
Software Quality Journal, 12, 231–264, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Testing Software Requirements with Z and
Statecharts Applied to an Embedded Control
System ∗,∗∗

HYE YEON KIM ∗∗∗ hyekim@ieee.org
Samsung Electronics, S/W Group, Digital Appliance R&D Ctr., 416, Meatan-3Dong, Paldal-Gu, Suwon,
Kyounggi-Do, Korea 442-742

FREDERICK T. SHELDON † sheldonft@ornl.gov
Oak Ridge National Laboratory Computational Sciences and Engineering, Oak Ridge, TN 37831-6363, USA

Abstract. Software development starts by specifying the requirements. A Software Requirements Specification
(SRS) describes what the software must do. Naturally, the SRS takes the core role as the descriptive documen-
tation at every phase of the development cycle. To avoid problems in the latter development phases and reduce
life-cycle costs, it is crucial to ensure that the specification is correct. This paper describes how to model, test and
evaluate (i.e., check, examine, and probe) a natural language (NL) SRS using two formalisms (Z and Statecharts).
These formalisms are used to determine strategies for avoiding design defects that stem from the requirements
that could ultimately lead to system failures. A case study was performed to validate the integrity of a Guid-
ance Control SRS in terms of completeness, consistency, and fault-tolerance. Based on these experiences, the
NL-specification → Z → Statechart transformations can be completed in a systematic and repeatable manner
that yield valuable insight into the overall integrity of software specifications.

Keywords: Z, Statecharts, requirements specification and validation, completeness, consistency, fault-tolerance

1. Introduction

Every system of consequence needs good requirements. Project risks increase dramat-
ically without good requirements. The better the requirements, the better people will

∗ Kluwer acknowledges that this contribution was co-authored by a contractor or affiliate of the U.S.
Government (DOE Contract E-AC05-00OR22725). As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes
only.

∗∗ The appendix provides the total system architecture (see Figure A.1) and all of the Statecharts. All
of the finalized (i.e., proved) schemas can be obtained from the www.ilogix.com university page or
from the www.csm.ornl.gov/∼sheldon publication page (see Hye Yeon Kim, Thesis [defended
May 14, 2002]). The published paper uses gray scale for the figures and charts. A full color version
with over 20 colored figures is available from Sheldon’s publication page or at Kluwer (http://
www.kluweronline.com/issn/0963-9314/).

∗∗∗ Most of this work was completed while Ms. Kim was a graduate student at The Washington State University
(WSU). She is a founding member of the Software Engineering for Dependable Systems Laboratory.

† Dr. Sheldon (865-576-1339, 865-574-6275 fax), is currently a member of the research staff at ORNL and
director of the SEDS (Software Engineering for Secure and Dependable Systems) Lab. Some of this work
was completed while he was a research staff member at DaimlerChrysler (RIC/AS) on leave from his faculty
position at WSU. http://csm.ornl.gov/∼sheldon



232 KIM AND SHELDON

understand what they are trying to build. The increasing pervasiveness of embedded
software and the fact that software requirements are increasingly complex necessitate
the use of formal and rigorous approaches in the specification and validation of re-
quirements. Requirements validation is concerned with checking the requirements
document (i.e., SRS [Software Requirements Specification]) for consistency, com-
pleteness and accuracy (Kotonya and Sommerville, 1998), and ensures the specifi-
cation represents a clear description of the system for subsequent design, implementa-
tion, refinement and evolution (and ultimately assures that the requirements meet with
stakeholders’ needs). A more through (i.e., formal and rigorous) validation approach
should ultimately reduce the risk of failures that lead to costly rework and corrective
action. In this sense we validate the SRS of an embedded real-time software—the
Viking Mars Lander Guidance Control Software (NASA, 1993). In essence, a formal
systematic and rigorous approach was employed to ensure the correctness/accuracy,
completeness/consistency of the SRS.1 We seeded faults into the executable model to
evaluate the SRS resiliency (tolerance of such faults).

The notations selected to express requirements or designs can have a very impor-
tant impact on the construction time, correctness, efficiency, and maintainability of
the target application. One desirable property for these notations is that they be pre-
cise and unambiguous, so that stakeholders and developers can agree on the required
behavior and observe the actual behavior through some means of simulations. The
notation should make it possible to state and reason about the system properties. Con-
structing the system in compliance with those specifications, given the proper/sound
notational foundation, will thus provide a higher level of confidence that the system
will correctly exhibit those important properties and behaviors. This implies that the
selected notation be formally defined and amenable to mathematical/logical manipula-
tion. Observation of behaviors is particularly convenient if the specification language
is executable. Executable specifications are also useful for clarifying and refining re-
quirements and designs (Shaw, 2001).

Formal methods (FMs) apply to a variety of methods, from light and agile to heavy
weight, used to ensure correctness. Their common characteristic is a mathematical
foundation. Our approach combines a model-based method (i.e., using set theory,
propositional and predicate logic) with a state-based diagrammatic formalism to visu-
alize and simulate the specification (including fault injection). Z (pronounced “Zed”)
is employed to prove correctness of the SRS while the behavior of executable specifi-
cations is gauged through visualization and simulation using Statecharts.

1.1. Definitions

Integrity, as applied to the SRS, investigates the questions: (1) Is the specification
correct, unambiguous, complete, and consistent? (2) Can the specification be trusted
to the extent that design and implementation can commence while minimizing the
risk of costly errors? And, (3) how can the specification be defined to prevent the
propagation of errors into the downstream activities? By evaluating these questions
in the context of the set of important requirements we claim that the reliability of the
resulting system will be improved. In theory, the heavier weight FMs, if tractable and



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 233

affordable, ensure a higher level of reliability. Naturally, we supposed that combining
the strengths of two lighter weight methods could indeed be more tractable/affordable
while at the same time ensure a higher level of requirements integrity and deployed
system reliability.

Specification completeness can be thought of as the lack of ambiguity. If system
behavior is not precisely and completely specified then the required behavior for some
activity (function), event(s) or condition(s) is omitted or is subject to multiple inter-
pretations (Leveson, 1995). The lack of ambiguity in requirements, conflicting re-
quirements and undesired nondeterminism (Czerny, 1998) and promotes a clear and
consistent compilation of requirements (i.e., consistency of the specification).

Fault-tolerance (FT) is the built-in capability of a system to provide continued cor-
rect execution in the presence of a limited number of hardware or software faults.
To achieve FT necessitates an implementation methodology and architecture that pro-
vides for (1) error detection for fault conditions, and (2) backup routines for continued
service to critical functions handle errors that arise during operation of the primary
software (Pradhan, 1996). For an SRS to support such a capability, we call for the
existence of specified requirements that necessitate such capabilities (i.e., detect errors
for all fault conditions which may not be practically achievable). Moreover, the SRS
should include requirements that encourage system robustness, software diversity, and
temporal redundancy for continuing service of critical system functions when stressed
beyond normal operating limits in the presence of failure(s).

2. Related research

Several categories of analysis methods are introduced for safety/mission critical sys-
tem software requirements. The studies presented here seek to ensure the consistency
and completeness of an SRS. Numerous studies were reviewed that use Z, among other
formal methods that gain benefit from visualization and/or dynamical assessment.

2.1. Formal methods

Formal methods are a collection of techniques, rather than a single technology, most
notably for specifying a software system. The main objective provides for eliminat-
ing inconsistency, incompleteness, and ambiguity. Because FMs have an underlying
mathematical basis, they provide a more rigorous analysis regimen over other more
ad hoc reviews. There are several classes of distinguishable formal specification tech-
niques. They are property-oriented specifications, model-oriented specifications, and
operational specifications (Gaudel and Bernot, 1999).

