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Abstract

Redundancy is a feature of systems that arises by design
or as an accidental byproduct of design, and can be used
to detect, diagnose or correct errors that occur in systems
operations. While it is usually investigated in the con-
text of fault tolerance, one can argue that it is in fact an
intrinsic feature of a system that can be analyzed on its
own without reference to any fault tolerance capability.
In this paper, we submit three alternative views of redun-
dancy, which we propose to analyze to gain a better un-
derstanding of redundancy; we also explore means to use
this understanding to enhance the design of fault tolerant
systems.
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1 Introduction: Exploring Redun-
dancy

Redundancy is a feature of systems that arises by design
or as an accidental byproduct of design, and generally per-
tains to an excess of information in the representation of
system states or in the execution of system functions. Our
interest in redundancy as a subject stems from a research
project we had worked on for NASA Dryden, whose topic
was the certification study of a fault tolerant flight control
system based on analytical redundancy [1, 8, 14, 15]. As
we completed this project, we came away with a number
of tentative conclusions pertaining to system redundancy:

� Redundancy takes several different forms, not all of
which are adequately modeled, understood, and ex-
ploited.

� Systems usually carry a great deal of redundancy,
some by design but most by accident, only little of
which is ever used for fault tolerance.

� Though there are sophisticated means to use re-
dundancy for fault tolerance, only trivial (and sub-
optimal) means are generally used in practice.

The purpose of our research is to build on these tentative
conclusions by trying to broaden our understanding of re-
dundancy and using new insights to enhance the design of
fault tolerant systems.

In this paper, we present some preliminary ideas on
our effort to model/ analyze/ understand redundancy, and
discuss our prospects for gaining new insights, and using
them to enhance the practice of fault tolerant systems de-
sign.

2 Multiple Forms of Redundancy

One of the conclusions we had drawn from our earlier
project investigating a fault tolerant flight control system
is that redundancy takes multiple forms. It is possible that
all these forms may fit under a single generic model, and
one of the goals of our discussion is precisely to explore
this possibility. For the time being, we can only perceive
them as distinct, and wish to present some of them in the
sequel, to give the reader some sense of what we mean:

� State Redundancy. This arises when the representa-
tion of the system state allows a wider range of val-
ues than are needed to represent the set of possible
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states. This is the traditional form of redundancy, that
arises in parity-bit schemes, error detecting codes, er-
ror correcting codes, modular redundancy schemes,
etc.

� Functional Redundancy. This form arises when, for
example, we compute the same function using three
different algorithms, and we take a vote on the out-
puts, to protect against possible faults.

� Relational Redundancy (for lack of a better
name). Typically, most system functions are non-
injective, and most system specifications are non-
deterministic. These properties are a great source of
redundancy, in the sense that they allow systems to
deviate from their intended function while still avoid-
ing failure.

� Temporal Redundancy. Consider the state defined by
two variables: the altitude (

�
) and the vertical speed

( ��� ) of an aircraft. There is no redundancy between
the values of

�
and ��� at a given time � (i.e. �����
	

and
��� ���
	 can take arbitrarily values, for a given � ),

but there is redundancy between the values of these
variables within small time intervals, e.g.

�������� �����������
� Control Redundancy (for lack of a better name). The

flight control system that we analyzed in [1, 8, 14,
15] is fault tolerant in the sense that it can keep fly-
ing the aircraft (under some restrictive conditions)
even if some control surfaces are lost or if some con-
trols become inoperational. This stems from redun-
dancy between the controls that the system operates:
though the throttle, elevators, ailerons and rudder
have distinct functions, some may be used to make
up for the loss of others. In at least two recent acci-
dents of civil aviation (Alaska Airlines 261, January
2000; and US Airways 427, September 1994) inves-
tigators believe that despite losing flight surfaces, the
flight could in theory have been saved [26]. Con-
structive proof is given by an incident at DFW in
1996 in which a flight was saved despite a malfunc-
tion of the flaps [27]; the pilot used the left aileron to
compensate for the loss.

