
140 Volume 2, Issue 4 Copyright © 2002 John Wiley & Sons, Ltd. focussoftware

Frederick Sheldon1

Software Engineering for Dependable
Systems Laboratory
School of EECS, Washington State
University, Pullman, Washington
99164-2752, USA
1 Currently on leave at Daimler Chrysler
Research Information and Community/
System Safety (RIC/AS) in Stuttgart.

Winter 2001focus
review

A Review of
Some Rigorous Software

Design and Analysis Tools
Introduction
Rigorous development generally means
the application of some sort of formal
method(s) in software development. A
formal method [1][2] in software
development is a method that usually
provides: (1) mathematically based
notations (such notations are mostly either
textual or graphical, but tabular
representations can also be seen in [3][4]),
(2) a process for describing how a software
artifact (specifications, designs, source
code, etc.) is produced, and (3) software
tools for formally deducing or checking
about properties of the artifact so
expressed. Although the cost of applying
formal methods could be high at early
phases of the Software Life-Cycle (SLC),
the overall cost decreases and the overall
productivity increases [5]. Furthermore,
formal methods usually make it easy to
find errors in the requirements,
specification and/or design, which is
crucial for the development of mission-
critical and safety-critical systems where
extensive tests are generally impossible
[6]. The value of such methods has
already been witnessed in handling several
industrial-sized examples [7][8]; in some
cases, these methods are already being
used on a regular basis in industry.

In any formal method, powerful software
tools are usually indispensable for the
effective application of formal notations
and for reasoning about various software
artifacts. In this paper, we survey some
popular software tools for applying formal
methods in rigorous software design and
analysis. They are PVS, Spin, UltraSAN,
Statemate and Z/EVES, which are broadly

recognized by both the academic and
industrial sectors. Generally, formal
methods and their supporting tools can be
applied in any phase of the SLC from
requirements analysis to software
maintenance and there are numerous
methods and tools available. However, in
this paper we focus on the tools that
facilitate the application of formal
methods to the upstream activities of the
SLC, namely requirements, specification
and design. This does not mean to say
that formal methods are not important to
the other aspects/phases of the SLC.
However, the simple reason is that
obtaining consistent and complete
(unambiguous) requirements specification
and design is of overwhelming importance
to safety-critical and mission-critical
systems with which we are primarily
concerned. Because these tools are built so
closely upon some basic underpinnings,
we cannot proceed without providing
some general characterizations (next
section). Later, each of five tools is
described with some established criteria
like history, underlying notation,
advantages and disadvantages,
applicability and representative examples.
We summarize this survey in the closing
section.

Formal Methods
Formal methods can be applied in various
phases of the software development
process, but they are mainly used for
system specification, verification and
validation. Therefore, in this section, we
will describe some background on
specification languages, verification

The increasing maturity of formal
methods cannot be attributed to only

the formal notations and
methodologies that are accessible to
system designers. The development
of powerful software tools that apply

and facilitate the use of these
notations and methodologies

effectively has been crucial. In this
paper, FREDERICK SHELDON,

GAOYAN XIE, OREST PILSKALNS
and ZHIHE ZHOU survey some well-
known software tools that have been
deployed and used by both academic

and industrial sections for rigorous
design and analysis. The software
tools are categorized by both the

notations and methodologies, upon
which they are based. We mainly

discuss the tools’ underlying formal
methods, achievements and scope of

applicability. We finish with the
future trend of the development of

such software tools.

software2-4 260302 8:49 AM Page 140

Frederick Sheldon
This is a reprint of an article published in the 'Software Focus," Vol. 4, Number 2, 140-150 (2002). Copyright 2002 John Wiley & Sons, Ltd.
http://www.interscience.wiley.com

techniques, program refinement
techniques and validation techniques
respectively.

Specification Languages

Formal specification languages usually
provide mathematically based notations to
describe a system’s structure, behavior and
desired properties. The kinds of
properties might include functional
behaviors, timing constraints,
performance characteristics, etc. In
general, there are two kinds of formal
specification languages that have been
used to write detailed specifications for
non-trivial software systems [9]:

• Model-based. With model-based
specification languages, a model of the
system is created using mathematical
constructs such as sets and sequences
and the system operations are defined
by how they modify the system state.
Typical model-based specification
languages are CSP [10] and Petri Net
[11], while Z [12] is a general
specification language that is normally
used in a modeling style.

• Algebra-based. With algebra-based
specification languages, a system is
described in terms of operations and
their relationships. Typical algebra based
specification languages are Larch [13]
and Lotos [14].

Algebraic approaches are suitable to
describe systems where the object
operations are independent of the object
state, such as the interface specification.
While model-based specification exposes
the system state and defines the
operations in terms of changes to that
state. Additionally, some specification
languages like Z and Larch focus on
specifying behaviors of sequential systems,
while specification languages like CSP and
Petri Net are generally used to specify
concurrent systems.

Verification Techniques

Verification techniques go one step
beyond specification languages; they are
used to analyze whether a given
specification meets its properties. Simply,
verification techniques can be grouped
into two categories:

• Deductive Verification. Deductive
Verification normally refers to the use of
axioms and proof rules to prove the

correctness of a system, such as the
partial correctness proof of programs
with the Hoare logic [15] and theorem
proving techniques [16]. Typical
deductive verification systems are HOL
[17] and PVS [18].

• Model Checking. Model Checking is a
technique that relies on building a finite-
model of a system and uses an
exhaustive search of the state space of
the model to check that a property holds
in that model. The typical model
checkers are SMV [19] and Spin [20].

Deductive verification is a time-consuming
process and it also requires much
expertise in logic reasoning. The proof of
a single protocol can last days or months.
Consequently, it is applied primarily to
highly sensitive systems such as security
protocols. Another disadvantage of
deductive verification is that it cannot be
completely automated, due to the fact that
correct termination of the program is not
decidable. However, an advantage of
deductive verification is that it can be used
for reasoning about infinite state systems.
Though the model checking technique
[21] has the advantage that the
verification can be performed
automatically, it has the drawback that it
currently can only be applied to the
verification of the finite-state systems.

