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Abstract As distributed, networked computing systems be-
come the dominant computing platform in a growing range
of applications, they increase opportunities for security vio-
lations by opening hitherto unknown vulnerabilities. Also,
as systems take on more critical functions, they increase the
stakes of security by acting as custodians of assets that have
great economic or social value. Finally, as perpetrators grow
increasingly sophisticated, they increase the threats on sys-
tem security. Combined, these premises place system secu-
rity at the forefront of engineering concerns. In this paper,
we introduce and discuss a refinement-based model for one
dimension of system security, namely survivability.

1 Introduction: motivation

The term missile gap was coined in the late 1950s when the
Soviets launched Sputnik, to refer to the wide gap between
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the US’s national capabilities in space and its national aspi-
rations. The term software gap was coined in the mid to late
1980s, at the height of the IT revolution, when it was clear that
software technology was not keeping up with the demands of
the world economy as it was growing increasingly dependent
on the safe, reliable operation of software systems. We coin
the term security gap to refer to the vast technological gap that
exists today between available capabilities and the demands
imposed by recent global developments. We submit that the
security gap matches or exceeds the earlier gaps in terms of
what is at stake, and in terms of its technical challenge.

In this section we discuss in turn: the need for modeling
security, then the need for modeling security as an attribute of
dependability, and finally the adequacy of a refinement-based
approach to modeling security. These will be the subject of
the next three subsections.

1.1 Modeling security

Even though logically, system reliability is driven exclusively
by the existence and possible manifestation of faults, empir-
ical observations regularly show a very weak correlation be-
tween faults and reliability. In [22], Mills and Dyer discuss
an example where they find a variance of 1-50 in the impact
of faults on reliability; i.e. some faults cause system failure
50 times more often than others; while their experiment high-
lights a variance of 1-50, we argue that actual variance is in
fact unbounded. Also, they find that they can remove 60%
of a system’s faults and improve its reliability by only 3%.
! In a study of IBM software products, Adams [1] finds that
many faults in the system are only likely to cause failure after
hundreds of thousands of months of product usage.

We argue that the same may be true for security: vul-
nerabilities in a system may have widely varying impacts
on system security. In fairness, the variance may be wider

I Given that typically system-level testing consumes nearly 50% of
lifecycle costs and hardly comes close to discovering 60% of system
faults, this finding is a resounding condemnation of random fault-chas-
ing, and advocates instead a discipline that leads us towards the most
influential faults first.
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for reliability than for security, because in malicious security
violations high-impact vulnerabilities may be more attractive
targets than lower-impact vulnerabilities, but wide variances
are still quite plausible. Wide variances, to the extent that they
are borne out, have broad impacts on security management:

— In practice, security ought not be defined as the absence of
vulnerabilities, no more than reliability is defined by the
absence of faults (low-impact vulnerabilities do not affect
security in a meaningful way).

— In practice, security ought not be measured or quantified
by the number of vulnerabilities, just as it is widely agreed
(as highlighted by the works of Adams [1] and Mills [22])
that faults per KLOC (Kilo Lines of Code) is an inap-
propriate measure of reliability. Though fault density is
commonly used as a measure of programmer productiv-
ity and product quality, it has long been discredited as a
measure of reliability.

— Security cannot be improved by focusing on vulnerabili-
ties, as we have no way to tell whether a given vulnerability
has low (1) or high (50) impact on security. Rather, security
should be managed by pursuing a policy that leads us to
the highest-impact vulnerabilities first (a similar approach
to usage pattern testing [3,10,15-17,22,23,25]).

In light of these observations, we argue in favor of mod-
eling security in a way that reflects its visible, measurable,
observable attributes, rather than its hypothesized causes. To
this effect, we introduce the tentative outline of a logic for
system security, which represents/captures security proper-
ties in terms of its observable attributes. This logic is defined
in terms of the following features:

— A notation for security specification, which details how
to capture security requirements of a system.

— A formula for security certification, which formulates the
condition under which a system (represented by its secu-
rity abstraction) meets a given set of security require-
ments (represented by security specifications).

Note that, in order to quantify reliability as the mean time
to failure, we must define what it means to fail, which in
turn requires that we define specification and correctness.
Likewise, defining and quantifying security requires that we
define the concepts of security specification and security cer-
tification. In this paper, we discuss broad premises that char-
acterize our approach, and present tentative notations and
formulas for the proposed logic for system security.