This classification is neither complete nor orthogonal; it
is meant to illustrate the diversity of forms of redundancy,
and the interest in trying to model them and possibly unify
them. Also, this list highlights a large untapped potential,
that can possibly be exploited to enhance system fault tol-
erance in a systematic manner; but before it can be tapped,
it must first be adequately modeled and understood.

3 Multiple Views of Redundancy

In addition to taking many forms, redundancy can be
viewed from multiple perspectives, which we explore be-
low. For the sake of argument, and with some loss of gen-
erality, we restrict our discussion in the remainder of this
paper to state redundancy. We have identified three com-
plementary views of state redundancy:

� Redundancy as a Quantitative Measure of Duplica-
tion. It is possible to view redundancy as the dupli-
cation of system state information. This duplication
may be total (as in modular redundancy) or partial
(as in parity bit schemes, for examples). We propose
to quantify the amount of redundancy in a state by a
numeric function, whose formula we discuss in the
sequel.

� Redundancy as a Qualitative Feature of State Rep-
resentation. We consider the State Representation
Relation as a mapping from state values to state rep-
resentations, and we characterize redundancy by the
algebraic properties of this relation.

� Redundancy as a Qualitative Measure of Fault Toler-
ance Capability. In this view, we equate redundancy
with fault tolerance, and we characterize redundancy
levels by successive degrees of fault tolerance (such
as error detection, damage assessment, backward er-
ror recovery, forward error recovery, etc).

In the following section, we analyze in some detail these
three views of redundancy, and set the stage for our sub-
sequent discussions.

3.1 Redundancy as Non Surjectivity

In this view, we study redundancy as a representational
issue, i.e. as a feature of the relation that maps states to
their representations, which is the state representation re-
lation. The simplest representation relations are those that
are: total (each state value has at least one representation);
deterministic (each state value has at most one represen-
tation); injective (different states have different represen-
tations); and surjective (all representations represent valid
states). Not all representation functions satisfy these four
properties —in practice hardly any satisfy all four, in fact.

� When a representation relation is not total, we ob-
serve a partial representation (for example not all
integers can be represented in computer arithmetic).

� When a representation relation is not deterministic,
we observe an ambiguous representation. Consider
the representation of signed integers between -7 and
+7 using a sign-magnitude format; zero has two rep-
resentations, -0 and +0 [17].
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� When a representation relation is not injective, we
observe loss of precision (for example, real numbers
in the neighborhood of a representable floating point
value are all mapped to that value).

� When a representation relation is not surjective, we
observe redundancy (for example, in a parity-bit rep-
resentation of characters, not all bit patterns repre-
sent legitimate characters).

For the purposes of our discussions, we equate redun-
dancy with non-surjectivity; for the sake of simplicity, we
limit our discussion to representation relations that are de-
terministic, total, and injective —whence each state value
has exactly one representation (by virtue of totality and
determinacy) and different state values have different rep-
resentations (by virtue of injectivity).

3.2 Redundancy as Excess Information

Whereas in the previous section we characterized state
redundancy by the properties of the state representation
function, in this section we measure redundancy by means
of a numeric formula which reflects how much excess in-
formation the representation of the system state carries.
To this effect we consider a state � ranging over a state
space

�
, and we let � ��� 	 be the number of bits that are

used to represent � , and � ��� 	 the probability of occur-
rence of � . The redundancy of

�
is given by the following

formula

� � � 	 ���
�
	�� � �� 	 �

�� ��� 	 ������� ��� ��� 	 	
� ��� 	 �

This formula is due to Hehner [17], and can be explained
as follows: � ����� ��� ��� 	 	 is the amount of information car-
ried by � , and � ��� 	 is the size of the actual representation
of � ; the difference between these two quantities is the re-
dundancy of the representation of � , which we normalize
by dividing it by � �� 	 . By taking the prorated sum of all
the state redundancies, we obtain the redundancy of the
whole state space. To illustrate the meaning of this func-
tion, we consider some sample examples:

� If
�

contains 8 states that are equally likely to occur
and are coded on 3 bits, then

� � � 	 ���
.