Program Refinement Techniques

Program refinement is a technique of
developing computer programs in a
stepwise way. The idea of program
refinement originates from [22], where
the author argues that the ‘Program should
be gradually developed in a sequence of
refinement steps. In each step, a given task is
broken up into a number of subtasks. Each
refinement in the description of a task may be
accompanied by a refinement of the description
of the data that constitutes the means of
communication between the subtasks.’
Generally, refinement is used to refer to
the process of refining an abstract
specification into an imperative program
through a series of transforming steps
while preserving all properties that the
original specification holds.

A classic formalism that applies this idea is
the Refinement Calculus, described by
Ralph-Johan Back [23] in his Ph.D. thesis
in 1978. This formalism provides a
general mathematical theory for the
stepwise refinement approach to program
construction. The refinement calculus

extends the weakest precondition
technique of Dijkstra [24] to procedural
and data refinement, and can also be used
for stepwise refinement of parallel and
distributed programs. Algorithms are
derived by a series of correctness
preserving refinements and program
transformations from very high-level
specifications. The derivation is carried on
until a program that meets the stated
criteria of efficiency and implementability
has been constructed. A group at Åbo
Akademi University in Finland has
developed a prototype tool called the
Refinement Calculator [25], which
supports this type of refinement.

One of the earliest approaches to couple
formal methods with stepwise refinement
was the VDM (Vienna Development
Method) [26]. VDM encompasses the
entire program development process from
specification to implementation.
Operations are specified in the now
common precondition, post-condition
style. After specification, abstract data-
types are replaced by concrete data-types
in a process called data reification. The
next stage of the development, called
operational decomposition, is the stepwise
derivation of an implementation. Each
step of the decomposition involves
introducing a programming language
construct. There is a small collection of
decomposition laws that are used to justify
these steps (one per program construct).
It is not expected that users of VDM will
want to develop their own decomposition
rules. Indeed, the semantics of the
programming language and the proofs of
the decomposition laws are not included
in the usual expositions of VDM. VDM
also has an object-oriented extension,
called VDM++. VDM++ has been used
in various projects for requirement
specification and validation [27].

One of the most widely used formal
methods in Europe that incorporate the
program refinement idea is the B-Method,
created by Jean-Raymond Abrial [28]. The
B-method makes use of a notation based
on the mathematical concepts of set
theory. Generally, the initial requirement
is written in natural language, or by
juxtaposition of several descriptions:
graphs, automatons, logics tables, Petri
Nets, etc. A B model is constructed by
reusing the requirements description. The
B model is thereafter refined until a
complete implementation of the software
system is obtained. Several refinements
can fulfill a specification and the choice of

Winter 2001 focus review

141Volume 2, Issue 4Copyright © 2002 John Wiley & Sons, Ltd.focussoftware

software2-4 260302 8:49 AM Page 141

solutions rests on various criteria such as
the processing speed, the precision of
calculation or demonstrable simplicity.
The consistency of the model and the
conformity of the final program in relation
to this model are guaranteed by
mathematical proofs. The demonstration
of these proofs in a concrete case can only
be considered with the use of automatic
proof tools, such as those provided by
Atelier B [29]. A commercially available
software tool that is based on the B-
Methods is the B-Toolkit [30].

Validation Techniques

Initially, a system model is created at an
abstract level (i.e., abstract model). To do
an analysis of the system we need
measures of the system using some type of
measurement technique (i.e., we start at
the Real System). The Proposed System is
detailed later, but without a real system to
compare to, a great deal of work is
needed to explore the parameter space.
The data collected from system
measurements are used to parameterize
the abstract model. However, usually the
system model will still contain too many
details that prevent an efficient system
analysis. In a second abstraction step the
computational model is created which
allows an easier and more efficient system
analysis. The computational model can be
considered to be the highest level of
model abstraction. The process of refining
the computational model is a matter of
building confidence in the model. Thus,
the process of operational validation is
performed which results in a modified
system and with modified system input
parameters/data. This step can be
repeated until the computed performance
measures fulfill the requirements.

If there exists no way to gather system
measurements for the purpose of
parameterizing the system model then
there may be a great deal of more work to
perform. In addition, the stopping rule
for accomplishing operational validation
is now based on relative comparisons from
one iteration to the next. Different model
parameterizations are used to compare
the different design (or implementation)
candidates with the goal of making
architectural design decisions. In simple
terms, using a technique commonly
known as sensitivity analysis to optimize
the model’s structure toward achieving
critical functional and non-functional
requirements.

There are two basic methods used to solve
the system model: mathematical and
system simulation. The mathematical
solution method may be further classified
into analytical (non-state-space-based) and
numerical (state-space-based). The
mathematical method works by solving a
system (or set) of linear or differential
equations while a simulation is
differentiated into discrete event
simulation and continuous simulation.
Combining mathematical techniques with
simulation is called hybrid simulation and
when possible, independent components
are solved separately using either
technique and are then combined in a
stepwise fashion (aggregation/
disaggregation). One very well known
problem when using the numerical
method is the high computational cost
due to huge state space.1

The process of validation demonstrates
that the model accurately represents the
desired system behavior with enough
detail. In general, there are three
important steps:

• verify the model assumptions against the
real system (reality check),

• analyze the model structure and the
logical relations among its components,

• compare the behavior of the model
under different experimental conditions
(e.g., different load models).

We distinguish between operational and
conceptual validation because there may
not be a way to parameterize the model
(i.e., extracting system measures from an
existing system or its analog). In the
conceptual validation phase the
computational model is compared to the
system model (i.e., its more detailed and
less abstract predecessor). This
comparison must be done to test the
assumptions of the higher-level
abstraction to determine if the
computational model’s assumptions are
correct or at least reasonable. In fact, this
may be a process of adjusting things down
to a tolerable level of simplification.

Conversely, during operational validation,
the computed performance results (i.e.,
predictions and/or estimates) are
compared to the system measures. This is
a very important step because it
determines how the system model (and
input parameters) may be modified to
more closely describe the actual system
behavior. This process of refinement gives
a computational model that more
accurately predicts the real system
behavior under different (or new)
conditions.