1.2 Security as a dimension of dependability

It is customary [27] to define dependability as the aggregate
of four attributes: availability (probability of providing ser-
vices when needed), reliability (probability of failure-free
operation), safety (probability of disaster-free operation) and
security (probability of interference-free operation). Like
most classifications, this one does not define sharp distinc-
tions between these attributes, but is convenient because it
highlights meaningful differences. An important distinction

is between availability, which deals with operational prop-
erties, and the other three, which deal with functional and
behavioral properties. We argue in favor of a uniform model
to capture the three behavioral properties, i.e. reliability, safety
and security. We submit three broad arguments to support our
position.

— Conceptual argument. Generalization is a problem-
solving strategy that substitutes a specific problem with
a more general problem, thereby abstracting away many
irrelevant problem-specific details; though it is paradoxi-
cal, it is an effective problem-solving strategy, as it tends
to abstract away irrelevant detail, and thereby produce
more elegant solutions. We argue that reliability, safety
and security lend themselves to analysis by generaliza-
tion, by virtue of their commonalities. Reliability is de-
fined in terms of faults, errors and failures, and is handled
by means of a hierarchy of three methods: fault avoid-
ance, fault removal and fault tolerance. Safety is defined
in terms of three concepts, hazard, mishap and accident,
and is handled by means of a hierarchy of three methods:
hazard avoidance, hazard removal and damage limitation.
Security is defined in terms of three concepts, vulner-
ability, threat and exposure (or attack), and is handled
by means of a hierarchy of three methods: vulnerabil-
ity avoidance, vulnerability neutralization, and exposure
limitation. We argue that these analogies are a strong hint
to at least attempt to model these attributes in a uniform
manner.

— Pragmatic argument. Reliability, safety and security are
interdependent, in the sense that whether each property
holds may depend on the others. For example, all the
claims of reliability and safety become void if an intrusion
occurs and alters the system’s function or state. Conversely,
the security of a system is dependent on the reliability of
the components that implement/enforce its security mea-
sures. Hence in practice, having high values for one of
these attributes is probably not meaningful unless we have
commensurate values for the other attributes as well; also,
it is conceivable that the proof of any one of these prop-
erties will use hypotheses about the other properties. In
addition, while the distinctions between reliability, safety
and security are meaningful for the engineer, they are less
meaningful for the user. From the standpoint of the user,
it matters little whether a system failed because of vio-
lation of a reliability requirement, a safety requirement,
or a security requirement. Hence while the distinction be-
tween these properties may be convenient for the sake of
discussion and characterization, in practice it is best to
model and analyze these properties as a whole.

— Methodological argument. By virtue of the analogies that
we highlighted above, it is very likely that methods devel-
oped for one property will prove to be useful to other
properties. In particular, it is quite plausible that methods
developed for ensuring reliability prove to be useful in
ensuring security. We will explore this possibility in the
sequel.
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1.3 A refinement-based approach

Whereas in the previous subsection, we argued in favor of a
uniform approach to the three behavioral attributes of depend-
ability (reliability, safety, and security) in this subsection we
argue in favor of a specific uniform approach, one based on
refinement calculi. We submit three broad arguments to sup-
port our position.

— Conceptual argument. Refinement calculi have long been
used to model correctness properties, and hence form the
basis for reliability analysis [4,9,12-14,29]. Mili et al.
[21] have shown how safety can be modeled by the same
refinement mathematics, and how reliability and safety
concerns can be addressed with the same recovery mech-
anism. In this paper we submit that the same refinement
mathematics can be used to model (some aspects of)
security, and will discuss ways to do so in the sequel. In
particular, we argue that there is no difference between
reliability and safety except in the quantification of failure
costs (the violation of a safety requirement costs more than
the violation of a reliability requirement). We will also
argue that there is no difference between reliability and
security except in the characterization of fault hypotheses
(reliability deals with hardware or software faults while
security deals with faults caused by malicious interven-
tion). We will elaborate on these ideas in the sequel.