� If
�

contains 8 states that are equally likely to oc-
cur and are coded on 6 bits where the code of each
state is duplicated, then

� � � 	 ���
. This value means

that one hundred percent of the information needed
to represent these states is added to the representa-
tion, which reflects the situation at hand.

� Error Correcting Code. We consider a space of 8
values (of equal probability) and we represent it by

four bits, say three bits of data and a parity bit. We
find that the redundancy function is then equal to:
0.333, whose interpretation is obvious.

� If
�

contains 8 states that are not equally likely to
occur and are coded on 3 bits, then

� � � 	�� �
. For

example, if the probability distribution is:

� � � ������� � ��� ��� � �!��� � ��" ��� � �#� ��� � �#� ��� � " �$� � "�" 	
then the redundancy function yields the value: 0.118.
If the variance in the probability is more tame, the
redundancy is much smaller. Hence for the following
probability distribution,

� � � ��%��$� � ���$� � ���$� � �!��� � ��"�� �$� � �&"!�'��� � �#()�*� � "�" 	
we find the value: 0.0489.

� Using Huffman coding rather than fixed size coding
for uneven probability distributions reduces (or pre-
serves) the redundancy of the state. Hence for the
latter distribution above,

� � � ��%��$� � ���$� � ���$� � �!��� � ��"�� �$� � �&"!�'��� � �#()�*� � "�" 	
we find the following vector of lengths under Huff-
man coding, � (+�*(+�$�����������$�)�$�)��" 	 � which produces a
value of redundancy of: 0.0041, which is, expect-
edly, less than the value found under fixed size cod-
ing (0.0489).

3.3 Redundancy as Fault Tolerance Capa-
bility

Whereas the previous section quantifies redundancy by
assigning it a number, this section attempts to character-
ize it by the fault tolerance capability that it affords us.
For the sake of our discussions, we will borrow results
from section 4, where we present detailed mathematics
for characterizing fault tolerance capabilities.

In section 4, we define three levels of correctness of a
state � in the course of a computation:

� Strict correctness, whereby a state is the precise im-
age of the initial state ��, by the correct past function-

; in Figure 1, this state is represented by the bullet
at the center.

� Maskability, whereby a state is maskable if and only
if subsequent computation will map it into a correct
final state for the initial state �#, ; in Figure 1, mask-
able states are represented by the first oval around the
center.

� Recoverability, whereby a state is recoverable if and
only if it carries sufficient information to be trans-
formed (by a recovery routine) into a maskable state;
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in Figure 1, recoverable states are represented by the
second oval around the center.

It is plain from the (summary) definitions above and from
Figure 1 that:

� A correct state is maskable (because we assume that-����
refines � , as per section 4).

� A maskable state is recoverable (taking identity as
the recovery routine).

Traditional sources on system fault tolerance advocate
the following life-cycle for providing fault tolerance:

� Error Detection, i.e. the task of determining whether
the current state is equal to the expected state at the
current stage of the computation.

� Damage Assessment, i.e. the task of determining
whether the state, while being strictly incorrect, is
still maskable, or at least recoverable.

� Error Recovery, i.e. the task of mapping the current
incorrect state into a correct state, provided the cur-
rent state is recoverable (otherwise recovery is fu-
tile) and not maskable (otherwise recovery is unnec-
essary).