In the property-oriented approaches, known as constructive techniques, one declares
a name list of functions and properties. These approaches provide notations that can
depict a series of data, and use equations to describe the system behaviors rather than
building a model. These property-oriented approaches can be broken into algebraic
and axiomatic specifications (Vliet, 2000). The algebraic specification describes a
system consisting of a set of data and a number of functions over this set (Sannella
and Tarlecki, 1999). The axiomatic specification has its origin in the early work on



234 KIM AND SHELDON

program verification. It uses first-order predicate logic in pre- and post-conditions to
specify operations (Vliet, 2000).

The objective of the model-oriented approach, utilizing declarative techniques, is
to build a unique model from a choice of built-in data structures and construction
primitives provided by the specification language (Gaudel and Bernot, 1999). This ap-
proach provides a direct way for describing system behaviors. The system is specified
in terms of mathematical structures such as sets, sequences, tuples, and maps (Vliet,
2000). Model behaviors are compared against the specified functionality as a measure
of correctness (Gaudel and Bernot, 1999). Vienna Development Method (VDM), B,
and Z belong to this category.

The operational/executable specification technique is another category. It provides
sets of actions describing the sequence of the system behavior and computational
formulas that describe the performance calculation. Petri nets, process algebra, and
state/activity charts in the STATEMATE2 environment (Shaw, 2001) fall into this cat-
egory (Gaudel and Bernot, 1999).

2.2. Analysis/evaluation/assessment studies

Numerous studies have been conducted with the goal of improving integrity, identi-
fying defects, and removing ambiguities. Fabbrini et al. proposed an automatic eval-
uation method called “Quality Analyzer of Requirements Specification (QuARS)” to
evaluate quality which define testability, completeness, understandability, and con-
sistency as properties of a high quality SRS (Fabbrini et al., 2001). The QuARS
tool parses requirement sentences written in natural language (NL) to detect poten-
tial sources of errors. This is a linguistic, informal evaluation approach rather than
a FM but demonstrates how informal systematic approaches are useful for revealing
errors. This approach may be useful in many domains because QuARS’s dictionaries
are customizable.

Heitmeyer et al. used the Software Cost Reduction (SCR) tabular notation to iden-
tify inconsistencies in SRSs. They describe, using their notation/method, how a safety
violation is exposed. Typically, the enormous state space of practical software specifi-
cations render direct analysis impractical (Heitmeyer et al., 1998). They show in their
“Two Pushbutton” abstraction method how to reduce a system state space from infinite
to finite. Two redundant specifications represent the required system behavior using
both Petri net and TRIO specification logic. They abstract and analyze their SRS with
Spin and a simulator developed specifically to support the SCR method.

Heimdahl and Leveson used their Requirements State Machine Language (RSML)
to verify requirements specifications for completeness and consistency (Heimdahl and
Leveson, 1996). RSML is a state-based language suitable for the specification of reac-
tive systems. It includes several features developed by Harel for Statecharts. In RSML,
the transitions are represented as relationships between states (i.e., hierarchical, next-
state mappings). The functional framework defined in (Heimdahl and Leveson, 1996)
is used to check the model against every possible input to find conflicting requirements
(i.e., to verify whether the model is deterministic). They used a textual-representation-
based simulator developed for RSML to execute the specification. One advantage is



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 235

the ability to analyze subparts of the whole system without needing to generate a global
reachability graph.

2.3. Related Z case studies

Numerous studies have been conducted that combine Z with other FMs. Xudong He
proposed a hybrid FM called PZ-nets. PZ-nets combine Petri nets and Z (He, 2001).
PZ-nets provide a unified formal model for specifying the overall system structure,
control flow, data types and functionality. Sequential, concurrent and distributed sys-
tems are modeled using a valuable set of complementary compositional analysis tech-
niques. However, modular and hierarchical facilities are needed to effectively apply
this approach to large systems.

Hierons, Sadeghipour, and Singh present a hybrid specification language µSZ (Hi-
erons et al., 2001). The language uses Statecharts to describe the dynamical system
behavior and Z to describe the data and their transformations. In µSZ, Statecharts de-
fine sequencing while Z is used to define the data and operations. They abstract data
from the Z specifications to produce an Extended Finite State Machine (EFSM) rep-
resented with Statecharts. EFSM features can also be utilized for test case generation.
These features automate setting up the initial state and checking the final state for each
test. The dynamic system behaviors specified in Statecharts are checked using these
features.

Bussow and Weber present a mixed method consisting of Z and Statecharts (Bussow
and Weber, 1996). Each method is applied to a separate part of the system. Z is used
to define the data structures and transformations. Statecharts are used to represent the
overall system and reactive behavior. The Z notations are type checked with the ESZ
type-checker but the Statecharts semantics are not fully formalized. Several other case
studies utilize Z for defining data while Statecharts are used as a behavioral description
method (Grieskamp et al., 1998; Damm et al., 1995; Bussow et al., 1998).

Castello developed a framework for the automatic generation of Statecharts layouts
from a database that contains information abstracted from an SRS (Castello, 2000).
The framework centerpiece is the “statecharts layout” tool. The tool’s output is then
transformed into Z schemas. Data is abstracted from the SRS to generate a database
that provides the basis from which to automatically generate the statecharts layout.
Statecharts are translated one-by-one into Z schemas to validate the correctness. The
Z schemas are exact replicas of the Statecharts (i.e., the Z schema is the text version
of the Statechart). Both the method and the criteria for the SRS abstraction are not
explained (Castello, 2000).

2.4. Contribution from this study

The Statecharts we developed are derived from the Z specification which is in turn de-
rived from the natural language based (NL-based) SRS. Moreover, components of the
SRS (i.e., functions described within subsections of the various chapters) are translated
completely into Z and then completely into State/Activity charts.3 The Z specifica-
tion is type checked and proved using Z/EVES4 with reduction/refinement procedures



236 KIM AND SHELDON

prior to the second translation phase (i.e., into Statecharts). Furthermore, many Z
specifications/schemas are expressed in a form that makes them amenable to symbolic
evaluation. If an operation defines the outputs and final state variables as functions
of the inputs and initial state variables, then it can be symbolically evaluated. In such
cases, Z/EVES is used to investigate the results of a sequence of operations, by defin-
ing a “test case” schema as, for example, a composition of individual operations. The
Z/EVES prover combines automatic strategies and detailed user steps, allowing for a
collaborative effort in completing a proof. Z/EVES can look after mundane details
such as side-conditions on proof steps and trivial subgoals, leaving the user free to fo-
cus on the main line of argument of a proof. Z/EVES offers some powerful automatic
commands for proving theorems (e.g., prove, or reduce). However, these commands
will only succeed in proving easy theorems, and then only when the way has been pre-
pared. For example, when a name is defined by an abbreviation definition, axiomatic
box, or generic box, it may be necessary for some simple theorems to be stated before
the automatic steps can succeed.

In the second phase, the State/Activity charts are tested to determine consistency
and completeness using simulations and model checking. The transformed SRS is
evaluated for fault-tolerance by injecting faults into the Statecharts model. Details of
the tests and fault injections are further described in Sections 3 and 4.

Z and Statecharts have different kinds of precision for revealing inherent SRS
flaws. Generally, Z is better suited for defining data types while Statecharts are best
at describing the dynamic behavior (i.e., state transitions) (Grieskamp et al., 1998;
Damm et al., 1995; Bussow et al., 1998) by giving a state-based visualization. When
one uses conjoined methods as in other case studies, the consistency between the
joined methods is difficult to verify. Instead, we abstracted the SRS into Z schemas
(method one) and then from Z to Statecharts (method 2). In this way a higher confi-
dence in their consistency is achieved. For example, the consistency of Z is verifiable
using type-checking and Z/EVES prover. The consistency and completeness of the
Statecharts model are verifiable using the model checker and simulations. Refinement
between these two different formalisms gives an in-depth understanding of require-
ments, and reveals different SRS flaws that may exist. Focusing these techniques on
the most critical functions initially, as described by the SRS, enhanced the usefulness
of this approach.