— Pragmatic argument. Nicol et al. [24] submit that it is vir-
tually impossible to ascertain the security of a complex
system, and argue that in order to enhance system security
we must deploy a wide range of methods:

“Whatis needed is an integrated validation frame-
work that permits the use of multiple evaluation
techniques in an organized manner. ... A symbi-
otic relationship should be established among the
various techniques such that they complement and
supplement each other to build the overall argu-
ment”.
We argue that some of the work we have done on reli-
ability does exactly that, deploying a range of methods to
maximize coverage and minimize (or at least control) cost
[4,20]. More recently, we have explored means to extend
this work to deal with security, by trying to cast security
properties in a refinement-like model [5]. The purpose of
this approach is to combine dependability measures irre-
spective of how they are analyzed and implemented. Spe-
cifically, we have developed mathematics that allow us to

— Decompose dependability goals into simpler subgo-
als, that can be dispatched to distinct verification and
validation efforts that may or may not use the same
methods.

— Compose dependability claims obtained from different
methods deployed on different parts of a system dealing
with different aspects of dependability.

The ability to decompose goals and compose claims is an
essential component of our strategy for dealing with large
and complex systems.

— Methodological argument. By merging various aspects of
dependability and modeling them in a uniform manner
we allow ourselves to build eclectic arguments of depend-
ability. We envision to store all dependability claims in a
unique database, which we can query for specific proper-
ties of interest; details of this approach are discussed in
the sequel.

1.4 Literature review

Nicol et al. [24] present an extensive survey of dependabil-
ity models, and analyze from the perspective of applying
them and extending them to security. In particular, they distin-
guish between three broad classes of models: combinatorial
methods; model checking; and state-based stochastic meth-
ods. The extensive survey of Nicol et al. highlights the lack
of work on extending existing refinement calculi to security
modeling, which is our intent in this paper.

2 Genesis of an integrated approach

In [4,20] we consider the traditional classification of program
or system-verification methods into three broad classes: fault
avoidance, fault removal and fault tolerance. Also, we intro-
duce a refinement-based logic that has the following features:

— Specifications and programs are represented by binary
relations, and refinement is represented by an ordering
between relations.

— The refinement relation is a partial ordering, which has
some lattice-like properties. We represent the ordering by
2 and the lattice operators by LI (for join, i.e. least upper
bound) and 11 (for meet, i.e. greatest lower bound).

— While the meet is defined for any pair of specifications,
the join is not. Only pairs of specifications that admit a
common refinement admit a join. Also (perhaps conse-
quently) the lattice of refinement has no universal upper
bound, though it does have a universal lower bound.

We use this refinement logic to address two issues: how to
compose verification claims that stem from distinct verifica-
tion methods; and how to decompose a complex verification
goal into simpler subgoals in such a way as to minimize or
control overall verification costs. We briefly address these
issues in the sequel, referring the interested reader to [4,20]
for technical details.

2.1 Composing verification claims

Interestingly, we find that all three methods can be captured
in this refinement logic by a formula of the form

S3P

where S is the system under consideration and P is the spec-
ification (property) we are verifying about S. The form of P
depends on the parameters of the method being used.
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— For verification, P is the binary relation defined in terms
of the precondition [say ®(s)] and post-condition [say,
W (50, 5)] as follows:

P = {(s,5)|®(s) A W(s, s},

We denote the right-hand side of this equation by V (for:
verification).

— For testing, P is the relation defined in terms of the oracle
(say €2) and test data (say D) as follows:

P={(s,s)|seDA(s,s)eQl

We refer to the right-hand side of this equation as 7 (for
testing).

— For fault tolerance, P is defined in terms of the relations
that represent error detection (£) and error recovery (R),
as follows:

P=EnNR.

We denote the right-hand side of this equation by F (for
fault tolerance), and we justify it simplistically by the fol-
lowing argument: we assume that we are ensuring fault tol-
erance by means of an error-detection routine that checks
for some binary condition E between a past and a current
state, and eventually (if condition E is not satisfied)
invokes recovery routine R that maps a past state onto a
correct new state, according to the following (schematic/
simplified pattern):

if not E then R;

Because we do not know ahead of time whether E holds or
not, we cannot tell whether relation E or relation R holds
between the past state and the current state. Hence all we
can claim is that the system under review refines E or R.
By virtue of a lattice identity,

SOJOEVSIR=SJ(ENR).

The lattice properties of the refinement ordering allow us to
combine verification claims by virtue of the following iden-
tity:

SAVASITASIF=S8S3(VuUTuUF),

assuming V, T, and F admit a join. Hence if we have estab-
lished (using a static verification method) that S refines V,
that S refines 7' (using a dynamic testing method), and that
S refines F' (using a fault tolerance method), we can claim
that S satisfies the aggregate specification

VurTuF.