We submit the thesis that successive levels in this hierar-
chy require successive amounts of redundancy to be per-
formed, in the following sense:

� Correctness. According to Definition 6, a state � is
correct at cut-point (i.e. stage of the computation) �
for initial state � , if and only if

�� , � � 	�� - �
At cut-point � , we have access to state � but we
do not have access to the initial state �&, ; hence we
cannot in principle check correctness using the for-
mula above. However, if � had some redundancy,
we could check some necessary condition of correct-
ness on � , which, if it does not hold, proves that �
is not (strictly) correct. A trivial necessary condi-
tion for ���#, � � 	�� -

that is independent on ��, is the
condition 	�� ,�
 �� , � � 	�� - �

which can be rewritten
as ��� rng � - 	�� This is interesting: If

-
is surjec-

tive, then the condition above is trivial (i.e. takes the
constant value ������ for all � ), and it is not possi-
ble to detect whether � is or is not correct. Hence,
interestingly, error detection is contingent upon the
non-surjectivity of function

-
; this is reminiscent of,

but different from, the view we have taken in section
3.1, whereby redundancy is equated with the non-
surjectivity of the representation function.

� Maskability. According to Proposition 2, a state � is
maskable if and only if

���#, � � 	���� ��� ��� 	 �
A trivial (and most general) sufficient condition of
maskability that is independent of � , is: 	�� ,�

���#, � � 	���� ��� ��� 	�� We re-interpret this condition as:
��� rng ��� ��� ��� 	 	�� This condition is trivial (i.e. equal
to ������ for all � ) if and only if rng ��� ��� ��� 	 	 � �

;
in that case, it is not possible to detect maskability
because all states satisfy this condition. We can de-
tect maskability only as soon as rng ��� ��� ��� 	
	 is a
strict subset of

�
, i.e. as soon as � ��� ��� 	 is not sur-

jective. From the discussions of section 4, we can
establish that

rng � - 	 � rng ��� ��� ��� 	
	 �
Hence requiring that relation � ��� ��� 	 be non-
surjective is a stronger condition that requiring than
relation

-
be non-surjective.

� Recoverability. Without inspecting the complex
characterization of recoverability (in section 4), let
us simply note that the set of recoverable states is
larger than the set of maskable states (since all mask-
able states are recoverable, with trivial recovery rou-
tine ! �#"

); in order for recoverability to be veri-
fiable, the set of recoverable states must be smaller
than

�
.

In summary, we find that

� Past functions that preserve correctness, maskability,
and recoverability have successively larger ranges.

� Successive fault tolerant capabilities are dependent
on these functions being non-surjective.

� The larger the range of a function, the more redun-
dancy (i.e. excess representation information) is re-
quired to make the space

�
larger than its range.

We find that increasing levels of fault tolerant capability
are dependent on the non-surjectivity of functions with in-
creasingly larger ranges, and that making these functions
non-surjective requires increasing levels of redundancy. It
is in this sense that redundancy is equated with fault tol-
erance capability.

4 Background: Mathematics for
Fault Tolerance

Due to space limitations, we will limit our presentation
in this section to the main definitions and propositions.
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�

maskable states

recoverable states

unrecoverable states

recovery unnecessary

recovery necessary and sufficient

recovery insufficient

�!

Figure 1: A Hierarchy of Correctness Levels.

The main result of this section is Proposition 3, page 7,
which provides a necessary and sufficient condition for a
(possibly) faulty component to preserve the recoverability
of the system state.

4.1 Elementary Concepts of Relational
Mathematics

We represent the functional specification of systems or
system parts by relations; without much loss of generality,
we consider homogeneous relations, and we denote by

�
the space on which relations are defined. As a specifica-
tion, a relation contains all the (input, output) pairs that
are considered correct by the specifier. Constant relations
include the universal relation, denoted by

�
, the identity

relation, denoted by
"
, and the empty relation, denoted by�

. Because relations are sets, we use the usual set the-
oretic operations between relations. Operations on rela-
tions also include the inverse, denoted by �� , and defined
by �� ��� ��� � �  	�� ���  � � 	 � �	��� The product of relations �
and �  is the relation denoted by ��
 �  (or ���  ) and de-
fined by ��
 �  ��� ��� � �  	�� 	 � 
 ��� � �
	 ���� ��� � �  	 ���  ���
The prerestriction (resp. post-restriction) of relation � to
predicate � is the relation