3. Applied methods

As described above, a two-step process using Z/Statecharts is employed. First, the
NL-based SRS is transformed using Z. Z is used because it provides a concrete way to
transform the requirements into state-based models using schematic structuring facili-
ties. The transformation elucidates assumptions and provides mechanisms for refining
specifications by clarifying data and functional definitions. This compositional process
helped to clarify ambiguities. For example, an ambiguity associated with the Altitude
Radar Counter was uncovered during schema construction.

The variable AR_COUNTER is specified in two different SRS sections as described
here in Table 1. The Processing Unit describes the AR_COUNTER modification



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 237

Table 1. NL-based specification for AR_COUNTER (NASA, 1993)

Processing unit Data dictionary

A digital counter (AR_COUNTER) is started as the
radar pulse is transmitted. The counter increments
AR_FREQUENCY times per second. If an echo is
received, the lower order fifteen bits of AR_COUNTER
contain the pulse count, and the sign bit will contain the
value zero. If an echo is not received, AR_COUNTER
will contain sixteen one bits.

NAME: AR_COUNTER
DESCRIPTION: counter containing elapsed time
since transmission of radar pulse
USED IN: ARSP
UNITS: Cycles
RANGE: [−1, 215 − 1]
DATA TYPE: Integer∗2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

rules and the value ranges. One concludes from the first two sentences that the
AR_COUNTER value increases after the radar pulse is transmitted. However, this
indicates that the AR_COUNTER value is a positive number when the radar pulse is
transmitted irrespective of whether an echo has arrived or not. These conclusions con-
flict with the last sentence, which states that the AR_COUNTER will contain sixteen,
one bits representing a negative one (−1) as found in the data dictionary definition.

Second, the Schemas are manually transformed into State/Activity charts and sym-
bolically executed to assess the model’s behavior based on the specified mission pro-
file. Developing State/Activity charts from the Z schema is not a direct/mechanical
transformation process and requires an in-depth knowledge of Z. One can specify a
countably infinite number of system states using Z. To develop Statecharts from the Z
specification, one must refine the (countably) infinite number down to a finite number
to enable simulations be performed to ensure no nondeterministic state/activity transi-
tions (i.e., inconsistencies) exist. After checking for inconsistencies, in a second step,
all data and transition-conditions are specified (i.e., added in). Simulations are per-
formed again to determine if any new inconsistencies have been added. In this second
step, some function/data items improperly defined in Z were discovered. These items
agreed in ranges and types in both Z and Statecharts; however, they generated incor-
rect output during the simulations. This (kind of) information is then carried back to
refine the Z schemas.

In a third step, after the simulation/refinement process is complete, faults are in-
jected into the State/Activity charts. Changing state variable values while running a
simulation accomplishes this precisely. The output from the simulation using injected
faults is compared with the expected output. The expected output values are obtained
based on the formulae given in the SRS. Using fault-injection enables one to evaluate
the system’s ability to cope with unexpected system failures.

3.1. Z

Z is classified as a model-based specification language equipped with an underlying
theory that enables nondeterminism to be removed mechanically from abstract formu-
lations to result in more concrete specifications. In combination with natural language,
it can be used to produce a formal specification (Woodcock and Davies, 1996).



238 KIM AND SHELDON

Figure 1. Forms of an axiom and a schema.

Axioms are a common way of defining global objects in Z. There are two parts: a
declaration and a predicate as shown in Figure 1. The predicate constrains the objects
introduced in the declaration. Schemas model system states and are the main struc-
turing mechanism used to create patterns, objects, and operations. A schema consists
of two parts (Figure 1): a declaration of variables, and a predicate constraining their
values. The name of a schema is optional; however, for compositional purpose, it is
convenient to give a name that can be referred to by other schemas. These facilities
are useful and essential in clarifying ambiguities and solidifying one’s understanding
of the requirements.

3.2. Statecharts

Statecharts constitute a state-based formal diagrammatic language that provide a vi-
sual formalism for describing states and transitions in a modular fashion, enabling
cluster orthogonality (i.e., concurrency) and refinement, and supporting the capability
to move between different levels of abstraction. The kernel of the approach is the ex-
tension of conventional state diagrams by AND/OR decomposition of states together
with inter-level transitions, and a broadcast mechanism for communication between
concurrent components. The two essential ideas enabling this extension are the provi-
sion for depth (level) of abstraction and the notation of orthogonality. In other words,
Statecharts = State-diagrams + depth + orthogonality + broadcast-communication
(Harel, 1987).

Statecharts provide a way to specify complex reactive systems both in terms of how
objects communicate and collaborate and how they conduct their own internal behav-
ior. Together, Activity charts and Statecharts are used to describe the system func-
tional building blocks, activities, and the data that flows between them. These lan-
guages are highly diagrammatic in nature, constituting full-fledged and fully-matured
visual formalisms, complete with rigorous semantics providing an intuitive and con-
crete representation for inspecting and checking for conflicts (Harel and Politi, 1998).
The State/Activity charts are used to specify conceptual system models for symbolic
simulation. Using these facilities, assumptions were verified, faults were injected, and
hidden errors were identified that represent specification inconsistencies and/or incom-
pleteness.

A GCS project was created within the Statemate environment. Graphical editors
were used to create State/Activity charts. Once the graphical forms are characterized,
state transition conditions and data items are defined within the “data dictionary” of the
project. The Activity chart and Statecharts reflect all variables/conditions defined in
the Z formulation. During simulation, we observed the sequence of state changes that
occur to validate the system against its specified structure (based on Schema declara-
tions) and constraints (based on Schema predicates). Initial (and current) values and



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 239

conditions are changed while rerunning and/or resuming the simulation in the process
of ensuring consistency and completeness against the Statecharts specification.

3.3. Specification tests

The Statecharts model is examined in two different ways. First, the State/Activity
charts are tested as finite state machines (ensuring state transition conditions and ac-
tivity triggers are deterministic). Next, their functionality is tested. The actual outputs
(values generated by the State/Activity charts simulations) are compared with the ex-
pected output.

3.3.1. Finite state machine approach. This approach identifies absorbing (i.e.,
failure) States/Activities as well as nondeterministic State/Activity transitions. Bog-
danov and Holcombe have discussed how to test Statecharts for an aircraft control
system (Bogdanov and Holcombe, 2001) by examining the underlying finite state ma-
chine(s). We extend their method to evaluate if the Statecharts are behaviorally equiv-
alent to the SRS. In other words, every activity and state transition is exercised as
described in the SRS.

3.3.2. Data item approach. In the data item approach, the state/activity charts are
treated like a software program (i.e., black-box testing). Test cases are generated to
evaluate if the Statecharts model produces the correct data outputs. Input and expected
output values are determined based on the information from the data dictionary and
consistent with the SRS/Z schemas. This test assures that there are no inconsistent or
unspecified data driven operations.

3.4. Fault injection

Fault injection is used to observe how the software system behaves under experimen-
tally controlled anomalous circumstances. Voas et al. claim that system anomalies are
caused by either faulty code or corrupted input, or some combination of both (Voas
et al., 1997). Their approach injects faulty code into the software and then observes
the software behavior. Conversely, we injected faults (i.e., by altering the correct val-
ues of system variables) into an executable model of the SRS while it is being run (i.e.,
at various stages of execution).

After injecting faults into the model, we observe the behavior to see if there are
any incorrect state transitions and/or outputs. The choice of test cases is based on
a functional analysis of the submodules. Submodules are evaluated to determine if
they could cause a critical failure. Fault injection is not performed on non-critical
submodules. In this way, the SRS is evaluated for fault-tolerance using a criticality
analysis and priority basis.



240 KIM AND SHELDON

4. Application example

In this section, an example is presented to explain how we applied the methods de-
scribed above (Sheldon et al., 2001; Sheldon and Kim, 2002). This section shows one
small part (i.e., ARSP submodule) of the larger NL-based GCS SRS that was trans-
formed.