2.2 Decomposing verification goals

Not only does the refinement lattice allow us to combine
eclectic verification claims, but it also allows us to decom-
pose complex verification goals, by virtue of the following
observations:

— Complex specifications can naturally be decomposed as
joins of simpler specifications [6].

— Lattice identities provide that, if a system refines all the
terms of a join, then it refines the join.

— Perhaps most interesting of all is the observation that the
effectiveness, ease of application, and reliability of a ver-
ification method vary a great deal according to the speci-
fication at hand. The same verification result, say

S3P,

can be proved very easily, effectively, and reliably with
one method (static verification, dynamic testing, or fault
tolerance) yet at the cost of great difficulty and complex-
ity with another method, depending on the properties of
P. Specifically, static verification methods are most effec-
tive for reflexive transitive relations, because such meth-
ods are typically inductive, and reflexivity makes the basis
of induction trivial while transitivity makes the induction
step trivial. Dynamic testing methods are most effective
for relations that can be implemented reliably as oracles
(a faulty oracle may undermine the whole testing effort
by giving misleading diagnoses). Fault-tolerance methods
are most effective for unary relations (dealing exclusively
with the current state) that can be implemented efficiently
(to reduce computation overhead) and do not require sav-
ing previous state spaces (to reduce memory overhead as
well).

In [20] we outlined a systematic procedure for analyzing rela-
tional specifications and assigning them appropriate verifi-
cation methods so as to minimize overall verification effort
and maximize trustworthiness. Also, we have illustrated this
approach on a simple example, involving a Gaussian elimi-
nation program.

3 A uniform representation of dependability claims

Combining diverse methods to reach a uniform verification
goal is a commendable approach, but it suffers from the fol-
lowing shortcomings:

— Verification methods are best captured by probabilistic
statements rather than logical statement; even the most
formal verification methods have a degree of uncertainty,
which we do not model in our logical interpretation.

— All verification methods are based on (implicit) assump-
tions, which the logical model discussed above does not
capture. For example, static verification is based on the
assumption that the verification rules used in the proof are
borne out by the compiler and run-time system on which
the program runs. Also, dynamic testing is based on the
assumption that the testing environment is consistent with
(or is harsher than) the operating environment. Finally,
fault-tolerance methods are usually based on the assump-
tion that the fault tolerance (error detection, error recovery)
routines are free of faults.
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— Another issue with the logical interpretation is that it is
too narrow: for example, we have interpreted the process
of testing a program § against an oracle 2 using test data
D by the formula

ST,

where T is the restriction of 2 to D. While strictly speak-
ing that is all we can claim, in fact most often we test S
against oracle €2 using data D to establish that S refines €2,
assuming that test data D is (somehow) a faithful repre-
sentation of the whole input domain of the program. This
interpretation is reflected by the (stronger) claim

SaQ.

In the proposed new approach, we do not have to choose
between these two interpretations; we can keep them both,
provided we learn how to combine them.

— Absent from the logical interpretation is the concept of
failure cost. We argue in favor of a model that quantifies
failure costs associated with various situations; in partic-
ular, we argue that the main difference between reliability
and safety is a difference of failure costs.

3.1 A probabilistic model

In light of the foregoing premises, we propose that all verifi-
cation results be characterized by the following attributes:

— Property. This attribute reflects the property that we are
claiming for the product under consideration. Possible
values for this attribute include: correctness (refinement),
operational attributes (such as response time, for example),
recoverability preservation [21], security property (protec-
tion against intrusion, for example), etc. Overloading the
3 symbol, we will denote this attribute by = even though
we refer more generally to any kind of property.

— Reference. This complements the previous attribute by
specifying with respect to what specification we are claim-
ing the property. In the case of correctness or recoverability
preservation, for example, the reference in question would
be the specification of relevant functional requirements. In
the case of response time, for example, this would be the
specification of relevant response-time requirements. In
the case of a security property, this would be the specifica-
tion of relevant security requirements (whose form we will
explore subsequently). We usually represent this attribute
by the symbol R.

— Assumption. As we discussed above, each verification
method has an implicit assumption, which we highlight
through this attribute; we can also use this attribute to
highlight additional conditions. For example, if we test
program S against oracle 2 and we use a representative
data set D, we are assuming that the program is correct
with respect to €2 if and only if it is correct with respect to
the restriction of €2 to D; such a claim is contingent upon
D being arepresentative set for the domain of the program.
We usually represent this attribute by A (for assumption).

— Certainty. This attribute quantifies the probability we esti-
mate for the verification claim being made; we usually
denote it by p.