� �� � �  	�� � �� 	� ��� � �  	����	� (resp.� �� � �  	�� �� � �  	 � �� � ���  	�� ). The domain of relation � is
defined as dom ��� 	 ��� ��� 	��  
 ��� � �  	 � �	� � The nucleus
of relation � is the relation denoted by � ��� 	 and defined
by � �� . We say that � is deterministic (or that it is a func-
tion) if and only if �� � � " , and we say that � is total if
and only if

" � � �� , or equivalently, � � ���
. We say

that � is regular if and only if � �� � ��� [25]. We define

an ordering relation on relational specifications under the
name refinement ordering: A relation � is said to refine
a relation �  if and only if � ��� �  ��� ����� �  	 � �  �
We abbreviate this property by ��� �  or � �� � . We
admit without proof that this relation is a partial ordering.
We also admit that, modulo traditional definitions of total
correctness [10, 16, 23], the following propositions hold.

� A program � is correct with respect to a specification
� if and only if � ��� � � , where � ��� is the function
defined by � .

� ��� �  if and only if any program correct with re-
spect to � is correct with respect to �  .

Intuitively, � refines �  if and only if � represents a
stronger requirement than �  . In conjunction with the re-
finement ordering, we introduce a composition-like oper-
ator, which we denote by � � �  and define by � � �  �
� �  � � �  � � The main characteristic of this operator, for
our purposes, is that unlike traditional composition, it is
monotonic with respect to the refinement ordering, i.e. if
�!�#" and �  �#"  , then � � �  �!" � "  .

We introduce two related division-like operations on
relations, which will play a crucial role in our subse-
quent discussions. Because the monotonic product is not
commutative (nor is the simple product), we need two
division-like operators: a right division and a left division.

Definition 1 The (conjugate) kernel of relation � with re-
lation �  is the relation denoted by � ��� � �  	 and defined
by

� ��� � �  	 � ��$ �  �%� $ �  �
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The (conjugate) cokernel of relation � with relation �  is
the relation denoted by ����� � �  	 and defined by

� ��� � �  	 � � � �� � ���� � � �  	
	 � �
The kernel is due to [9]; both the kernel and the cokernel
are discussed in some detail in [11, 12], where the inter-
ested reader is referred. Similar relational operators have
been investigated at length [2, 3, 4, 6, 18, 19, 20, 21, 28].
For the purposes of our discussion, the most interesting
properties of kernels and cokernels are articulated in the
following proposition.

Proposition 1 The in-equation � ��� � �  has a least
refined solution in

�
if and only if � � � � ��� � �  	 � .

Under this condition, its solution, which we call the left
residual of � with respect to �  and denote by ���� �� �  , is
given by

� � � � � �  � � ��� � �  	 �
The in-equation � � �  � � has a least refined solution

in
�

if and only if � � � �  �  � � ���� � � �  	 � � .
Under this condition, its solution, which we call the right
residual of � with respect to �  and denote by � ��� �� � , is
given by

�  �� �� � � ����� � �  	��
The first clause of this proposition is due to [9] (proposi-
tion 4.5), where a proof is given. The second clause of
this proposition is due to [11], where a proof is given.

4.2 Elementary Concepts of Fault Toler-
ance

4.2.1 Fault, Error and Failure

In [22], Laprie defines failure, error and fault in the fol-
lowing terms:

A system failure occurs when the delivered ser-
vice deviates from fulfilling the system func-
tion, the latter being what the system is intended
for. An error is that part of the system state
which is liable to lead to subsequent failure; an
error affecting the service is an indication that a
failure occurs or has occurred. The adjudged or
hypothesized cause of an error is a fault.

In this section we briefly present working definitions of
fault, error and failure, and we illustrate them on a sam-
ple system structure. We consider a space

�
, defined by

a set of state variables. We consider a compound func-
tion from

�
to

�
, and we decompose this function into

the (monotonic) product of two functions: a function
-

,
to which we refer as the past function; and a function

�
,

to which we refer as the future function. We assume that
the compound function (

- ���
) is due to satisfy some re-

quirements that are captured in the relational specification
� , i.e.