The selected Altitude Radar Sensor Processing (ARSP) submodule specification
shows inputs, outputs, and subsystem processing descriptions. The SRS provides a
data dictionary with variable definitions, type, and units, and a brief description of
variables and functions. This module specification was abstracted into Z, preserving
the variable names, operations (i.e., functionality), dependency and scope. Figure 2
provides an example using the FRAME_COUNTER input variable that illustrate the
complete translation from the SRS to Z and Statecharts. The top box in Figure 2
represents the SRS. The box in the middle of the Figure 2 represents the Z Speci-
fication while the bottom box shows a part of the Statecharts model. In the SRS,
the FRAME_COUNTER is defined as an integer with range [1, 231 − 1]. In Z, the
FRAME_COUNTER is declared as a set of natural numbers in the declaration part, and
the range of the variable is represented in the predicate part (lower half of the schema).
The Statecharts representation of the FRAME_COUNTER variable is presented with the
direction of data transfer from EXTERNAL into the ARSP Module. Its type and value
range are defined in the Statemate data dictionary.

In translating from the SRS to Z, four different ambiguous requirements were iden-
tified. The first ambiguity committed leaves the rotational direction (i.e., left/right
array shifting) undefined as it only indicates “rotate.” Second, an undefined third or-
der polynomial was revealed used to estimate the AR_ALTITUDE value. The third
ambiguity concerns the use of the AR_COUNTER variable for two different distinct
purposes, which imply that it has two different types. Finally, there is uncertainty re-
garding the scope of the AR_COUNTER variable and this brings into question which
module should modify this variable.

Given these various issues, two scenarios were considered. The first scenario as-
sumes the AR_COUNTER is updated within the ARSP module while the second sce-
nario assumes that the AR_COUNTER is updated outside of the module. Both scenar-
ios were constructed separately and compared to understand how Z could be useful in
clarifying ambiguity and avoiding conflicts.

In this first scenario (Scenario One) to properly update AR_COUNTER within the
ARSP, the two different purposes of the variable should be separated. Accordingly,
the Z specification of the ARSP was defined to account for two separate variables
(AR_COUNTER and Echo). This ensures that the AR_COUNTER represent only the
pulse counter while Echo represent whether the radar echo pulse is received on time.
The Z specification is consistent with the SRS as long as the newly introduced Echo
variable does not cause a side effect. The Echo is treated as an additional ARSP input
and in turn requires the specification to be revised to satisfy the data decoupling prin-
ciple (Sommerville, 2000). The Scenario One interpretation is therefore inconsistent
with the SRS.

Conversely, in Scenario Two (details described in Section 4.1) no additional vari-
ables were defined. Only the variables defined in the SRS were modeled (as well as



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 241

Figure 2. Translation example from NL-based to Statecharts.

covering all of the required ARSP behaviors). We considered this Z formulation to be
complete and consistent with that of the SRS. The Statecharts were developed based
on Scenario Two.



242 KIM AND SHELDON

4.1. Z specification

Scenario Two is described here. This scenario assumes that the AR_COUNTER value
is updated outside of the ARSP module (i.e., ready for immediate use). When the
AR_COUNTER value is −1 this indicates that the echo of the radar pulse has not yet
been received. If the AR_COUNTER value is a positive integer, this means that the
echo of the radar pulse arrived at the time indicated by the value of the counter.

The ARSP_RESOURCE schema (Figure 3) defines the ARSP module input and
output variables. The FRAME_COUNTER? (Signature [Sig] ①) is an input variable
giving the present frame number and its type is natural number. AR_FREQUENCY?
(Sig②) represents the rate at which the AR_COUNTER? is incremented and its type
is real. The AR_COUNTER? (Sig③) is an input variable that is used to determine the
AR_ALTITUDE value and its type is integer. The K_ALT_1, K_ALT_2, K_ALT_3,
K_ALT_4, and K_ALT_NEW (Sig④) variables are defined as sets of binary elements.
The K_ALT value is updated in the ARSP to be used in the Guidance Processing
(GP) module to determine the correction term value of GP_ALTITUDE variable. The
AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,
and AR_ALTITUDE_NEW (Sig⑤) are defined as a set of real numbers to represent
the altitude determined by the altimeter radar. AR_STATUS_1, AR_STATUS_2,
AR_STATUS_3, AR_STATUS_4, and AR_STATUS_NEW (Sig⑥) are defined as bi-
nary values that represent the health status for various elements of the altimeter radar.
The AR_STATUS, AR_ALTITUDE, and K_ALT (Sigs⑦–⑨) arrays hold the previous
4 values and the current value of their elements respectively.

These variables were defined as a 5-element array in the SRS. Z does not have a spe-
cific array construct so these variables are designed as 5-element Cartesian products.

Figure 3. ARSP_RESOURCE schema.



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 243

The array can also be represented as a 5-element sequence. The Cartesian product
method was chosen because this composition assumes that any element can be ac-
cessed directly without having to search though the sequence. The predicates ➊, ➋,
and ➌ represent the variable ranges. The predicate ➍ restricts the values for the sets
in the Signature ⑤.

The ARSP schema (Figure 4) is the main functional schema of the ARSP mod-
ule. The ARSP_RESOURCE schema is imported (and is modified) in the Sig①.
The Altitude_Polynomial function (Sig②) obtains the AR_ALTITUDE as in-
put and estimates the current altitude by fitting a third-order polynomial to the previ-
ous value of the AR_ALTITUDE. AR_STATUS_Update (Sig③), K_ALT_Update
(Sig④), and AR_ALTITUDE_Update (Sig⑤) update the AR_STATUS, K_ALT,
and AR_ALTITUDE array with their _NEW values, respectively. The expression
“FRAME_COUNTER? mod 2” is used on 7 occasions in the predicates to determine
if the FRAME_COUNTER? is odd or even.

Predicate ➊ requires that the current AR_ALTITUDE, AR_STATUS, and K_ALT
element values be the same as the predecessors when FRAME_COUNTER? is even.
Predicate ➋ constraints the AR_ALTITUDE update. The update takes the current value

Figure 4. ARSP schema.



244 KIM AND SHELDON

when FRAME_COUNTER? is odd and AR_COUNTER? is greater than or equal to zero.
Predicate ➌ states that the AR_ALTITUDE value is updated (i.e., estimated) by the
Altitude_Polynomial function. This is done when FRAME_COUNTER? is odd,
AR_COUNTER? is −1, and all the AR_STATUS elements are healthy.

Predicate ➍ requires that the current value in AR_ALTITUDE be the same as the
previous values when FRAME_COUNTER? is odd, AR_COUNTER? is −1 and any
of the elements in AR_STATUS are not healthy. Predicate ➎ requires that the up-
dates to AR_STATUS and K_ALT occur when FRAME_COUNTER? is odd and the
AR_COUNTER? is −1. Predicate ➏ quires that the updates to AR_STATUS and
K_ALT occur when FRAME_COUNTER? is odd, the AR_COUNTER? is −1, and all
of the AR_STATUS elements are healthy. Predicate ➐ requires that the updates to
AR_STATUS and K_ALT occur when FRAME_COUNTER? is odd, AR_COUNTER?
is −1, and any of the elements in AR_STATUS is not healthy.

4.2. Statecharts

The state/activity charts, derived from the Z specification are now described. Our
intention here is to provide a straightforward discourse that precisely identifies the
Z → Statechart transformations and convinces the reader that such transformations
are systematic and repeatable. We do not provide any explicit guidelines or rules here,
which must therefore be inferred from the given example. It is important to understand
that the transformations are heavily dependent on human skill.

The ARSP Activity chart (Figure 5) shows the data flow between the data stores
(dotted line boxes) and the ARSP module. The data flow directions reflect precisely
what is specified in the SRS data dictionary. The “@INIT” control state in the ARSP
activity chart represents the link to the INIT Statechart (Figure 6). Each activity is
allowed to have only one control state. The control state can be a superstate or an
AND/OR decomposed state.