The validation phase will result in a
validated final model that may have been
modified with respect to its structure
and/or its parameterization (i.e.,
relationships among variables,
initialization and initial state etc.). For
example, modifications to the model can
be carried out with the goal of predicting
the behavior for the system under study
(SUS). When used in this sense, parts of
the model are removed or changed in an
effort to investigate the cause and effects
of proposed enhancements or
adaptations. Furthermore, once a model is
validated it may be used to perform
sensitivity analysis, which can be used to
support or discredit the modeling
assumptions and analysis conclusion(s).
The two most common forms of sensitivity
analysis include:

• Testing the robustness of the
computational results against the model
assumptions. This requires that the
model be analyzed some number of
times to allow comparing the results
from one run to the next.

• Obtaining bounds on the expected
performance measures by evaluating the
model under worst and/or best case
assumptions.

In effect, the modeling cycle yields many
insights into the SUS. These insights
result from the different steps in the
modeling cycle and are used to improve
the system in some desired aspect. Thus,
given a formal model and its external
constraints, we can explore what
mechanisms are available to optimize the
system behavior. For example, consider
such factors as the SUS topology, fault
tolerance, timeliness, resource allocation,
communications etc. How do such
mechanisms impact the behavioral aspects
such as reliability and performability?
Refining the system model can reveal
trade-offs in design alternatives such as

Winter 2001 focus review

142 Volume 2, Issue 4 Copyright © 2002 John Wiley & Sons, Ltd. focussoftware

1 Taking a pragmatic view, there are two
ways to cope with this. First we may somehow
tolerate or modify the large state spaces, or
second, we may prevent the origination of
such large state spaces. Depending on what
type of analysis is desired, either transient or
steady state, different efficient solution
techniques are available.

software2-4 260302 8:49 AM Page 142

deciding what features of the system
should be changed to improve the
system’s reliability or validating certain
assumptions with respect to various
performance goals. More detail on this
can be seen in [31].

Software Tools Used for
Rigorous Development
This section elaborates on five typical
software tools for rigorous development,
and the comparisons between them are
summarized in Table 1.

The PVS system
PVS [32] (Prototype Verification System) is
a deductive verification system developed
by SRI and is mainly intended for the
formalization of requirements and design-
level specifications, and for the analysis of
intricate and difficult problems. It has
been chiefly applied to algorithms and
architectures for fault-tolerant flight
control systems, and to problems in
hardware and real-time system design.
Several examples are described in
[18][33][34]. Projects involving PVS are
ongoing with NASA and several aerospace
companies including a microprocessor for
aircraft flight-control, diagnosis and
scheduling algorithms for fault-tolerant
architectures, and requirements

specification for portions of the Space
Shuttle flight-control system.

Basically, PVS is based on a theorem
proving technique. The PVS system
consists of a specification language, a
number of predefined theories and a
theorem prover. PVS exploits the synergy
between a highly expressive specification
language and powerful automated
deduction; for example, some elements of
the specification language are made
possible because the type-checker can use
theorem proving. This distinguishing
feature of PVS has allowed clear and
efficient treatment of many examples that
are considered difficult for other
verification systems.

The specification language of PVS is based
on classical, typed higher-order logic. PVS
specifications are organized into
parameterized theories that may contain
assumptions, definitions, axioms, and
theorems. An extensive prelude of built-in
theories provides hundreds of useful
definitions and lemmas and user-
contributed libraries provide many more.

The PVS theorem prover provides a
collection of powerful primitive inference
procedures that are applied interactively
under user guidance within a sequent
calculus framework. The primitive
inferences include propositional and
quantifier rules, induction, rewriting, and
decision procedures for linear arithmetic.

The implementations of these primitive
inferences are optimized for large proofs:
for example, propositional simplification
uses binary decision diagrams, and auto-
rewrites are cached for efficiency. User-
defined procedures combine these
primitive inferences to yield higher-level
proof strategies. Proofs yield scripts that
can be edited, attached to additional
formulas, and rerun. This allows many
similar theorems to be proved efficiently,
permits proofs to be adjusted economically
to follow changes in requirements or
design, and encourages the development of
readable proofs. Figure 1 from John
Rushby’s slides [35] gives an overview of
the GUI of PVS using Greatest Common
Divisor (GCD) as an example. PVS includes
a BDD (binary decision diagram)–based
decision procedure for the relational mu-
calculus and thereby provides an
experimental integration between theorem
proving and CTL (computing temporal
logic) model checking [36]. As a theorem
prover, PVS has the inherent disadvantages
of a deductive verification system we
mentioned in section 1.1.2. But it is still
worthwhile to use PVS to treat those highly
sensitive and dependable systems, such as
nuclear power plants [37] and security
protocols [38].

The Spin model checker
Developed at Bell Labs in the formal
methods and verification group starting in
1980, Spin [20] has been a widely
distributed software package that supports
the formal verification of distributed
systems. Spin is mainly used to trace
logical design errors in distributed systems
design (e.g., operating systems, data
communications protocols, switching
systems, concurrent algorithms). It checks
the logical consistency of a specification
and reports on deadlocks, unspecified
receptions, flags incompleteness, race
conditions, and unwarranted assumptions
about the relative speeds of processes.

Spin’s underlying mechanism is model
checking. However Spin can be
distinguished from conventional model
checking tools because it doesn’t require
the construction of a global state graph
[39] (or a Kripke structure), that is why
Spin is called an on-the-fly model-checker.
As a model checker, Spin uses a high level
language called Promela to specify the
system model, and supports all
correctness properties expressed as system
or process invariants or as general

Winter 2001 focus review

143Volume 2, Issue 4Copyright © 2002 John Wiley & Sons, Ltd.focussoftware

Table 1 Comparisons of five rigorous software tools

software2-4 260302 8:49 AM Page 143

LTL(linear temporal logic) [40]
requirements, either directly in the syntax
of LTL or indirectly as Büchi Automata
[41]. Figure 2 shows the Promela and
Büchi Automata representations of the
LTL formula ‘[](pUq)’ (left) and ‘[] > p’
(right) respectively.

Spin can be used in three basic modes:

• As a simulator, allowing for rapid
prototyping with a random, guided, or
interactive simulation.

• As an exhaustive state space analyzer,
capable of rigorously proving the validity
of user specified correctness
requirements (using partial order
reduction theory to optimize the search).

• As a bit-state space analyzer that can
validate even very large protocol systems
with maximal coverage of the state
space (a proof approximation technique).

