarily introduce the following notations,

pertaining to a fictitious flight control system:

e Specifications. We consider a specification, which we call nostall, which represents the
flight envelope of the aircraft that precludes stalling®. We also (naively) assume that
this requirement can be decomposed into two sub-requirements, whose specifications,
Safepitch and Safepower, represent requirements for safe pitch angles and safe power

values.

o Assumptions. We assume (artificially) that the claims we make about refining spec-

ifications Safepitch and Safepower are contingent upon a combination of conditions

Zstalling is the condition that arises when a combination of low power and/or low speed and/or high
pitch cause the aircraft to to have less lift than weight and to nose-dive and fall.
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that involve two predicates: elevator, which represents the property that some mod-
ule that interprets elevator control signals is correct; and throttle, which represents

the property that some module that interprets throttle control signals is correct.

Using these notations, we illustrate the deployment of the tool by briefly presenting the

dependability claims, the domain knowledge, then the query that we submit to it.

e Clatms. Using the system’s GUI screens, we enter the following claims, where P

represents the flight control system:

II(P 3 Safepitch|elevator) = 0.98.

II(P 3 Safepitch|(—elevator A throttle)) = 0.95.

II(P 3 Safepitch|(—elevator A —throttle)) = 0.93.

II(P 3 Safepower |elevator) = 0.95.

II(P 3 Safepower|—elevator) = 0.90.

e Domain Knowledge. We submit the following domain knowledge under the form of
predicates, where indep(p,q) means that events p and ¢ are independent; one could
questions whether some of the claims of independence are well-founded, but we make

these assumptions for the sake of simplicity.

indep(elevator, throttle).
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indep(P 3 Safepitch, P J Safepower).

P 1 Nostall < (P 3 Safepitch A P J Safepower).

e Query. We submit the query whether the following claim

II(P 3 Nostall|A) > 0.90,

is valid, where A is the assumption that the probability of elevator is 0.90 and the

probability of throttle is 0.80.

The system generates a theorem and submits it to Otter; then it analyzes the output file
to determine if a proof was produced. The claim is deemed to be valid.

In the long run, we may choose a different theorem prover, or a different means to infer
queries from claims than theorem provers altogether. Whereas theorem provers are ade-
quate for symbolic manipulations, what we need in our type of application is a combination
of symbolic manipulation and numeric calculations. We have resolved this matter in this
simple case by running two parallel inference threads, in a way, by declaring arithmetic

operations to be evaluable (rather than simply symbolic), and adding clauses such as

all x y z (((x+y)=2z) <-> sum(x,y,z)).
all x y z ((y=(z-x)) <-> sum(x,y,z)).

all x y z (sum(y,x,z) <-> sum(x,y,z)).

to support symbolic equation manipulations and simplifications.
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6 Conclusion

In this paper we have considered past work that attempts to compose eclectic verification
claims and decompose aggregate verification goals, and have attempted to extend it. We
have attempted to extend it by encompassing more dimensions of dependability, acknowl-
edging the probabilistic nature of claims and goals, integrating failure and verification costs,
and highlighting relationships between diverse dimensions of dependability. The result is
a set of research challenges and research avenues that we have motivated and illustrated,

but hardly explored.
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