Figure 5. ARSP Activity chart.



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 245

The INIT Statechart (Figure 6) shows the initialization of the ARSP module and a
portion of the ARSP operational schema (Figure 4). The default transition activates
the CURRENT_STATE when the ARSP activity (in the ARSP activity chart) is begun.
The transition from the CURRENT_STATE state to KEEP_PREVIOUS_VALUE state
describe predicate ➊ of Figure 4. The KEEP_PREVIOUS_VALUE state is one of the
module termination states. The termination states are marked with “>” at the end of
the state name. The transition from the CURRENT_STATE to the CALCULATION
state represent a condition where the value of FRAME_COUNTER is odd, which is
described by the statement “FRAME_COUNTER mod 2 = 1” in Figure 4.

The Altimeter Statechart (Figure 7) is represented by the “@ALTIMETER” control
activity in the ARSP activity chart (Figure 5). The ODD state is activated by the default
transition when the CALCULATION activity (in the ARSP activity chart) is begun.
The transition from the ODD state to the ESTIMATE_ALTITUDE state occurs when
the AR_COUNTER value is set to −1 and all the elements of the AR_STATUS array
are set to “healthy.” When this transition begins, the AR_STATUS and K_ALT val-
ues are updated as described by predicate ➏ of Figure 4. The 0 (zero) value of the
AR_STATUS means “healthy” which corresponds to the value given in the SRS data
dictionary (NASA, 1993).

The transition from the ODD state to the CALCULATE_ALTITUDE state begins
when the AR_COUNTER is positive, which is equivalent to predicate ➎ of Figure 4.
The transition from the ODD to the KEEP_PREVIOUS state is triggered when the
AR_COUNTER value is set to −1 and at least one of the AR_STATUS elements is
not healthy. This transition has the same meaning as predicate ➐ in Figure 4. The
transition from the ESTIMATE_ALTITUDE state to the DONE state happens when

Figure 6. INIT Statechart.



246 KIM AND SHELDON

Figure 7. ALTIMETER Statechart.

the ESTIMATION_FINISHED event occurs. This process is represented as an event
because the transaction is described as an undefined third-order polynomial estimator
in the SRS. The transaction from the CALCULATE_ALTITUDE state to the DONE
state denotes predicate ➋ (Figure 4). The transaction from the KEEP_PREVIOUS
state to the DONE state denotes the predicate ➍ (Figure 4) operation.

4.3. Specification testing

The Statechart models described here and in the appendix are checked for complete-
ness and consistency using symbolic simulation. Two specification test results (using
the approaches described in Section 3.3) are presented here.

4.3.1. Finite state machine approach. There are four possible paths for activ-
ity/state transitions in the ARSP Statecharts model. Path 1 represents the ARSP mod-
ule’s processing when the FRAME_COUNTER is even. Path 2 represents the condition
when the updated FRAME_COUNTER is an odd number, the radar echo pulse is not
yet received, and all the AR_STATUS elements’ values are healthy. Path 3 is taken
when the updated FRAME_COUNTER is an odd value, the radar echo pulse has been
received, and all the AR_STATUS elements’ values are healthy. Path 4 describes the
condition when the updated FRAME_COUNTER value is odd, the echo has not arrived,
and one or more of the AR_STATUS elements’ values are not healthy.

The simulation results in Table 2 show the order of the activities/states entered for
each path. One can conclude that the ARSP Statecharts model does not have any



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 247

Table 2. ARSP specification simulation result

Activity/State transition paths

1 2 3 4Name of chart Activity/State name

ARSP ARSP E1 E1 E1 E1
@INIT E2 E2 E2 E2
CALCULATE – E5 E5 E5
@ALTIMETER – E6 E6 E6

INIT CURRENT_STATE E3 E3 E3 E3
KEEP_PREVIOUS_VALUE> E4 – – –
CALCULATION – E4 E4 E4

ALTIMETER ODD – E7 E7 E7
ESTIMATE_ALTITUDE – E8 – –
CALCULATE_ALTITUDE – – E8 –
KEEP_PREVIOUS – – – E8
DONE> – E9 E9 E9

Ei : entered in ith order, –: not activated.

Table 3. ARSP specification test input and output

Variable Case 1 Case 2 Case 3 Case 4 Case 5

Input FRAME_COUNTER 2 2 1 1 3
AR_STATUS – – [0, 0, 0, 0, 0] – [0, 0, 1, 0, 0]
AR_COUNTER −1 19900 −1 20000 −1

Expected AR_STATUS KP KP [1, 0, 0, 0, 0] [0,−,−,−,−] [1, 0, 0, 1, 0]
output K_ALT KP KP [1, 1, 1, 1, 1] [1,−,−,−,−] [0, 1, 1, −, 1]

AR_ALTITUDE KP KP [∗,−,−,−,−] [2000, −,−,−,−] KP
Actual AR_STATUS KP KP [1, 0, 0, 0, 0] [0,−,−,−,−] [1, 0, 0, 1, 0]
output K_ALT KP KP [1, 1, 1, 1, 1] [1,−,−,−,−] [0, 1, 1, −, 1]

AR_ALTITUDE KP KP [∗,−,−,−,−] [2000, −,−,−,−] KP

–: Don’t care, KP: Keep Previous value, ∗: an estimated value.

absorbing states or activities and the module is complete indicating that the SRS is
complete (at least for the ARSP submodule).

4.3.2. Data item approach. Five test cases (Cases 1–5) are shown in Table 3 to
probe the Statecharts. They represent how the Z schemas were dynamically visualized
and evaluated. The input/output values are calculated based on the SRS equations.
The AR_FREQUENCY variable is used to determine the AR_ALTITUDE value (repre-
sented as a state transition from the “CALCULATE_ALTITUDE” state to the “DONE>”
state shown in Figure 7). The AR_FREQUENCY variable is defined as a real number
with a large range. Accordingly, AR_FREQUENCY is not used as a system state vari-
able in the Statecharts model. Instead, its value is fixed as a constant. To calculate
the expected output value of AR_ALTITUDE, the AR_FREQUENCY value is fixed at
1.5e9 for all test cases. Tables 3 and 4 show how each of the conditions was evaluated
and this should help to convince the reader that the ARSP subunit (one of six different
sensor units which make up the complete GCS platform) is significantly complex.

The values of the ARSP input/output variables are given in Table 3. The contents of
Table 4 represent the highlighted column of Table 3 in detail. In Case 1, for example,



248 KIM AND SHELDON

Table 4. Detailed testing results—Case 1 example

Case 1

Variable Before the execution Expected values After the execution

Input FRAME_COUNTER 2 2 2
AR_STATUS – – –
AR_COUNTER −1 −1 −1

Output AR_STATUS [1, 0, 0, 0, 0] [1, 1, 0, 0, 0] [1, 1, 0, 0, 0]
K_ALT [1, 1, 1, 1, 1] [1, 1, 1, 1, 1] [1, 1, 1, 1, 1]
AR_ALTITUDE [2000, −,−,−,−] [2000, 2000, −,−,−] [2000, 2000, −,−,−]

–: Don’t care.

Table 5. Detailed fault injection results—Case 1 example

Case 1

Variable Before the execution Expected values After the execution

Input FRAME_COUNTER 2 2 2
AR_STATUS – – –
AR_COUNTER −1 −1 −1

Output AR_STATUS [1, 0, 0, 0, 0] [1, 1, 0, 0, 0] [1/0,1, 0, 0, 0]
K_ALT [1, 1, 1, 1, 1] [1, 1, 1, 1, 1] [1, 1, 1, 1, 1]
AR_ALTITUDE [2000, −,−,−,−] [2000, 2000, −,−,−] [*, 2000, −,−,−]

–: Don’t care, ∗: an estimated value.

input variables for the ARSP submodule are FRAME_COUNTER, AR_STATUS, and
AR_COUNTER and their values are 2, “Don’t care”, and −1. “Don’t care” means that
the AR_STATUS variable can take any value in its range. The output variables of
the ARSP submodule are AR_STATUS, K_ALT, and AR_ALTITUDE. The expected
values of each of the output variables depend on the module inputs and their value
before the execution. The expected values of the output variables are determined prior
to the simulation. The “after execution” values (shown in Table 4) represent the actual
outputs from the Statecharts model simulation. The test results are correct when the
expected values and the after execution values match. The actual output values for all
the test cases match the expected output values (as shown in Table 3). Therefore, the
result of this simulation shows that the Z specification was developed correctly.