Figure 3 depicts the structure of and
workings of Spin. Besides all the benefits

of model checking, Spin has other
advantages:

• Spin supports dynamically growing and
shrinking numbers of processes, using a
rubber state vector technique.

• Spin supports both rendezvous and
buffered message passing, and
communication through shared memory.
Mixed systems, using both synchronous
and asynchronous communications, are
also supported.

• Spin supports random, interactive and
guided simulation, and both exhaustive
and partial proof techniques.

• Spin exploits efficient partial order
reduction techniques, and BDD-like
storage techniques to optimize the
verification runs.

However, due to the inherent restrictions
of model checking mentioned in Section
1.1.2, Spin can only be used to verify the
finite-state system. Models that can be
specified in PROMELA are, therefore,
required to be bounded, and have only
countably many distinct behaviors. Spin is
by far one of the most successful software
tools for formal verification and it is
especially useful for developing
communication protocols.

Applications of Spin to real-life problems
also span a broad range of fields. The
obvious applications are to prove the
correctness of generic distributed
algorithms, such as the leader election
algorithm, nonstandard mutual exclusion
algorithms [42], distributed process-
scheduling algorithms [43], and

Winter 2001 focus review

144 Volume 2, Issue 4 Copyright © 2002 John Wiley & Sons, Ltd. focussoftware

Figure 1 GUI of PVS

Figure 2 Automaton representation of LTL formulas Figure 3 Structure and process of spin

software2-4 260302 8:49 AM Page 144

rendezvous algorithms. Spin has also been
applied to the verification of data transfer
protocols [44], error control protocols,
controllers for reactive systems [45],
railway signaling protocols and circuitry,
security protocols [46], flood surge control
systems, Ethernet collision avoidance
techniques [47], etc. Holzmann [48] gives
a detailed treatment on how to design and
validate communication protocols with
Spin. Recently, Spin was used successfully
to analyze modules of a space-craft control
system to identify undiscovered mission
critical errors [49]2.

UltraSAN
UltraSAN is a software tool developed by
the UltraSAN group in the Center of
Reliable and High-Performance
Computing at the University of Illinois at
Urbana-Champaign. This tool is very
suitable for mode-based performance,
dependability and performability
evaluation of computer, communication
and other systems [50]. The UltraSAN
tool provides high-level modeling
constructs and offers hierarchical
modeling by means of composed models.
Both analytic solvers and simulators are
provided, and the tool also has a report
generator, which facilitates the generation
of graphs and tables from the obtained
results.

A system is modeled as a stochastic activity
network (SAN), which is an extension of a
Petri net. A SAN extends Petri nets by
allowing transitions to be associated with
random times and to have multiple output

paths with each having certain probability,
and thus transitions are referred to as
activities in a SAN. Gates, a new type of
model construct, are introduced, which act
as predicates to define which activities are
allowed to fire at any given time. Reward
functions are given for activities to collect
data for the reward variables that are
defined according to the desired
performance measurements.

The UltraSAN GUI, shown in Figure 4,
provides the main control center when
UltraSAN starts up. It contains menus and
buttons that will bring up other utility
windows for editing and solving SANs.
Figure 5 shows the user interface of the
SAN sub-net editor. The entire system
model is divided into several subnets, and
each of them is created using the SAN
sub-net editor. High-level model
constructs are provided in the sub-net
editor. The SAN model shown in Figure 5
gives an example of a CPU module in a
multi-processor system.

The process to build and solve a model
for a given system using UltraSAN
includes the following steps:

• Build subnets: The system is dissected
into subsystems and each subsystem is
modeled as a SAN subnet.

• Create the composed model: Sub-nets
and/or replicas of subnets are joined

together according to their shared places
and result in a composed model.

• Create a solvable model: Reward
variables are defined and the model is
now solvable.

• Study editor: values are assigned to
certain global variables, and ranges and
increments are defined for other global
variables where we want to know how
the change of their values will impact
the performance of the system.

• Choose an appropriate solver and apply
it to solving the system model.

• Generate reports and plot graphs using
the Report Generator.

The UltraSAN tool is based on stochastic
process theory. When certain criteria are
met, for example, all activities are
associated with exponentially distributed
random times, a SAN can be converted to
a Markov model because the underlying
stochastic process is actually a Markov
process. Both the analytic solver and
discrete event simulators are applicable to
solving Markov models. To handle the
state space explosion problem a Reduced
Base Model Generator is provided as a
tool that generates the state space and the
state transitions of the stochastic process.
This tool incorporates a technique based
on subnet replication to reduce the state

Winter 2001 focus review

145Volume 2, Issue 4Copyright © 2002 John Wiley & Sons, Ltd.focussoftware

2 The Remote Agent (RA) embedded software
(for the DEEP SPACE 1 space-craft) was
model checked using in the PROMELA
language of SPIN and then two properties,
that were later formulated by the RA
programmers, were verified. Interestingly
both properties were broken and a total of
five flawed code fragments were identified (a
very successful result). According to the RA
programming team, the effort has had a
major impact, locating errors that they
believe would not have been located
otherwise and in identifying a major design
flaw. As an interesting aftermath, one of the
five error patterns identified was mistakenly
reintroduced in a different part of the plan
execution module (not examined using SPIN)
that caused a deadlock during flight in space.
The problem was repaired with the help of
SPIN which avoided a concurrency bug that
could have caused a mission critical failure.

Figure 4 The UltraSAN control panel

software2-4 260302 8:49 AM Page 145

space of the Markov model, which would
otherwise quickly become unmanageable
for even reasonably sized SANs. For those
SANs that cannot be converted to Markov
models, discrete event simulators are the
only solvers applicable.

Unlike Z/EVES or Spin, UltraSAN takes
into consideration time information for a
given system modeled as a stochastic
process. Hence, UltraSAN is well suited
for evaluating the system performance.
These measures are hard to obtain
without a stochastic model [51]. UltraSAN
can also be used for dependability analysis
[52]. The advantages of UltraSAN can be
summarized as follows:

• UltraSAN supports composed model
construction. Replicating and joining
small models can obtain large models.
Model replication facilitates reusing
small models.

• UltraSAN provides both analytic solvers
and simulators.

• UltraSAN has techniques to reduce state
space.

• UltraSAN can solver both Markov models
and non-Markov models.