— Stake. Also referred to as a the failure cost, this attribute
quantifies the cost of failing to satisfy the claimed prop-
erty with respect to the claimed reference. This attribute
allows us to reflect the fact that different requirements
carry different stakes and that some may be more critical
than others.

— Expense. Also referred to as the verification cost, this attri-
bute quantifies the cost of verifying a particular claim;
as we have discussed in Sect.?2, this attribute depends a
great deal on the specification (reference) against which
the claim is established.

To reflect all these attributes, we represent verification claims
using the generic format:

(S 2 R|A) = p,

which we read as: the probability that system S refines (in
the general sense) specification (or reference) R under the
assumption A is p. Furthermore, to capture failure cost and
verification cost, we introduce two additional functions:

— The failure cost function, which maps a property and ref-
erence onto a cost. Formally,

v: Prop x Ref — Cost.

— The verification cost function, which maps a property, ref-
erence, method, and assumption onto a cost. Formally,

Ww: Prop x Ref x Meth x Assum — Cost.

The verification cost clearly depends on the property to be
verified and the method used for verification; as we dis-
cussed in Sect. 2, it also depends on the reference (specifi-
cation); finally, it clearly depends on the assumption of the
proof (the stronger the assumption, the easier the proof).

To illustrate/justify the proposed model, we use it to briefly
represent some sample verification claims.

— Testing experiment I. If we test a program S on some test
data D against some oracle 2 and find it to run correctly
on all the elements of D, then we can claim

MSITIAAB)=1.0,

where T is the restriction of Q to D, A is the assumption
that the testing environment is equivalent to (or harsher
than) the operating environment and B is the assumption
that the oracle (and other test set-up code) is correct.

— Testing experiment I1. If we test a program S on some test
data D against some oracle €2 and find it to run correctly
on all the elements of D, then we can claim (for example)

[ISIQAABAC)=p,

where A and B are the assumptions defined above and C is
the assumption that the test data is a faithful representative
of §’s input domain (i.e. if S succeeds on D then we can
infer with probability p that it succeeds on all its domain),
if and only if it succeeds on all its domain.
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3.2 Integrating failure costs

In this section, we briefly discuss the impact of introducing
failure costs into our model; in particular, we argue that fail-
ure costs enable us to propose a generic measure of system
dependability. When we talk about a system’s mean time to
failure (MTTF), we usually do so with respect to two im-
plicit parameters: First, an implicit specification; and second
an implicit failure cost. It is only with respect to these two
implicit parameters that the MTTF makes sense.
This approach can be generalized in three directions:

— First, complex specifications typically represent of a wide
range of requirements, which the traditional concept of
MTTF lumps into one.

— Second, different requirements may have widely varying
failure costs, hence failing one requirement may mean
something totally different from failing another.

— Third, the same requirement may carry different stakes
for different stakeholders of a system, hence failure cost
depends not only on the requirement but also on the stake-
holder.

To illustrate this situation, consider a flight control system
of a commercial airliner, for example. We can imagine the
following stakeholders in the operation of such a system: a
passenger; the pilot; the Federal Aviation Authority (FAA);
the airline executive; the insurance company that insures the
aircraft; etc. On the other hand, we could consider a wide
range of (nonorthogonal, overlapping) requirements: that the
ride be smooth; that the flight be fuel-efficient; that the flight
be timely; that the flight follow its route within a few hun-
dred feet; that the flight be safe; etc. It is easy to see how each
stakeholder has different stakes in each requirement; this can
be represented in a two-dimensional table (stakeholders ver-
sus requirements).

In a context like this, the MTTF of the system is not suffi-
ciently informative, if it talks about a global failure to satisfy
the specification, but does not distinguish between the var-
ious components of the specification. We argue instead in
favor of a measure that acknowledges variations in stake-
holders and in stakes, and reflects the mean failure cost. This
function can be quantified by a monotonic combination (over
requirements R;) of terms of the form:

(1 =TI(S 2 R)) x v;(Z, R;),

where v; is the cost function for stakeholder j (hence
v;j (3, R;) is the cost for stakeholder j of failure to satisfy
requirement 7). We talk about monotonic combination of
these terms rather than their sum, because the requirements
are not necessarily orthogonal or disjoint; the exact structure
of this formula is currently under investigation.

