
Characterizing SoftwareCharacterizing Software
Quality Assurance Methods:Quality Assurance Methods:
Impact on the Verification ofImpact on the Verification of

Learning SystemsLearning Systems

Ali Mili (NJIT) and Frederick
T. Sheldon (ORNL)

Why Deploy an Eclectic Mix ofWhy Deploy an Eclectic Mix of
Methods/ Tools/ Techniques?Methods/ Tools/ Techniques?

 Economic rationale. Law of diminishing
returns.

 Technical rationale. Each method is best
adapted for some V&V aspect.

 Pragmatic imperative. Lack of planning,
making use of available resources, tools,
skills, etc.

 Software is a moving target. Its unclear
what method will provide the best return on
investment.

MotivationMotivation
 Deploying an eclectic mix of methods is

more crucial for online learning systems
than for traditional systems.

 No single method is yet known to work (all
traditional methods are provably not
operational, all new methods admittedly ad-
hoc/ partial).

 Applications of online learning systems are
typically critical.

 Applications of online learning systems are
typically complex.

Fundamental Question AddressedFundamental Question Addressed
by Eclectic Approachby Eclectic Approach

 How to formulate verification results in a
uniform manner across distinct methods,
goals, references?

 How to add verification results established by
distinct methods to obtain an aggregate result?

 How to dispatch a complex verification result
across several methods, in such a way that
each method is delegated the task that it can
best handle?

Characterization/ClassificationCharacterization/Classification
Scheme IScheme I

 Goal: Correctness (completeness,
consistency), recoverability preservation, non-
functional property.

 Reference: Specification against which we are
verifying adequacy. possible values: expected
function, requirements specification, safety
property, test oracle, acceptance oracle, etc.

 Assumption: All verification methods are
based on implicit assumptions, and are
meaningful only contingent on these
assumptions. Static proofs assume that run-
time system is consistent with semantic
definition of proof system. Testing assumes
that run-time environment is consistent with
test environment.

Characterization/ClassificationCharacterization/Classification
Scheme IIScheme II

 Certainty. Some methods claim to establish
logical results (that hold with probability 1,
contingent upon the assumption). Other
methods produce a probabilistic/ stochastic
process.

 Method. Broad distinction between static and
dynamic; possibly others.

Characterization/ClassificationCharacterization/Classification
Scheme IIIScheme III

 Two dimensional table: Goals versus
Reference. Entries: assumption, certainty,
method.
– We can revisit several known methods and see

if we can characterize them in terms of this
classification

Graphical RepresentationGraphical Representation

 A method can have more than one characterization.
Testing a program P on test data T using oracle Ω and
finding that P runs successfully on all of T can be
interpreted in two ways:
– correctness of P with respect to T\ Ω (restriction of Ω to T,

usually a small specification, in the sense of refinement); or
– correctness of P with respect to Ω under the assumption that

T is a ''representative'' data set.
 The second interpretation makes a stronger claim, is

contingent upon a stronger assumption, hence has a
lower associated probability. Which do we choose?
…we don’t have to choose if we can add them.

Whole Greater than the SumWhole Greater than the Sum
of its Partsof its Parts……

2-D: Goals & Specifications2-D: Goals & Specifications

Specifications
Expected
function
Requirements
Specification
Safety
Property
Test Oracle
Sub-test
Oracle

Goals Correctness Other Property etc

How to use the tableHow to use the table……

 Lets consider some well known verification
methods/properties, and how do we see them
fitting into the proposed classification?