-���� � � . Furthermore, we suppose that by
structuring the system as the product of two components-

and
�

, the designer has specific expectations of what
requirements functions

-
and

�
must satisfy. In our dis-

cussion, we focus on the fault behavior of the past func-
tion; to this effect, we distinguish between the ideal past
function, which we will (continue to) denote by

-
, and

the actual past function, which we will denote by
- 

. We
have the definition.

Definition 2 A fault is a feature of a system that precludes
it from operating according to its specification.

Specifically, for our purposes, the past function
- 

has a
fault if and only if

� � � -	�� � � � -  �
Whereas fault is a feature of a function (the past func-

tion), error is a feature of a state (the current state). In
order to identify states of interest, we introduce the label/
cut-point � , which defines the state of the computation
after application of the past function.

Definition 3 We say that there is an error at some cut-
point � of a computation if and only if the value of the
system state at cut-point � differs from the expected value
at that step.

If we let � be the cut-point that marks the range of the
past function and the domain of the future function, then
we say that we have observed an error at cut-point � if we
find an element � of

�
that satisfies the following condi-

tions:

	�� ,�
 � , � dom ��� 	  ��� , � � 	�� -   �� , � � 	�
����� � ���
Definition 4 We say that there is a failure of a system if
and only if the actual output of the system for some input
is not a correct output.

With respect to our system structure, there is a failure for
initial state �#, if and only if

� , � dom ��� 	  ��� , � � -  � � 	 �� , 	
	 ���� �
4.2.2 Fault Tolerance

The definitions given above allow us to define fault toler-
ance.

Definition 5 A system is said to be fault tolerant if and
only if it has provisions for avoiding failure after faults
have caused errors.

In fault tolerance, we resign ourselves to the presence of
faults in the system, and we take measures to ensure that
faults do not cause failure.
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�

Figure 2: Unwinding a Control Loop.

4.3 Degrees of Error

4.3.1 Imperatives of Error Detection: Condition of
Correctness

In the context of the system structure that we discussed
in section 4.2.1, we are interested in characterizing the
state that we obtain after applying function

- 
, right be-

fore function
�

is applied. In control applications, we
often witness the case when control information runs in a
closed loop. In such cases, we propose to cut the loop
in two cut-points, as we will illustrate in figure 3: the
point that will characterize the domain of function

-
; and

the point that will characterize the domain of function
�

.
We let � designate the cut-point (label) where function

-
feeds into function

�
, and we let ��, be an initial state of

function
-

; see figure 2.

Definition 6 State � at cut-point � is said to be correct
for initial state ��, if and only if

���#, � � 	�� - �
If and only if state � is not correct at cut-point � , we say
that we are observing an error at cut-point � .

4.3.2 Imperatives of Damage Assessment: Condition
of Maskability

Definition 7 A state � is said to be maskable at cut-point
� for initial state �#, with respect to � if and only if
���#, ��� ��� 	 	 � � .

We have the following proposition, which characterizes
maskable states in closed form.

Proposition 2 A state � is maskable at cut-point � for
initial state �#, with respect to � if and only if

���#, � � 	�� � ��� ��� 	 �
We interpret damage assessment as the process of address-
ing the following two questions, given that we have a state
� which is known (following error detection) to have an
error:

� Whether Recovery is Necessary, i.e. whether or not
the state is maskable: if it is, then recovery is unnec-
essary.

� Whether Recovery is Sufficient, i.e. whether or not
the state is recoverable: if it is not recoverable, then
recovery is insufficient to ensure failure-freedom.

See Figure 1. In this section we discussed the condition of
maskability; in the next section we discuss recoverability.

4.3.3 Imperatives of Error Recovery: Condition of
Recoverability

A state is recoverable if and only if it contains all the nec-
essary information to produce a maskable state. In this
section, we attempt to give meaning to the concept of re-
coverability.