4.4. Fault injection

Simulation of the specification is used for discovering hidden faults and their location.
To accomplish this, faults are injected into the model to simulate memory corruption
(i.e., expected due to the harsh environment). For example, one can alter a system
state variable (e.g., FRAME_COUNTER) at a certain state (e.g., CURRENT_STATE)
during the simulation for Case 1. Table 5 gives the fault injection results of the
FRAME_COUNTER alteration at CURRENT_STATE. The expected values of the out-
put variables are not the same as the actual values of the output due to the state variable
change (depicted as the highlighted x mark in Table 6).



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 249

Table 6. Fault injection simulation result

Altered state variable

FRAME_COUNTER AR_COUNTER AR_STATUS

Case Case Case

Fault injected State 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

CURRENT_STATE x x x x x x x x x x x x x x x
KEEP_PREVIOUS_VALUE � � � � � � � � � � � � � � �
CALCULATION � � � � � � � x x x � � x � x
ODD � � � � � � � x x x � � x � x
ESTIMATE_ALTITUDE � � � � � � � N/A � � � � N/A � �
CALCULATE_ALTITUDE � � � � � � � � x � � � � � �
KEEP_PREVIOUS � � � � � � � � � � � � � � �
DONE � � � � � � � � � � � � � � �

x: incorrect outputs, �: no defect, N/A: not applicable.

Table 6 shows 120 fault injection results. The “CURRENT_STATE” does not toler-
ate any of the injected faults. In addition, fault injection in the CALCULATION and
ODD system states produces erroneous outputs. Therefore, one can conclude that these
three system states are the most vulnerable.

The Statecharts approach has a better chance of predicting possible faults in the
system. The Z specification cannot provide a way to predict the transitions from state
to state. Three new issues arose during the fault injection process: (1) some correct
inputs produced incorrect outputs; (2) some weak points were found where faults were
hidden (e.g., errors described in Appendix C in (Sheldon and Kim, 2002)); (3) during
the execution of the model, some errors such as memory overflow were uncovered.
Finding the correct formulation is a process of refinement and validation, which was
facilitated using this approach.

4.5. Reformulated requirements

The result of this analysis revealed that it is possible to construct a complete and con-
sistent specification using this method (Z-to-Statecharts). Ambiguous statements in
the SRS were revealed during the construction of Z schemas. When a misinterpreted
specification in Z was uncovered during the execution of the Statecharts model, the
Z specification was refined based on the test results.

Based on the simulation results using fault injection, the SRS was discovered to be
incomplete. To remedy the situation, the AR_FREQUENCY value must be bounded to
prevent the AR_ALTITUDE value from exceeding its limit. Thus, one of the following
conditions should be included: 1 ≤ AR_FREQUENCY ≤ AR_COUNTER ∗ 75000, or
AR_COUNTER = −1 ∨ (0 ≤ AR_COUNTER ≤ AR_FREQUENCY/75000). In other
words, one of these two relational expressions must evaluate as true.



250 KIM AND SHELDON

5. Summary and conclusion

This paper discusses the methods and results as they relate to the ARSP (Altimeter
Radar Sensor Processing) submodule, which was part of the larger total system spec-
ification. The complete study covered additional submodules as well as the overall
structure of the GCS (i.e., other submodules were stubbed off). The submodules ana-
lyzed include the ARSP, GP (Guidance Processing), RECLP (Roll Engine Control Law
Processing), and CP (Communication Processing). The choice of these submodules
was made based on the GCS run-time schedule consisting of three major subframes:
(1) sensor processing, (2) guidance processing, and (3) control law processing. One
functional unit was chosen from each of the subframes while the CP, which runs in the
guidance-processing subframe, was chosen due to its unique functional task.

Z was used first to detect and remove ambiguity from this portion of the NL-based
GCS SRS. Next, Statecharts, Activity-charts, and Module charts were constructed to
visualize the Z description and make it executable. Using executable models, the sys-
tem behavior was assessed under normal and abnormal conditions. Faults were seeded
into the executable specification to probe system performability. Missing or incorrectly
specified requirements were found during the process. The integrity of the SRS was
assessed in this manner. This approach can help avoid the problems that result when
incorrectly specified artifacts (i.e., in this case requirements) force corrective rework.

The results showed some portions of the GCS SRS to be inconsistent, incomplete
and not completely fault-tolerant. The findings indicate that one can better understand
the implications of the system requirements using this approach (Z-Statecharts) as the
basis for their specification and analysis. The time involved generating the Z spec-
ification (considering all variables and functional specifications) is a major concern.
Naturally, the amount of time necessary for generating a formalization of a NL-based
specification will vary based on the inherent complexity of the SRS.

In the long run we envision this approach will be useful in a more general sense
as a means to avoid incompleteness and inconsistencies. Undoubtedly, the dynamic
behavioral analysis is useful in avoiding major design flaws. Refinement between
these two formalisms gives a pertinent analysis of the problem—i.e., operational errors
between states, functional defects, lack of such properties such as fault tolerance, etc.

This paper represents a significant result—it demonstrates these conjoined meth-
ods on one real system. Our intention has been to provide a simple straightforward
discourse that precisely identifies the NL-specification → Z → Statechart transfor-
mations in such a way that shows how these transformations are systematic and repeat-
able. Explicit or generalizable guidelines/rules are not provided, which therefore must
be inferred from the given example. The transformations are heavily dependent on
human skill. Consequently, we hope to continue our work with the goal of producing
a systematic generalizable approach that can be readily applied to other problems (i.e.,
a variety of systems) and demonstrate the process empirically.

Acknowledgment

We would like to especially thank Kelly Hayhurst at NASA LaRC Formal Methods
Group for providing the actual NL-based Viking Mars Lander GCS specification (dur-



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 251

ing Dr. Sheldon’s Post-doc), Kshamta Jerath (Ph.D. student now at Microsoft) for
her valuable through critiques, Markus Degen and Stefan Greiner (DaimlerChrysler
System Safety [RIC/AS Stuttgart]) for reinforcing the need for good specifications es-
pecially in critical applications (as well as funding), and the Software Quality Journal
reviewers for their valuable critiques and encouragement.

Appendix

The Guidance and Control Software (GCS) principally provides control during the ter-
minal phase of descent for the Viking Mars Lander. The Lander has three accelerome-
ters, one Doppler radar with four beams, one altimeter radar, two temperature sensors,
three gyroscopes, three pairs of roll engines, three axial thrust engines, one parachute
release actuator, and a touch down sensor. After initialization, the GCS starts sensing
the vehicle altitude. When a predefined engine ignition altitude is sensed, the GCS
begins guidance and control of the vehicle. The purpose of this software is to main-
tain the vehicle along a predetermined velocity-altitude contour. Descent continues
along this contour until a predefined engine shut off altitude is reached or touchdown
is sensed.

Figure A.1 shows the overall system architecture of the GCS software. The circled
parts are the subunits consisting of the partial specification for this case study. The
partial specification that was examined includes one sensor-processing unit, one actu-
ator unit, and the two core subunits of the GCS system (circled units in Figure A.1).
All other subunits are ignored in this case study except the data stores. Control and
data flows between the excerpted modules are the same as they are represented in the
Module chart (Figure A.2).