This discussion illustrates in what sense reliability and
safety can be modeled alike: If R; is a safety requirement,
then typically v; (3, R;) is very high, and therefore the term

(1 —TI(S 2 R))

must be very low, in order to maintain a low value for the
product

(1 =TI(S 2 Ri)) x vj(Z, R),

To keep this value low, we must ensure with the greatest pos-
sible certainty that S refines R;. From this standpoint, there
is no distinction between safety and reliability; all we see are
requirements with varying failure costs.

4 Towards a logic for system security

In this section, we analyze system security and investigate in
what sense and how it can be folded into the uniform model
discussed above for representing dependability claims.

4.1 Assigning meaning to security measures

Both safety and reliability can be represented by the claim
that the system/program under consideration refines a given
specification. We write this abstractly as

SIR.

The first question that we wish to raise as we attempt to model
security is: is security modeled with a different property (2)
or a different reference (R)? The answer, as we will discuss,
is both.

Nicol et al. [24] discuss a number of dimensions of secu-
rity, including: data confidentiality, data integrity, authenti-
cation, survivability, and nonrepudiation. In the context of
this paper, we focus our attention on survivability, and readily
acknowledge a loss of generality; other dimensions of secu-
rity are under investigation. Survivability is defined in [11]
as the capability of a system to fulfill its mission in a timely
manner, in the presence of attacks, failures, or accidents [24].
We discuss in turn how to represent security (survivability)
requirements, and how to represent the claim that a system
meets these security requirements.

4.1.1 Specifying security requirements

We note that there are two aspects to survivability: the abil-
ity to deliver some services, and the ability to deliver these
services in a timely manner; to accommodate these, we for-
mula security requirements by means of two relations, one for
each aspect. Using a relational specification model presented
in [6], we propose to formulate functional requirements as
follows:

— An input space, that we denote by X; this set contains
all possible inputs that may be submitted to the system, be
they legitimate or illegitimate (part of an attack/intrusion).
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— Using the space X, we define the space H, which repre-
sents the set of sequences of elements of X; we refer to H
as the set of input histories of the specification. An element
h of H represents an input history of the form

Jhy hy—t...h3.ho.hy.hg,

where h( represents the current input, s represents the
previous input, &, represents the input before that, etc.

— An output space Y, which represents all possible outputs
of the system in question.

— Arelation ¢ from H to Y that specifies for each input his-
tory i (which may include intrusion/attack actions) which
possible outputs may be considered correct (or at least
acceptable). Note that ¢ is not necessarily deterministic,
hence there may be more than one output for a given in-
put history. Note also that this relation may be different
from the relation R that specifies the normal functional
requirements of the system: while R represents the de-
sired functional properties that we expect from the sys-
tem, ¢ represents the minimal functional properties we
must have even if we are under attack; hence while it is
possible to let ¢ = R, it is also possible (perhaps even
typical) to let there be a wide gap between them.

As for representing timeliness requirements, we propose the
following model:

— The same input space X, and history space H.

— A relation from H to the set of positive real numbers,
which represents for each input history ~ the maximum
response time we tolerate for this input sequence, even in
the presence of attacks. We denote this relation by w.

In the sequel, we discuss under what conditions do we con-
sider that a system S satisfies the security requirements spec-
ified by the pair (¢, w).

4.1.2 Certifying security properties

Given a security requirements specification of the form (¢, ),
we want to discuss under what conditions we consider that
a program S that takes inputs in X and produces outputs in
Y can be considered to satisfy these security requirements.
Space limitations preclude us from a detailed modeling of
attacks/intrusions, hence we will, for the purposes of this pa-
per, use the following notations:

— Given a legitimate input history 4, we denote by v(h) an
input history obtained from & by inserting an arbitrary
intrusion sequence (i.e.. a sequence of actions that repre-
sent an intrusion into the system).

— Given an input history £ (that may include intrusion ac-
tions) we denote by 6(S, h) the response time of S to the
input history 4.

Using these notations, we introduce the following definition.

Defintion 1 A system S is said to be secure with respect to
the specification (¢, w) if and only if

1. For every legitimate input history h,
(h, S(h)) € ¢ = (v(h), S(v(h))) € ¢.
2. For every legitimate input history h,
0(S,h) <w(h) = 6(S,vh)) < w(h).