Although UltraSAN provides plenty of
solvers, there are certain limitations on
using these solvers. Analytic solvers can

only be used for solving Markov or semi-
Markov models. These models must have
a finite state space. For a semi-Markov
model, analytic solvers are applicable only
when the model has at most one enabled
deterministic activity at the time.
Simulators can handle all models, but an
inherent drawback of simulation is the
long times necessary to obtain reasonable
results for rare event simulation. A SAN
for a large system tends to be quit
complicated. There are many global
variables and reward variables.
Determining the values for those variables
and optimizing these parameters is
difficult. One should have a thorough
knowledge of SANs and the tool to handle
such models. Moreover, UltraSAN models
are not easily modified if the interconnect
topology changes.

STATEMATE
I-Logix’s STATEMATE is a complex
graphical modeling tool with code
generation and simulation capabilities. It
is often used in the requirements,
specification, and design phases of
reactive embedded systems. Through the
use of graphical formalisms, it allows the
user to create complete specifications that
describe a system’s performance. The
specification is executable, which allows

for simulations that can test the systems
capabilities and check for correct behavior
at the earliest stages of design. In
addition, the executable specification
allows the customer and engineers to
easily proceed through the iterative
process of verifying that all the
requirements have been satisfied.

STATEMATE uses modeling languages,
which include Statecharts, Sequence
Diagrams, Activity-Charts, and Module-
Charts. These languages enable the user
to develop various behavioral, functional,
and structural views of a system.
Statecharts and Sequence Diagrams
examine the ‘behavior’ of systems by
exploring conditions and events that
cause transitions between states. A
Statechart can be considered a
generalized state-transition diagram with
multi-level decomposition. UML
statecharts specified by the OMG (Object
Management Group) are very similar, but
differ in semantics when compared to
STATEMATE’s statecharts. The OMG
defines implementation-level semantics
whereas STATEMATE uses requirements-
level semantics [53]. As an example, an
event will live arbitrarily long and actions
take time with implementation-level
semantics as opposed to STATEMATE,
where events exist for one step and
actions are instantaneous. The
‘functional’ view of the system is
embodied in activity-charts, which
determine the processes, functions, and
the flow of information by using graphical
diagrams. Module-charts are useful in
analyzing the actual ‘structure’ of the
system from a hierarchical sub-system
perspective.

Let us inspect a simple example of an
automobile’s gear controller that
demonstrates the diagrammatic
capabilities of STATEMATE. Figure 6,
adapted from Ecosoft’s project 10407 [54],
contains the top-level design of the
controller, including the major sub-
activities and the interfaces between these
activities and the external environment:
the driver motor, mechanical gearbox,
and clutch. In this example, the activities
are obtained by completing a structural
analysis of a completed system. Notice
that only the data flow and not the control
flow is present in order to reflect the real
system, since control flow is an abstract
entity. A hierarchy of sub-activities can
quickly be formed allowing for a more
understandable model by transferring the
unnecessary details to other diagrams.

Winter 2001 focus review

146 Volume 2, Issue 4 Copyright © 2002 John Wiley & Sons, Ltd. focussoftware

Figure 5 CPU module in subnet editor

software2-4 260302 8:49 AM Page 146

The ‘Algorithms’ activity in Figure 6 is
broken out as a separate activity chart
permitting the user to create a detailed
specification without the additional
clutter.

Figure 7 models the transition between
gears and demonstrates how a Statechart
can quickly be created for an activity in an
activity diagram. Once the activity charts
and Statecharts have been completed
STATEMATE can take the specification
for the gear controller and generate C or
ADA code that will allow the user to run
simulations. For example STATEMATE
would allow the user to enter an input to
the motor, such as the amount of gas
pedal depression. We would then see the
results of our input, hopefully through a
successful gear change.

To achieve a better understanding of the
power of STATEMATE let us briefly look
at the theoretical underpinnings by
examining one of the diagrammatic
languages in more detail. Statecharts are
similar to finite state machines and are
represented by the tuple <S, T, E, V>
where S is a set of states, T is a set of
transitions, E is a set of events and V is a
set of variables. There are three possible
states: BASIC, OR, AND. BASIC states
have no sub-states, OR and AND states
have sub-states, known as orthogonal
components, that are related relatively by
the exclusive-or relation plus the and
relation. Being in an OR state means
being in only one of its sub-states,
dissimilarly, being in an AND state
implies being in all of its orthogonal
components. Changes among states are
represented by a transition (i.e., event
[condition] / action). An event is an
instantaneous occurrence of a stimulus
(trigger), a condition is a predicate that
must be satisfied for a transition to occur
and an action may generate other events
or perform computations. Thus,
Statecharts = finite state machines +
depth + orthogonality + broadcast. The
depth is achieved by OR states and
orthogonality is achieved by AND states.
Broadcast is used to communicate among
states and is achieved by the action of a
transition. In other words, when a
transition is triggered, an action
generates an event, which we assume is to
be globally broadcast [55]. Statecharts
(with STATEMATE tool-support) provide
a natural way to specify complex reactive
systems both in terms of how objects
communicate and collaborate and how
they carry out their own internal

Winter 2001 focus review

147Volume 2, Issue 4Copyright © 2002 John Wiley & Sons, Ltd.focussoftware

Figure 6 Activity chart for a gear controller

Figure 7 Statechart for transitions between gears

software2-4 260302 8:49 AM Page 147

behavior. Together Activity-charts,
Sequence Diagrams and Statecharts are
used to describe the system functional
building blocks, activities and the data
that flows between them. The module
charts are most useful at gaining
knowledge of the physical structure of the
system. These languages are highly
diagrammatic in nature, constituting
full-fledged visual formalisms, complete
with rigorous semantics providing an
intuitive and concrete representation
for inspecting and checking for conflicts
[56].

In conclusion, STATEMATE provides an
excellent array of tools that can aid in the
requirements, specifications, and design
phases of a project [57]. Due to its visual
nature STATEMATE allows customer and
engineering staff to minimize design
miscommunication [54]. One of the only
drawbacks of STATEMATE is that the
generated code can be large and
unwieldy, however, once running, it does
provide a venue for quality control at the
earliest stages of development.