The choice of parts for this study is made based on its run-time schedule (Table A.1).
The GCS has a predetermined running time frame that consists of three subframes.
Each subframe has specific submodules to run. The partial specification in this study
consists of one submodule from each subframe and a submodule that runs every sub-
frame. ARSP (Altimeter Radar Sensor Processing) is running in the first subframe,
GP (Guidance Processing) is running in the second subframe, and RECLP (Roll En-
gine Control Law Processing) is running in the third subframe. CP (Communication
Processing) is running in every subframe. In the SRS, the CP is specified as the last
submodules to run for every subframe. The order of the submodules in the same sub-
frame is not declared except CP must run last.

The ARSP (Altimeter Radar Sensor Processing) is a sensor-processing submodule
of the GCS. This functional unit reads the altimeter counter provided by the altimeter
radar sensor and converts the data into a measure of distance to the surface of Mars.
The CP is a submodule that converts the sensed data into a data packet appropriate
for radio transformation. The data packets are relayed back to the orbiting platform
for relay to Earth. The GP (Guidance Processing) is the core-processing submodule
of the GCS. This module gathers the information from the entire sensor processing
subunits and the previous computational results. Then, it manages the vehicle’s state
during the descent by controlling the actuators. The RECLP (Roll Engine Control
Law Processing) is an actuator unit that computes the value settings for the three roll



252 KIM AND SHELDON

Figure A.1. GCS system structure.

engines. The roll engine value settings are calculated to fix the difference between the
vehicle’s measured values during operation and the designated trajectory values.

The module chart presented in Figure A.3 is the correct version of the module chart.
The difference between two figures is because the NL-based SRS provides incomplete
data transition directions with Figure A.1.



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 253

Figure A.2. A module chart of GCS excerpt.

Table A.1. Functional unit schedule (NASA,
1993)

Scheduling

Sensor Processing Subframe (Subframe 1)

ARSP 1
ASP 1
GSP 1
TDLRSP 1
TDSP 5
TSP 2
CP 1

Guidance Processing Subframe (Subframe 2)

GP 1
CP 1

Control Law Processing Subframe (Subframe 3)

AECLP 1
CRCP 5
RECLP 1
CP 1



254 KIM AND SHELDON

Figure A.3. Actual module chart of the GCS (as determined from analysis).

In a GCS project created in the Statemate, the GCS activity chart is developed.
Figure A.4 shows the GCS activity chart with four data stores, which contains the data
definitions. The GCS activity represents the GCS schemas. The data stores contain
the same variable definitions of Z schemas. The @GCS_CONTROL state represents
a link with the GCS_CONTROL statechart. The @ARSP, @CP, @GP, and @RECLP
activities are linked to their own activity charts. Every activity requires having only
one control state.

The GCS_CONTROL statechart (Figure A.5) represents the GCS_CONTROL
schemas. The default transition represents the moment START_SIGNAL? input
for the GCS schema is set to 1. The INITIALIZATION state is equivalent to the
GCS_INIT schema. @SUBFRAME1, @SUBFRAME2, and @SUBFRAME3 states
represent the local state variables defined in the GCS_RESOURCE schema. Every
subframe has its own state charts (Figures A.6–A.8) linked to the superstate.

Figures A.9 and 5 are the equivalent activity charts. Figure A.10 represents the
Z specification of the ARSP submodule shown in Figure 7. The Statecharts model
in Section 4 has the ARSP activity, the CALCULATE sub-activity and two control
states. The ARSP submodule Statecharts model in this section consists of one activity
and one control state based on the Z specification presented in chapter 5 of the thesis
(accessible by downloading from http://www.eecs.wsu.edu/seds/hkim_
thesis_final_ilogix.pdf).



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 255

Figure A.4. GCS Activity chart.

Figure A.5. GCS_CONTROL Statechart.



256 KIM AND SHELDON

Figure A.6. SUBFRAME1 Statechart.

Figure A.7. SUBFRAME2 Statechart.

This ARSP model has 4 distinctive paths. The simulation results of the state transi-
tion path are as presented in Table A.2.

The test results using the data item approach (DIA) are the same as shown in the
Section 4.3.2. The fault injection results are described in Table A.3.



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 257

Figure A.8. SUBFRAME3 Statechart.

Figure A.9. ARSP Activity chart.

The CP submodule is too inconsistent to develop complete Statecharts model.
Moreover, the bit wise transactions needed to build the packet mask are too compli-
cated to transform into Statecharts (Covered by CP_PREP_MASK1-3 and CP_MASK
schemas in Z). Therefore, the CP model (Figures A.11 and A.12) is built with events
that represent the functional sequences that CP is required to follow. The CP has
only one state transaction path, which is tested using the finite state machine approach



258 KIM AND SHELDON

Figure A.10. ARSP_CONTROL Statechart.

Table A.2. ARSP specification simulation results

Activity/State transition paths

Name of chart Activity/State name 1 2 3 4

ARSP ARSP E1 E1 E1 E1
@ARSP_CONTROL E2 E2 E2 E2

ARSP_CONTROL ARSP_START E3 E3 E3 E3
KEEP_PREVIOUS_VALUE E4 – – –
ESTIMATE_ALTITUDE – E4 – –
CALCULATE_ALTITUDE – – E4 –
KEEP_PREVIOUS – – – E4
DONE E5 E5 E5 E5

Ei : entered in ith order, –: not activated.

(FSMA). The fault injection and data item approach (DIA) test are not performed for
this submodule because CP model did not have enough data processing functionality
and CP is not a submodule that can create catastrophic failure for the system.

The GP submodule has multiple functions to perform. All the sequences of func-
tions are transformed into Statecharts model (Figures A.13 and A.14). However, it was
impossible to test all the data input and output with realistic variable values because
the initial values of all the variables are not clearly given. Therefore, FSMA test was



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 259

Table A.3. Fault injection simulation result

Altered state variable

FRAME_COUNTER AR_COUNTER AR_STATUS

Case Case Case

Fault injected state 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ARSP_START x x x x x x x x x x x x x x x
KEEP_PREVIOUS_VALUE � � � � � � � � � � � � � � �
ESTIMATE_ALTITUDE � � � � � � � N/A � � � � N/A � �
CALCULATE_ALTITUDE � � � � � � � � x � � � � � �
KEEP_PREVIOUS � � � � � � � � � � � � � � �
DONE � � � � � � � � � � � � � � �

Figure A.11. CP Activity chart.

performed on the entire GP model while the DIA test is performed only on some parts
of GP model that use only the variables processed inside of the GCS excerpt.

The FSMA and DIA test and Fault injections are performed on the RECLP sub-
module (Figures A.15 and A.16). The test results are as presented in Tables A.4 and
A.6–A.9. Table A.5 shows the system constants for the simulation.



260 KIM AND SHELDON

Figure A.12. CP_CONTROL Statechart.

Figure A.13. GP Activity chart.



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 261

Figure A.14. GP_CONTROL Statechart.

Figure A.15. RECLP Activity chart.



262 KIM AND SHELDON

Figure A.16. RECLP_CONTROL Statechart.