The first clause of this definition can be interpreted as follows:
if system § behaves correctly with respect to ¢ in the absence
of an intrusion, then it behaves correctly with respect to ¢ in
the presence of an intrusion. Note the conditional nature of
this clause: we are not saying that S has to satisfy ¢ at all
times, as that is a reliability condition; nor are we saying that
S has to satisfy ¢ in the presence of an intrusion, as we do
not know whether it satisfies in the absence of an intrusion
(surely we do not expect the intrusion to improve the behavior
of the system; all we hope for is that it does not degrade it).
Rather, we are saying that, if S satisfies ¢ in the absence of
an intrusion, then it satisfies it in the presence of an intrusion.

The second clause articulates a similar argument, pertain-
ing to the response time: if the response time of S was within
the boundaries set by w in the absence of an intrusion, then it
remains within those bounds in the presence of an intrusion.

The definition that we propose here is focused entirely on
effects rather than causes, and gives meaning to the concept
of security failure. Using this concept, we can now quantify
security by the same MTTF, where F stands for security fail-
ure. Stevens et al. [28] present measures of security in terms
of mean time to vulnerability discovery (MTTD) and mean
time to exploitation of discovered vulnerability (MTTE). By
contrast with our (re-)definition, these definitions are focused
on causes (rather than effect); in fairness, Stevens et al. [28]
propose them as intruder models rather than security mod-
els. The difference between our effect-based measure and
Stevens’s cause-based measure is that a vulnerability may be
discovered without leading to an intrusion, and an intrusion
may be launched without leading to a security failure in the
sense of our definition.

4.2 Inference support

In the light of these discussions, we can now represent secu-
rity claims in the same notation proposed earlier for other
dimensions of dependability, i.e., as

IS I RIA) =p,

but with a qualification: R represents security requirements,
as discussed in Sect. 4.1.1 and 3 represents the security prop-
erty, as we have defined it in Sect. 4.1.2. Cost functions can
be added to quantify values of failure cost and verification
cost.

We have developed a very sketchy prototype of a tool that
stores claims and supports queries. We envision several types
of inference rules that such a tool can deploy: probabilistic
rules (that use identities of probability calculi); refinement-
based rules (that use the ordering properties of the refinement
relation); lattice-based rules (that use identities of lattice the-
ory); rules that stem from the interrelationships between the
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various dimensions of dependability (for example, that secu-

rity depends on the reliability of the security components);

etc.

In its current form, the prototype includes only probabil-
ity rules, and hence has very limited capability. Nevertheless,
it allows us to discuss our vision of its function and its oper-
ation. The first screen of the prototype offers the following
options:

— Record a reliability/safety claim. Clicking on this tab
prepares the system to receive details about a depend-
ability claim (reliability, safety, etc.) with respect to a
functional specification. Given that such claims have the
general form:

II(P 2 R|A) = p,

the system prompts the user to fill in fields for the prop-
erty (2), the reference (R), the assumption (A), and the
probability (p).

— Record a security claim. Clicking on this tab presents an
entry screen that prompts the user for a security specifi-
cation (two fields: a functional requirement and an opera-
tional requirement), a field for an assumption, and a field
for a probability. There is no need for a property field,
since the property is predetermined by the choice of tabs.

— Record cost information. As we recall, there are two kinds
of cost information that we want to record: failure cost,
and verification cost. Depending on the user’s selection,
the system presents a spreadsheet with four columns (prop-
erty, reference, cost, and unit—for failure cost), or six col-
umns (property, reference, method, assumption, cost, and
unit—for verification cost). This information is stored in
tabular form to answer queries subsequently on failure
costs or verification costs.

— Record domain knowledge. Because dependability claims
are formulated using domain-specific notations, a body of
domain-specific knowledge is required to highlight
relevant properties and relationships, and to enable the
inference mechanism to process queries. This domain
knowledge is recorded by selecting the appropriate tab
on the system.

— Queries. Clicking on the tab titled submit query prompts
the user to select from a list of query formats. The only
format that is currently implemented is titled validity of a
claim, and its purpose is to check the validity of a claim
formulated as

II(P 2 R|A) = p,

for some property =, reference (specification) R, assump-
tion A, and probability p. Notice that we do not have equal-
ity, but inequality; this feature can be used if we have taken
a number of dependability measures and wish to check
whether they are sufficient to allow us to claim that P
refines R with a greater certainty than a threshold proba-
bility p.

To answer a query, the system composes a theorem that has

the query as goal clause, and uses recorded dependability

claims and domain knowledge as hypotheses. The theorem

prover we have selected for this purpose is Otter [18,19,30].