Z/EVES
Z/EVES [58][59] is an interactive software
tool developed by Odyssey Research
Associates (ORA), Canada, which
integrates the Z [12][60] specification
language with EVES [61] — an automated
deduction system of ORA. The Z’s
notations are based on some mathematic
structures like sets, sequences, relations
and functions. It is mainly used to write a
system’s specification by defining all states
of a system [62], and the ways in which
states may change. It can also be used to
describe system properties by defining
some theorems about the system, and to
reason about possible refinements of a
system design. Though Z is flexible for
specifying a system’s function and
structure, it is not intended for the
description of non-functional properties,
such as usability, performance, size, and
reliability, neither is it intended for the
description of timed or concurrent
behaviors.

The Z/EVES has a GUI, which can
facilitate the development of a specification
with almost all Z notations. Figure 8
provides you with the specification window
of Z/EVES. Furthermore, Z/EVES can
enable you to analyze or explore a
specification in several ways: (1) Syntax
and type checking, (2) Schema expansion,
(3) Precondition calculation, (4) Domain

checking, and (5) General theorem
proving.

Though Z/EVES is a useful tool to
precisely write down a system’s
specification and to reason about the
specification, two main drawbacks prevent
it from being a handy tool for many
system designers. The first drawback is
that it is inconvenient to input the various
irregular mathematic symbols of Z when
composing a specification. Although
Z/EVES provides a soft-keyboard where
you can directly select with mouse
whatever symbols you need, it is still a
tedious task. The second drawback is
related to its ability to reason about a
specification’s properties defined in terms
of theorems. Although Z/EVES provides
some high-level proof commands, which
can automatically carry out part of the
proof work, the inherent hardness of
theorem proving still makes exploration
of a specification nontrivial and
challenging.

One of the notable examples of Z’s
application is the success of using Z to
formalize part of IBM’s Customer
Information Control System [60].
Measurements taken by IBM throughout
the development process indicated an
overall improvement in the quality of the
product, a reduction in the number of
errors discovered, and earlier detection of
errors found in the process. IBM also
estimated a 9% reduction in the total

development cost of the new release. In
[63], Z proof is compared with various
types of testing approach, and “the most
striking result is that the Z proof appears to be
substantially more efficient at finding faults
than the most efficient testing phase”.
However, Z’s notations being too abstract
has the flexibility to describe complex
systems but it makes it not an easy task to
work out such an abstract description.
Though Z/EVES’s is useful to reason about
some desired properties about a system
specification, it requires too much
expertise on theorem proving. And these
two aspects still hinder them from being
generally accepted by system designers.

Summary
We have introduced some basics of formal
methods and five typical software tools
that can be used for rigorous design and
analysis. It is indisputable that these
software tools, together with other tools
that are not fully discussed here, such as
the Alloy Constraint Analyzer [64],
Möbious [65] etc., have greatly facilitated
the application of their underlying formal
methods. However, the effectiveness and
applicability of these software tools are
also restricted by the limitations of their
underlying formal methods. An exciting
research trend [66] is to combine several
formal methods into one software tool to
eliminate some restrictions. For an
example, the PVS system has adopted a

Winter 2001 focus review

148 Volume 2, Issue 4 Copyright © 2002 John Wiley & Sons, Ltd. focussoftware

Figure 8 The specification window of Z/EVES

software2-4 260302 8:49 AM Page 148

Winter 2001 focus review

149Volume 2, Issue 4Copyright © 2002 John Wiley & Sons, Ltd.focussoftware

References

[1] M. Clarke and J.M. Wing, Formal Methods:
State of the Art and Future Directions. ACM
Computing Surveys, 1996. 28(4): p. 626–643.

[2.] D. Craigen, S. Gerhart, and T. Ralston,
Formal Methods Reality Check: Industrial Usage.
IEEE Transactions on Software Engineering, 1995.
21(2): p. 90–98.

[3.] D.L. Parnas and D.K. Peters. An Easily
Extensible Toolset for Tabular Mathematical
Expressions. in Proceedings of the Fifth
International Conference on Tools And Algorithms
For The Construction And Analysis Of Systems
(TACAS ‘99). 1999. Amsterdam, Netherlands.

[4.] J. Kirby, J. Archer, and C. Heitmeyer. SCR: A
Practical Approach to Building a High Assurance
COMSEC System. in Proceedings of the 15th
Annual Computer Security Applications
Conference (ACSAC ‘99). 1999: IEEE Computer
Society Press.

[5.] A. Hall, Seven Myths of Formal Methods.
IEEE Software, 1990. 7(5): p. 11–19.

[6.] C. Heitmeyer, J. James Kirby, B. Labaw, M.
Archer, and R. Bharadwaj, Using Abstraction and
Model Checking to Detect Safety Violations in
Requirements Specifications. IEEE Trans. on
Software Engineering, 1998. 24(11): p.
927–948.

[7.] J. Crow and B.D. Vito, Formalizing space
shuttle software requirements: four case studies.
ACM Transactions on Software Engineering and
Methodology, 1998. 7(3): p. 296–332.

[8.] M. Hinchey and J. Bowen, Industrial-Strength
Formal Methods in Practice. Formal Approaches
to Computing and Information Technology series
(FACIT), ed. S.A. Schuman. 1999, London:
Springer-Verlag.

[9.] I. Sommerville, Software Engineering. 6th ed.
2001: Addison Wesley.

[10.] C.A.R. Hoare, Communicating Sequential
Processes. 1985, London: Pretice-Hall.

[11.] J.L. Peterson, Petri Net Theory and the
Modeling of Systems. 1981, New York: McGraw-
Hill.

[12.] J. Jacky, The Way of Z: Practical
Programming with Formal Methods. 1997:
Cambridge University Press.

[13.] J.V. Guttag and J.J. Horning,
Larch:Languages and Tools for Formal
Specification. 1994, Heidelberg: Springer-Verlag.

[14.] E. Brinksma and T. Bolognesi, Introduction
to the ISO specification language LOTOS.
Computer Networks and ISDN Systems, 1987.
14(1): p. 25–59.

[15.] K.R. Apt, Ten Years of Hoare’s Logic: A
Survey — Part I. ACM Transactions on
Programming Languages and Systems, 1981.
3(4): p. 431—483.