Table A.4. RECLP submodule simulation result

Activity/State transition paths

Name of chart Activity/State name 1 2 3 4 5 6 7 8

RECLP RECLP E1 E1 E1 E1 E1 E1 E1 E1
@RECLP_CONTROL E2 E2 E2 E2 E2 E2 E2 E2

RECLP_CONTROL RECLP_START E3 E3 E3 E3 E3 E3 E3 E3
@RE_CMD_UPDATE – E4 E4 E4 E4 E4 E4 E4

RE_CMD_UPDATE SET_RE_CMD – E5 E5 E5 E5 E5 E5 E5
RE_CMD1 – E6 – – – – – –
RE_CMD2 – – E6 – – – – –
RE_CMD3 – – – E6 – – – –
RE_CMD4 – – – – E6 – – –
RE_CMD5 – – – – – E6 – –
RE_CMD6 – – – – – – E6 –
RE_CMD7 – – – – – – – E6

Table A.5. Variable values (constants) used
for simulation

Variable name Values

DELTA_T 0.005
P1 0.005
P2 0.010
P3 0.015
P4 0.020

THETA1 0.010
THETA2 0.020



TESTING SOFTWARE REQUIREMENTS WITH Z AND STATECHARTS 263

Table A.6. RECLP submodule specification test input and output (1)

Variable Case 1 Case 2 Case 3 Case 4

Input G_ROTATION 1 0.016 −0.016 0.01 −0.01
THETA −0.00500 0.005 −0.005 0.01

Output THETA −0.00492 0.00492 −0.00495 0.00995
RE_CMD 1 1 1 1
RE_STATUS 0 0 0 0

Table A.7. RECLP submodule specification test input and output (2)

Variable Case 5 Case 6 Case 7 Case 8

Input G_ROTATION 1 0.001 −0.001 −0.001 0.001
THETA 0.005 −0.005 −0.015 0.015

Output THETA 0.005005 −0.005005 −0.015005 0.015005
RE_CMD 1 1 2 3
RE_STATUS 0 0 0 0

Table A.8. RECLP submodule specification test input and output (3)

Variable Case 9 Case 10 Case 11 Case 12

Input G_ROTATION 1 −0.006 0.006 −0.025 −0.015
THETA −0.01 0.01 0 −0.001

Output THETA −0.01003 0.01003 −0.000125 −0.001075
RE_CMD 4 5 6 6
RE_STATUS 0 0 0 0

Table A.9. RECLP submodule specification test input and output (4)

Variable Case 13 Case 14 Case 15 Case 16

Input G_ROTATION 1 0.01 0.025 0.015 −0.01
THETA −0.021 0 0.01 0.025

Output THETA −0.02095 0.000125 0.010075 0.02495
RE_CMD 6 7 7 7
RE_STATUS 0 0 0 0

Notes

1. The correctness of an SRS cannot be proven in the strict sense used in verification. In the formal definition,
a software artifact is correct with respect to another artifact if a well defined relationship exists between
the artifacts. The obvious question arises, what can an SRS be proven correct against? We use the terms
correctness and accuracy to convey the more general meaning against user/system/mission needs. The system
must complete the mission and therefore, the software must continue to function reliably. Our analyses seek
to ensure that the SRS unequivocally support the successful mission completion.

2. STATEMATE Magnum—product of i-Logix, was used to conduct the research for this thesis.
3. Completely in this context means that each and every variable and function associated with that paticular

section of the NL-based SRS has been represented/denoted using the respective formalism.
4. Z/EVES is available from ORA, Canada. It provides theorem proving, domain checking, type checking,

precondition calculation, and schema expansion for Z specifications.



264 KIM AND SHELDON

References

Bogdanov, K. and Holcombe, M. 2001. Statechart testing method for aircraft control systems, Software Testing,
Verification & Reliability 11(1): 39–54.

Bussow, R., Geisler, R., and Klar, M. 1998. Specifying safety-critical embedded systems with Statecharts and Z:
A case study, Lecture Notes in Computer Science, Vol. 1382, pp. 71–87.

Bussow, R. and Weber, M. 1996. A steam-boiler control specification with Statecharts and Z, Lecture Notes in
Computer Science, Vol. 1165, pp. 109–128.

Castello, R. 2000. From Informal Specification to Formalization: an Automated Visualization Approach, PhD
dissertation in computer science, University of Texas at Dallas.

Czerny, B. 1998. Integrative Analysis of State-Based Requirements for Completeness and Consistency, PhD dis-
sertation in computer science, Michigan State University.

Damm, W., Hungar, H., Kelb, P., and Schlor, R. 1995. Statecharts—using graphical specification languages and
symbolic model checking in the verification of a production cell, Lecture Notes in Computer Science, Vol. 891,
pp. 131–149.

Fabbrini, F., Fusani, M., Gnesi S., and Lami, G. 2001. An automatic quality evaluation for natural language
requirements, 7th Int. Workshop on Req. Eng.: Foundation for SW Quality (REFSQ), www.ifi.uib.no/conf/
refsq2001/papers/p3.pdf. Accessed on Mar. 25, 2002.

Gaudel, M.-C. and Bernot, G. 1999. The role of formal specifications, IFIP WG 1.3 Book on State-of-the-Art
Report: Algebraic Foundations of Systems Specification, eds. E. Astesiano, H.-J. Kreowski, and B. Krieg-
Brückner, Chapter 1. Springer, 2002. Also see http://www.tzi.de/∼kreo/ifip-WG1.3/ifip_chapters/chapters.
html (June 1999).

Grieskamp, W., Heisel, M., and Dorr, H. 1998. Specifying embedded systems with Statecharts and Z: An agenda
for cyclic software components, Science of Computer Programming 40: 31–57.

Harel, D. 1987. Statecharts: A visual formalism for complex systems, Science of Computer Programming 8:
231–274.

Harel, D. and Politi, M. 1998. Modeling Reactive Systems with Statecharts. McGraw-Hill.
He, X. 2001. PZ nets—a formal method integrating Petri nets with Z, Information and Software Technology 43(1):

1–18.
Heimdahl, M.P.E. and Leveson, N.G. 1996. Completeness and consistency in hierarchical state-based require-

ments, IEEE Transactions on Software Engineering 22(6): 363–377.
Heitmeyer, C., Kirby, Jr., J., Labaw, B., Archer, M., and Bharadwaj, R. 1998. Using abstraction and model

checking to detect safety violations in requirements specification, IEEE Transactions on Software Engineering
24(11): 927–948.

Hierons, R.M., Sadeghipour, S., and Singh, H. 2001. Testing a system specified using Statecharts and Z, Infor-
mation and Software Technology 43: 137–149.

Kotonya, G. and Sommerville, I. 1998. Requirements Engineering: Process and Techniques. New York, Wiley.
Leveson, N. 1995. Safeware—System Safety and Computers. Reading, MA, Addison Wesley.
NASA. 1993. Software Requirements—Guidance and Control Software Development Specification Ver 2.2 with

the formal mods 1–8. NASA, Langley Research Center.
Pradhan, D. K. 1996. Fault-Tolerant Computer System Design, pp. 428–477. Prentice Hall.
Sannella, D. and Tarlecki, A. 1999. Algebraic preliminaries, IFIP WG 1.3 Book on State-of-the-Art Report: Alge-

braic Foundations of Systems Specification, eds. E. Astesiano, H.-J. Kreowski and B. Krieg-Brückner, Chap-
ter 2. Springer, 2002. Also see http://www.tzi.de/∼kreo/ifip-WG1.3/ifip_chapters/chapters.html (June 1999).

Shaw, A.C. 2001. Real-Time Systems and Software. New York, Wiley.
Sheldon, F.T. and Kim, H.Y. 2002. Validation of guidance control software requirements specification for reli-

ability and fault-tolerance. Proc. of Annual Reliability and Maintainability Symp. Seattle, WA, pp. 312–318.
IEEE.

Sheldon, F.T., Kim, H.Y., and Zhou, Z. 2001. A case study: Validation of the guidance control software re-
quirements for completeness, consistency, and fault tolerance, Proc. of IEEE 2001 Pacific Rim Intl. Symp. on
Dependable Computing, Seoul, Korea, pp. 311–318. IEEE Computer Society.

Sommerville, I. 2000. Software Engineering, 6th ed. Reading, MA, Addison-Wesley.
Vliet, H.V. 2000. Software Engineering: Principles and Practice. New York, Wiley.
Voas, J., McGraw, G., Kassab, L., and Voas, L. 1997. A crystal ball for software liability, IEEE Computer 30(6):

29–36.
Woodcock, J. and Davies, J. 1996. Using Z: Specification, Refinement, and Proof. Prentice-Hall.