4.3 A sample demo

To illustrate the operation of the tool, we take a simple exam-
ple. We will present, in turn, the dependability claims that
we submit to this system, then the domain knowledge, and
finally the query; this example is totally contrived and is in-
tended only to illustrate what we mean by composing diverse
dependability claims. Also, even though the model that we
envisage has inference capabilities that are based on many
types of rules (probabilistic identities, refinement rules, lat-
tice identities, relations between various refinement proper-
ties, etc.), in this demo we only deploy probabilistic rules.

For the purposes of this example, we summarily intro-
duce the following notations, pertaining to a fictitious nuclear
power plant:

— Specifications. We consider a specification, which we call
SafeOp, which represents the requirement that the opera-
tion of the reactor is safe. We also (naively) assume that
this requirement can be decomposed into two subrequire-
ments, whose specifications, CoreTemp and ExtRad, which
represent requirements for safe core temperatures and safe
external radiation levels.

— Assumptions. We assume (artificially) that the claims we
make about refining the specifications CoreTemp and Ex-
tRad are contingent upon a combination of conditions
that involve two predicates: FireWall, which represents the
property that the system’s firewall is operating correctly;
and ITDetection, which represents the property that the
system’s insider threat detection is working properly.

Using these notations, we illustrate the deployment of the
tool by briefly presenting the security claims, the domain
knowledge, then the query that we submit to it.

— Claims. Using the system’s GUI screens, we enter the fol-
lowing claims, where P represents the reactor’s control
system:

I[T(P 3 CoreTemp|FireWall) = 0.98.
[1(P 3 CoreTemp|

(—=FireWall A IT Detection)) = 0.95.
I[T(P 2 CoreTemp]|

(—=FireWall AN —=IT Detection)) = 0.93.
[T(P 3 ExtRad|FireWall) = 0.95.
I[T(P 3 ExtRad|—FireWall) = 0.90.

— Domain knowledge. We submit the following domain knowl-
edge under the form of predicates, where indep(p,q) means
that events p and ¢ are independent; one could ques-
tions whether some of the claims of independence are well
founded, but we make these assumptions for the sake of
simplicity.

indep(FireWall, IT Detection).
indep(P 3 CoreTemp, P 3 ExtRad).
P 3 SafeOp < (P 3 CoreTemp A P 3 ExtRad).
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— Query. We submit the query whether the claim
I[T(P 3 SafeOplA) > 0.90,

is valid, where A is the assumption that the probability
of FireWall is 0.90 and the probability of ITDetection
is 0.80.

The system generates a theorem and submits it to Otter; it
then analyzes the output file to determine if a proof was pro-
duced. The claim is deemed to be valid.

Whereas theorem provers are adequate for symbolic manip-
ulations, what we need in our type of application is a combi-
nation of symbolic manipulation and numeric calculations.
We have resolved this matter in this simple case by running
two parallel inference threads, in a way, by declaring arithme-
tic operations to be evaluable (rather than simply symbolic),
and adding clauses such as

(((x+y)=z) <-> sum(xX,y,2z)).
((y=(z-x)) <-> sum(x,y,2z)).
(sum(y,x,z) <-> sum(x,vy,z)).

(where we deleted the quantifiers all x y z) to support
symbolic equation manipulations and simplifications. In the
long run, we may choose a different theorem prover, or a
different means to infer queries from claims than theorem
provers altogether.

5 Conclusion, assessment and prospects

In this paper, we have attempted to model system security
(which we equate with survivability) on the basis of the fol-
lowing premises:

First, we model security as a dependability property, along-

side reliability and safety.

— Second, we model security using a refinement calculus,
which has been used in the past to model reliability and
safety.

— Third, we acknowledge the rigidity of strictly logical mod-
eling, and derive a representation that supports probabilis-
tic claims of correctness.

— Fourth, we integrate logical/probabilistic claims with cost

functions, which allow us to quantify verification costs and

failure costs.

We characterize the form of a security requirements specifi-
cation, as well as the condition under which a system satisfies
such requirements. The same reasons that preclude us from
defining reliability as the absence of faults, also preclude us
from defining security as the absence of vulnerabilities. Our
definition of security (survivability) does not exclude vulner-
abilities, and makes provisions for the cases when mishaps
do not cause failure, or are otherwise recovered from.

Finally, we discuss means to support the management
of security/dependability using the proposed models. Future
prospects include the exploration of other forms of security
(other than survivability), as well as the development and
experimentation of the prototype.
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