[16.] D.A. Cyrluk and M.K. Srivas. Theorem
Proving: Not an Esoteric Diversion, but the
Unifying Framework for Industrial Verification. in
Proceedings of the International Conference on
Computer Design: VLSI in Computers and
Processors (ICCD ‘95). 1995. Austin, TX.

[17.] S. Agerholm. Mechanizing Program
Verification in HOL. in Proceedings of the 1991
International Workshop on the HOL Theorem
Proving System and its Applications. 1991. Davis,
California: IEEE Computer Society Press.

[18.] S. Owre, S. Rajan, J.M. Rushby, N.
Shankar, and M.K. Srivas. PVS: Combining
Specification, Proof Checking, and Model
Checking. in Proceedings of the Computer-Aided
Verification, CAV ‘96. 1996: Springer-Verlag.

[19.] K.L. McMillan, Symbolic Model Checking —
an Approach to the State Explosion Problem, in
SCS. 1992, Carnegie Mellon University:
Pittsburgh.

[20.] G.J. Holzmann, The Model Checker Spin.
IEEE Trans. on Software Engineering, 1997.
23(5): p. 279–295.

[21.] E.M. Clarke, O. Grumberg, and D.A. Pled,
Model Checking. 1999, Cambridge,
Massachuesetts: The MIT Press.

[22.] N. Wirth, Program Development by Stepwise
Refinement. Communications of the ACM, 1971.
14(4): p. 221–227.

[23.] R.J. Back and J.v. Wright, Refinement
Calculus: A Systematic Introduction. Graduate
Texts in Computer Science. 1998: Springer-Verlag.

[24.] E.W. Dijkstra, A Discipline of Programming.
1976: Prentice-Hall.

[25.] M. Butler, J. Grundy, T. Långbacka, R.
Ruksenas, and J.v. Wright. The Refinement
Calculator: Proof Support for Program
Refinement. in Formal Methods
Pacific’97:Proceedings of FMP’97. 1997.
Wellington, New Zealand: Springer-Verlag.

[26.] C.B. Jones, Systematic Software
Development Using VDM. 2 ed. Prentice Hall
International Series in Computer Science. 1990,
London: Prentice Hall International.

[27.] J. Hörl and B.K. Aichernig, Validating Voice
Communication Requirements Using Lightweight
Formal Methods. IEEE Software Magazine, 2000.
17(3): p. 21–27.

[28.] J.R. Abrial, The B Book. 1996: Cambridge
University Press.

[29.] Atelier B
http://www.atelierb.societe.com/PAGE_B//uk/atb-
01.htm,

[30.] B-core, http://www.b-core.com/,

[31.] F.T. Sheldon and S.A. Greiner, Composing,
Analyzing and Validating Software Models to
Assess the Performability of Competing Design
Candidates. Annals of Software Engineering

–Special Volume on Software Reliability, Testing
and Maturity, 1999. 8: p. 239–287.

[32.] S. Owre, J. Rushby, N. Shankar, and D.
Stringer-Calvert, PVS: An Experience Report, in
Applied Formal Methods — FM-Trends 98, D.
Hutter, W. Stephan, P. Traverso, and M. Ullman,
Editors. 1998, Springer-Verlag: Boppard,
Germany. p. 338—345.

[33.] J. Rushby, Specification, Proof Checking,
and Model Checking for Protocols and Distributed
Systems with PVS. 1997, SRI International
Computer Science Laboratory.

[34.] D.W.J. Stringer-Calvert, S. Stepney, and I.
Wand. Using PVS to Prove a Z Refinement: A
Case Study. in Proceedings of the FME ‘97:
Formal Methods: Their Industrial Application and
Strengthened Foundations. 1997: Springer-Verlag.

[35.] J. Rushby, A Brief Overview of PVS., SRI
International Computer Science Laboratory.

[36.] H. Saïdi and N. Shankar. Abstract and
Model Check while you Prove. in Proceedings of
the Computer-Aided Verification (CAV’99). 1999.
Trento, Italy: Springer-Verlag.

[37.] S. Koo, H. Son, and P. Seong, Mathematical
Verification of a Nuclear Power Plant Protection
System Function with Combined CPN and PVS.
Journal of the Korean Nuclear Society, 1999. 31:
p. 157–171.

[38.] D. Monniaux. Decision Procedures for the
Analysis of Cryptographic Protocols by Logics of
Belief. in Proceedings of the 12th Computer
Security Foundations Workshop. 1999. Mordano,
Italy: IEEE Computer Society.

[39.] G.J. Holzmann and A. Puri, A Minimized
automaton representation of reachable states.
Software Tools for Technology Transfer, 1999.
3(1).

[40.] R. Gerth, D. Peled, M.Y. Vardi, and P.
Wolper. Simple On-the-fly Automatic Verification
of Linear Temporal logic. in Proceedings of the
PSTV 1995 Conference. 1995. Warsaw, Poland.

[41.] M.Y. Vardi and P. Wolper. An Automata-
theoretic Approach to Automatic Program
Verification. in Proceedings of the First IEEE
Symposium on Logic in Computer Science. 1986.

[42.] G.J. Holzmann, Protocol Design: Redefining
The State of the Art. IEEE Software, 1992. 9(1):
p. 17–22.

[43.] R. Pike, D. Presotto, K. Thompson, and G.J.
Holzmann. Process Sleep and Wakeup on a
Shared-Memory Multiprocessor. in Proceedings of
the Spring EurOpen Conference. 1991. Tromso,
Norway.

[44.] R. Bharadwaj and C. Hemeyer. Verifying
SCR Requirements Specifications Using State
Exploration. in Proceedings of the First
ACM/SIGPLAN Workshop Automatic Analysis of
Software. 1997. Paris, France.

model-checking technique during the
theorem proof process and thus, the
degree of automation of proof can be
improved. Another trend is that some
traditional design tools [67] and modeling
languages [68][69] are including some
kinds of formal notations and reasoning
functionalities, which can be seen as a
good sign of the realization and
acceptance of the importance of formal
methods by general software practitioners.

The authors would like to express
thanks to the reviewers for their kind
and knowledgeable critique. They
provided practical and concrete
suggestions. We wish also to thank Dr
Stefan Greiner, Markus Degen and Dr
Juergen Schwarz at DaimlerChrysler
Research Information and
Communication for their discussion of
operational and conceptual validation.