Representative Methods/PropertiesRepresentative Methods/Properties

Certification Testing
 If we submit program P to a test involving

test oracle Ω and test data T and we let Ω’
be the restriction of Ω to the test data on
which the program execution was
successful, then the certification test
establishes the correctness of the program
to the (usually very small) specification Ω’

Representative Methods/PropertiesRepresentative Methods/Properties

Certification Testing
 This conclusion is conditional on the test

environment subsuming (being as
demanding as or more demanding) than the
operating environment

 We have also established the probable
correctness of the program with respect to
specification, conditional on the test data
being representative of the overall input
domain (a doubtful proposition)

Representative Methods/PropertiesRepresentative Methods/Properties
 Static Verification. Establishes the correctness of the

program with respect to the requirements
specification, with probability one (at least in
principle), conditional on the operating environment
subsuming the semantics inherent in the verification
method.

 Reliability. Establishes the correctness of the
program with respect to the requirements
specification with some probability P (over some
period of time), which can be used to compute such
metrics as MTTF by considering factors such as
frequency of invocation.

 Safety. Safety is nothing more than correctness with
respect to a given safety property (e.g., safety critical
programs have the requirement, that no single point
of failure will cause (the control program) loss of
vehicle/stability).

 Fault Tolerance. Fault tolerance is a system’s ability
to avoid failure after faults have caused errors; it is
based on the premise that errors are detected before
failure occurs, and is possible only to the extent that
recoverability is preserved. Fault tolerance achieves
failure avoidance with probability 1, assuming that
the fault tolerance infrastructure (code for error
detection, error recovery, etc) is trustworthy/ correct.

Representative Methods/PropertiesRepresentative Methods/Properties

 Fail Safety. Fail safety provides that the program
can preserve a safe behavior even when it fails; this
requires recoverability preservation with respect to
the safety property at hand.

 Symbolic Execution. This technique establishes the
correctness of a program with respect to its expected
function, with probability one, under the same
condition as correctness verification.

Representative Methods/PropertiesRepresentative Methods/Properties

Is the Software doing
what it is supposed to do?

Software
Verification

Is the System doing what
it is supposed to do?

Requirements
Definition

System
Definition

What the System is
supposed to do?

Software Development

System Validation
Testing

System
Validation

What the software
is supposed to do?

Software
Validation

System Development

Coding &
Component

Testing

Software
Validation

Testing

Hardware Software
Integration

Integration & SW
System Testing

Software
Requirements

Generation

Software
Design

VerificationVerification

A Calculus of Verification ResultsA Calculus of Verification Results
 We can interpret each verification result as

establishing that the system under scrutiny S
satisfies some goal (that we denote with ≥) wrt
some reference R (where R is a requirements
specification) contingent upon assumption A
(where A is a predicate) with probability p(0≤p≤1),
and we write,

Prob(S ≥ R | A) = p.

 For each verification effort, we can summarize our
findings by one or more claims of this form.

UsageUsage
 Upon applying several methods, we have

cumulated a set of claims of the form:
prob(S ≥i Ri | Ai) = pi

 question: what can we claim about system
S overall? because this may be intractable
in general, we pose instead queries of the
form:
– Can we infer, from this base of facts, a claim

of the form:
Prob(S ≥ R | A) > p

for some selected goal ≥, reference R,
assumption A, and minimal probability p?

Sample Identities of this CalculusSample Identities of this Calculus
Prob(S≥ R1+R2| A) >=

Prob(S≥ R1|A) * Prob(S≥ R2 |a),
with equality if S≥R1 and S≥R2 are statistically
independent events, where R1+R2 is the join of R1
and R2 in the refinement lattice.

 if A'==> A, then Prob(S≥ R|A) >= Prob(S≥ R|A').
 If R'≥R then Prob(S≥ R|A) >= Prob(S≥ R'|A).

All of these are very simplistic, trivial identities;
we will seek tighter identities, that can be useful in
an inference.

Prospects / ConclusionsProspects / Conclusions
 Derive an algebra of verification results using

refinement logics, probability theory, etc.
 Consider an inference system that supports

queries of interest.
 Explore its application to methods of online

learning systems
– Cumulate verification results obtained from distinct

methods
– Identify redundancies and complementarily between

methods and
– Infer new verification results from existing results