Definition 8 A state � is said to be recoverable at cut-
point � for initial state �#, with respect to � if and only if
there exists a function, say ! , such that ! ��� 	 is maskable.

We resolve to model this property under the form ��&, � � 	��
� � for some function � , and we must now characterize
functions � that produce recoverable states. We then an-
ticipate that the condition of recoverability of � be written
as the conjunction of two clauses: a clause of the form
� � � ��� � � 	 � which expresses under what condition rela-
tion � produces only recoverable states � for each initial
state � , with respect to

�
and � , and a clause of the form

��� , � � 	 � � � which merely expresses that � is obtained
from � , by applying a function (or relation) that only pro-
duces recoverable states. We focus our attention on the
first clause; when a function � satisfies this condition, we
say that it preserves recoverability with respect to

�
and

� . We submit the following definition.

Definition 9 Given specification � and future function
�

,
we say that function � preserves recoverability (or is re-
coverability preserving) with respect to future function

�
and specification � if and only if there exists a function !
(recovery function) such that

� � ! � � ��� ��� 	 �
In other words, a past function preserves recoverability if
and only if we can combine it with some recovery func-
tion ! to achieve (or exceed) maskability. Proposition 1
provides a necessary and sufficient condition for the ex-
istence of such a function ! , which we use to derive the
following proposition.

Proposition 3 Given specification � and future function�
, a past function � preserves recoverability if and only if

� � � � �  � � �� ��� � � 	 � � �
where

�
is an abbreviation for � ��� ��� 	 .
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Proposition 4 If past function � preserves recoverability
with respect to future function

�
and specification � , then

! � � � � � � ��� ��� 	
	
satisfies the equation: � � ! � � ��� ��� 	��
Because the demonic composition is monotonic, we infer
from this Proposition that any relation !  that refines ! sat-
isfies this condition, a fortiori. Hence ! can be used as the
specification of recovery routines.

Example. We consider a simplified flight control loop
defined by a flight control system and an airframe (along
with sensors and actuators), and we decompose / unwind
the loop as follows:

� The past function,
-

, is the function defined by the
mapping from actuator inputs to sensor outputs; see
Figure 3.

� The future function,
�

, is the function of the flight
control software ( ��� ��� ), which analyzes sensor
outputs and pilot commands, and computes actuator
inputs, that are then fed to the actuators.

� The specification � maps actuator inputs and pilot
commands into new actuator inputs; we let � capture
the minimal requirements that must be satisfied to
preserve the safety of the flight.

The condition of recoverability preservation can be in-
terpreted as the minimal requirement that the past func-
tion � (implemented by the aggregate actuators-airframe-
sensors) must satisfy at all times to ensure the survivabil-
ity of the flight. If this condition is not satisfied, then
no recovery is possible, irrespective of what component
��� ��� may do. �

The following proposition provides a simple (simpler)
sufficient condition of recoverability preservation.

Proposition 5 Given a specification � and a future func-
tion

�
, if � is regular and the following conditions are

satisfied

� ���� � � � and � � � 	 � � ��� 	
then � preserves recoverability with respect to future func-
tion

�
and specification � .

The most important clause of this proposition is the con-
dition

� � � 	 � � ��� 	
which we illustrate by a simple example. For the sake of
simplicity, we assume that both � and � are function, to

facilitate the discussions. Under this hypothesis, the con-
dition above provides that in order for � to preserve recov-
erability with respect to � , it has to define a finer partition
of its domain than � . We submit that this condition is ac-
tually quite intuitive: the condition is not saying anything
about what values function � assigns (since the function
can be faulty) but is saying something about the nucleus of
the function (i.e. how the function divides its domain into
equivalence classes, or equivalently, how much informa-
tion the function preserves about its argument). Further-
more, the condition is providing that function � preserves
recoverability if its nucleus is as fine or finer than that of
� . We present a simple example to show how intuitive
this is: Imagine that � is the function