In addition, we thank two WSU
Graduate Students: Geir Bjune for
his contribution regarding Büchi
Automata and Hye Yeon Kim for her
contribution regarding Statemate.
Finally, we thank C. Michael Holloway
at NASA LaRC for pointing out the
oxymoron viz. specification is
sometimes (appropriately) misspelled
specifiction!

software2-4 260302 8:49 AM Page 149

Winter 2001 focus review

150 Volume 2, Issue 4 Copyright © 2002 John Wiley & Sons, Ltd. focussoftware

[45.] T. Cattel. Using Concurrency and Formal
Methods for the Design of Safe Process Control. in
Proceedings of PDSE/ICSE018 Workshop. 1996.
Berlin, Germany.

[46.] A. Joesang. Security Protocol Verification
Using SPIN. in Proceedings of the First SPIN
Workshop. 1995. INRS Quebec, Canada.

[47.] H.E. Jensen, K. Larsen, and A. Skou.
Modeling and Analysis of a Collision Avoidance
Protocol Using SPIN and UPPAAL. in Proceedings
of the Second SPIN Workshop. 1996. Rutgers
Univ., New Brunswick, N.J.: American
Mathematical Society.

[48.] G.J. Holzmann, Design and Validation of
Computer Protocols. 1991, Englewood Cliffs,
N.J.: Prentice Hall.

[49.] K. Havelund, M. Lowry, and J. Penix,
Formal Analysis of a Space-Craft Controller Using
SPIN. IEEE Trans. on Software Engineering,
2001. 27(8): p. 749–765.

[50.] UltraSAN User’s Manual: Version 3.0.
1995, Center for Reliable and High-Performance
Computing Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign.

[51.] K. Goseva-Popstojanova and K. Trivedi,
Stochastic Modeling Formalisms for Dependability,
Performance and Performability. Lecture Notes in
Computer Science, 2000(1769): p. 403–422.

[52.] J. Couvillion, R. Freire, R. Johnson, W.D.
Obal, M.A. Qureshi, M. Rai, W. Sanders, and J.
Tvedt, Performability Modeling with UltraSAN.
IEEE Software, 1991. 8(5): p. 69–80.

[53.] R. Eshuis and R. Wieringa, Requirements-
level Semantics for UML Statecharts, in Formal

Methods for Open Object-Based Distributed
Systems IV — Proc. FMOODS’2000, September,
2000, Stanford, California, USA. 2000, Kluwer
Academic Publishers.

[54.] W. Gerst, A. Imminger, and R. Pfister,
Improvements in Specification, Design and Test of
Software for Industrial and Automotive Controllers.
1996, Getreg.

[55.] S.D. Cha and H.S. Hong. Specification and
Analysis of Real-Time Systems in Statecharts. in
Proceedings of the 2nd International Workshop
on Object-Oriented Real-Time Systems ‘96. 1996.

[56.] D. Harel and M. Politi, Modeling Reactive
Systems with Statecharts. 1998: McGraw-Hill.

[57.] D. Harel, From Play-In Scenarios to Code:
An Achievable Dream. IEEE Computer Magazine,
2001. 34(1): p. 53–60.

[58.] I. Meisels and M. Saaltink, The Z/EVES
Reference Manual. 1997.

[59.] M. Saaltink. The Z/EVES System. in
Proceedings of the10th International Conference
of Z Users. 1997. Reading, UK: Springer-Verlag.

[60.] J. Davies and J. Woodcock, Using Z:
Specification, Refinement and Proof. 1996:
Prentice Hall International Series in Computer
Science.

[61.] D. Craigen, S. Kromodimoeljo, I. Meisels, B.
Pase, and M. Saaltink. Eves System Description.
in Proceedings of the Conference on Automated
Deduction. 1992.

[62.] D. Craigen, I. Meisels, and M. Saaltink,
Analysing Z Specifications with Z/EVES, in

Industrial-Strength Formal Methods in Practice,
J.P. Bowen and M.G. Hinchey, Editors. 1999,
Springer-Verlag: London. p. 255–285.

[63.] S. King, J. Hammond, R. Chapman, and A.
Pryor, Is Proof More Cost-Effective Than Testing?
IEEE Trans. on Software Engineering, 2000.
26(8): p. 675–686.

[64.] D. Jackson. Automating first-Order
Relational Logic. in Proceedings of the ACM
SIGSOFT Eighth International Symposium on the
Foundations of Software Engineering. 2000. San
Diego CA.

[65.] D. Daly, D.D. Deavours, J.M. Doyle, P.G.
Webster, and W.H. Sanders. Möbius: An
Extensible Tool for Performance and
Dependability Modeling. in Computer
Performance Evaluation: Modelling Techniques
and Tools: Proceedings of the 11th International
Conference. 2000. Schaumburg, IL: Springer-
Verlag.

[66.] S. Rajan, N. Shankar, and M.K. Srivas. An
integration of model checking with automated
proof checking. in Proceedings of the 1995
Workshop on Computer-Aided Verification. 1995:
Springer-Verlag.

[67.] T. Quatrani, Visual Modeling with Rational
Rose 2000 and UML. 2000: Addison Wesley.

[68.] J. Warmer and A. Kleppe, The Object
Constraint Language: Precise Modeling with UML.
Object Technology Series. 1999: Addison Wesley.

[69.] OMG, Unified Modeling Language (UML)
Specification, 2001.
http://www.omg.org/technology/documents/formal/
uml.htm

Objects right out of the bag!
INTRODUCTION TO PROGRAMMING AND
OBJECT-ORIENTED DESIGN USING JAVA
Jaime Niño, University of New Orleans
Frederick A. Hosch, University of New Orleans
ISBN: 0-471-35489-9, 650 Pages, Paper, 2001
www.wiley.com/college/nino

With Niño and Hosch’s new text, you can teach your
students how to design applications with objects from
the very beginning, while stressing design, problem
solving, and good programming habits.

Features
• Emphasizes the distinction between

specification and implementation.
• Focuses on developing components that

are conceptual parts of a larger system.
• Covers established design patterns.

For more information:
Visit us on the Web at www.wiley.com/college/nino.
You can also order your examination copy on this site.

software2-4 260302 8:50 AM Page 150

