
Recoverability Preservation:Recoverability Preservation:
A Measure of Last ResortA Measure of Last Resort

Ali Mili, Frederick Sheldon, Fatma
Mili, Jules Desharnais

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Reflections on Software/Reflections on Software/
Program Fault ToleranceProgram Fault Tolerance

Commonly used techniques of fault tolerance:
 Trigger Happy. Fire off as soon as the current

state is found to be incorrect.
 Heavy Artillery. Geared (unnecessarily) towards

producing a correct state.
 Inefficient. Involve heavy overhead in terms of

space (duplicating states) and time (check-
pointing etc).

 Panic Stricken. Resort to Emergency Measures
too soon, on unnecessarily strong conditions.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Reflections on Software/Reflections on Software/
Program Fault ToleranceProgram Fault Tolerance

We advocate a more measured approach:
 Triggered only when the state is unmaskable. No

false alarms.
 Aims only to produce a maskable state.

Minimizes computation, and required data.
 Uses only forward error recovery. No time/

space overhead.
 Uses the Panic Button as a Last Resort. Only

when the state is unrecoverable.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Recoverability PreservationRecoverability Preservation

We know how to characterize maskable,
unmaskable states, recovery routines. We
need to characterize Recoverable States.

Modeling device: We make recoverability
not a property of the state but a property of
the function that produces it. We call this
property: Recoverability Preservation.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Recoverability Preservation:Recoverability Preservation:
IllustrationIllustration

A Program/ System structured as the product
of two components/ functions

P; L:F.
(P: Past; F: Future; L: Label). Expected

functions:
 P(x) = x mod 6.
 F(x) = x mod 9 + 12.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Illustration, IIIllustration, II

 If Past Function is incorrect, and computes
P1 = (x mod 6 + 18)

then states produced by P1 are not correct
but they are maskable (the excess 18 will

be canceled by taking mod 9 in function F).
 No intervention is required.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Illustration, IIIIllustration, III

 If Past Function is incorrect, and computes
P2 = (x mod 12)

 then states produced by P2 are not
maskable, but they are recoverable.

 Recovery routine: apply (mod 6) to the
current state.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Illustration, IVIllustration, IV

 If Past Function is incorrect, and computes
P3 = (x mod 3)
then states produced by P3 are not
recoverable, but they are partially
recoverable.

 Probabilistic Recovery Routine: return x
(or x+3), with 0.5 probability of success.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Illustration, VIllustration, V

 If Past Function is incorrect, and computes
P4 = (x mod 7) then states produced by P4
are not recoverable.

 No recovery is possible, for knowing (x
mod 7) does not inform us on (x mod 6).

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Intuitive AnalysisIntuitive Analysis
 Q preserves recoverability for P if µ(Q)⊆µ(P),

where µ(R)=RR^ (level sets of R).
 Interestingly: condition involves how Q partitions

its domain but does not involve what value Q
assigns to each partition.

 If Q assigns the wrong image to a partition, that
can be corrected by the recovery routine

 But if Q partitions its domain wrongly (re: mod 7
rather than mod 6) nothing can be done.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Degrees of RecoverabilityDegrees of Recoverability

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

!

P ˆ P for Original P

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

preserves recoverabilitypreserves recoverability

!

P
2

ˆ P
2
, where P

2

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

preserves partial recoverabilitypreserves partial recoverability

!

P
3

ˆ P
3
, where P

3

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

does not preserve recoverabilitydoes not preserve recoverability

!

P
4

ˆ P
4
, where P

4

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Characterizing RecoverabilityCharacterizing Recoverability
PreservationPreservation

 Characterization by µ(Q)⊆µ(P) is intuitive,
but incomplete.

 For completeness: we must involve the
specification R that the system (P; F) must
refine.

 Because R is potentially non-deterministic,
we get an extra dimension of redundancy
(unexplored in the illustrative example).

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Sufficient ConditionsSufficient Conditions

 A past function Π preserves maskability
(i.e. produces maskable states) if it refines

κ(R,F),
where κ is the left quotient operator.

 A past function Π preserves recoverability
(i.e. produces recoverable states) if it
satisfies the following conditions

!

KL " #L $L " K ˆ L %#()KL

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Left quotient of Left quotient of RR by by FF

K(R,F) F

R

s’

s.R

s’.Fs

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Specifying the RecoverySpecifying the Recovery
RoutineRoutine

 If past function Π preserves recoverability with
respect to future function F and specification R
then

r = Γ(Π, κ(R,F))
is a specification of the recovery routine, where Γ
is the right quotient and κ is the left quotient
operator.

 Any routine that refines r will map recoverable
states into maskable states.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Π

K(R,F)s

Γ(Π, K(R,F))

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Hierarchy of Correctness LevelsHierarchy of Correctness Levels

Π(S0)
Recovery unnecessary

Maskable states

Partially recoverable states
→ Probabilistic recovery

Totally recoverable states
→ Total recovery necessary & sufficient

Unrecoverable states
→ Recovery insufficient

r

pr

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Linking to Intuitive DiscussionLinking to Intuitive Discussion

 If R is regular (R=RR^R) and the following
conditions hold

RF^L ⊆ ΠL ∧ ΠΠ^ ⊆RR^
then Π preserves recoverability.

 Generalizes the condition discussed upon
inspecting the sample example.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Application: Lean fault ToleranceApplication: Lean fault Tolerance

If not maskable(s) then recovery-
measures(s);

recovery-measures(s):
If recoverable(s) then deterministic-
recovery(s)

else
If partially-recoverable(s)

then probabilistic-recovery(s)
else failure(s);

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

 Recoverability Preservation, Recoverability Preservation,
a Substitute for Correctnessa Substitute for Correctness

 Prove recoverability preservation.
 Takes steps to recover.
 Substitutes/ complements correctness

proofs.
 Using safety condition for R.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Flight Control LoopFlight Control Loop

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Characterizing Fault ModesCharacterizing Fault Modes

 Fault Tolerant Flight Control System: A
system that can recover from some types of
faults, including loss of sensors, loss of
flight surfaces, loss of control of actuators.

 When these faults arise, the system must
alter its control law and make up for fault.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Characterizing Fault ModesCharacterizing Fault Modes

 Question: Which sensor-aircraft-actuator
faults can be handled by fault tolerant FCS?

 Those for which the aggregate sensor-
aircraft-actuator preserves recoverability.

 A highly speculative answer, we
acknowledge; perhaps difficult to model.

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

Concluding RemarksConcluding Remarks

 Introduced idea of recoverability
preservation.

 Shown its use for a more measured, more
efficient approach to fault tolerance.

 Shown its application for fault modeling.
 Genesis of the idea: analyzing a fault

tolerant flight control system (tolerates
damage to flight surfaces).

Proceedings Int'l Conf. Principles of Software Engineering, Buenos Aires, Argentina, Nov. 22-27, 2004.