� � � �� � �  	�� �  � �����	��
 ���
The nucleus of � is then the equivalence relation

� ��� 	 � � �� � �  	�� �������
 � �  ���	��
 � �

which has six equivalence classes (the congruence classes
modulo 6). A past function � preserve recoverability with
respect to � if its nucleus is a subset of � ��� 	 , i.e. if it de-
fines a finer partition of its domain than � does. Examples
of functions that preserve recoverability include:

��� � � ��� � �  	�� �  � �����	� �&" � � ��� � � ��� � �  	�� �  � �����	� " ( � � � �

Examples of functions that do not preserve recoverability
include:

��� � � ��� � �  	�� � �� �����	� � � � ��� ��� ��� � �  	�� � �� ���������� �
The reader can easily see why it is possible to recover
from an error produced by the first two functions, but im-
possible with the last two.

5 Conclusion

In [24] we had advocated the use of a wide range of
methods to verify/ validate complex systems, by virtue
of the law of diminishing returns, and of our observation
that a system can be verified against complementary sub-
specifications in an additive manner; the approach we ad-
vocated is contingent upon the methods being formulated
in the same mathematical model. In this paper we have
taken a step further by attempting to capture ideas of sys-
tem fault tolerance using relational mathematics, which
have traditionally been used for program proving/ pro-
gramming language semantics/ programming calculi, etc.
[5, 7, 29]. The most important result of this paper, we
feel, is Proposition 3, which highlights the condition that
must hold between a target (ideal) function that we must

8



Actuators

Airframe Sensors

Flight
Control

Software

�

Sensor
Outputs

Airframe
State

�

� � � � �

�

Pilot Commands

��
�� � �

�
� �

Figure 3: Outline of a Flight Control Loop.

compute, and the minimal requirement that actual (possi-
bly faulty) functions must fulfill to satisfy the recoverabil-
ity property. In order to simplify the condition and give
the reader some intuition for its meaning, we have consid-
ered a sufficient condition for recoverability preservation,
which provides that an actual function preserves the re-
coverability of an ideal function if the level sets it defines
over its domain define a finer partition than the levels sets
of the ideal function —which is intuitively understand-
able. In its generalized form, Proposition 3 formulates
this condition for specifications that are not deterministic,
nor even regular.

We have not explored applications and extensions of
this work in much detail, though we envision the follow-
ing applications:

� Proving Recoverability Preservation as a Substitute
for Proving Correctness. In a complex system, where
it may be unrealistic or unreliable to prove that the
past function produces only correct (or maskable)
states, we may instead want to prove that the past
function preserves recoverability and takes measures
to recover when needed. Because recoverability
preservation is a much weaker property than mask-
ability, the former may be easier and produce more
dependable conclusions.

� Proving Recoverability Preservation as a Comple-
ment for Proving Correctness. Proving maskability
/ correctness and proving recoverability preservation
need not be viewed as mutually exclusive. As we
advocated in [24], they can be done simultaneously,
though with different component specifications.

� Using Recoverability Preservation to Catalog Re-
coverable Faults. The research discussed in this pa-
per stems from an earlier project whose purpose was

to model, specify and analyze a fault tolerant flight
control system [8, 15]. The key idea of this system
is that it should be able to continue flying an aircraft
even after the aircraft has lost some flight surfaces
or the control of some flight surfaces or the feedback
from some sensors; clearly, this is possible only for
a limited amount of damage. We argue that the con-
dition of recoverability preservation can be used to
catalog those fault modes that can indeed be recov-
ered from, and eventually, what recovery action must
be applied for these fault modes. Some faults are so
extensive (e.g. loss of major surfaces, loss of con-
trol of major actuators) that there is no way to re-
cover, no matter what the flight control system does.
The condition of recoverability preservation allows
us to distinguish between faults that can in principle
be recovered from (with appropriate provisions in the
flight control system) from faults that cannot be re-
covered from (and the flight control system is not to
blame).
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