

312 2002 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

Validation of Guidance Control Software Requirements
Specification for Reliability and Fault-Tolerance

Frederick T. Sheldon • Washington State University • Pullman
Hye Yeon Kim • Washington State University • Pullman

Key Words: Requirement Engineering, Verification and Validation, Executable Specifications, Specification Testing,
Consistency, Completeness.

SUMMARY & CONCLUSIONS

A case study was performed to validate the integrity of a
software requirements specification (SRS) for Guidance
Control Software (GCS) in terms of reliability and fault-
tolerance. A partial verification of the GCS specification
resulted. Two modeling formalisms were used to evaluate the
SRS and to determine strategies for avoiding design defects
and system failures. Z was applied first to detect and remove
ambiguity from a part of the Natural Language based (NL-
based) GCS SRS. Next, Statecharts and Activity-charts were
constructed to visualize the Z description and make it
executable. Using this formalism, the system behavior was
assessed under normal and abnormal conditions. Faults were
seeded into the model (i.e., an executable specification) to
probe how the system would perform. The result of our
analysis revealed that it is beneficial to construct a complete
and consistent specification using this method (Z-to-
Statecharts). We discuss the significance of this approach,
compare our work with similar studies, and propose
approaches for improving fault tolerance. Our findings
indicate that one can better understand the implications of the
system requirements using Z-Statecharts approach to facilitate
their specification and analysis. Consequently, this approach
can help to avoid the problems that result when incorrectly
specified artifacts (i.e., in this case requirements) force
corrective rework.

1. INTRODUCTION
Highly reliable systems demand rigorously engineered
software. A failure in the control software of mission critical
systems can be disastrous. It is difficult to create a reliable
specification because such control software tends to be highly
complex. To avoid problems in the latter development phases
and reduce life-cycle costs, it is crucial to ensure that the
specification be reliable. Reliability, as applied to the
software requirements specifications, means: (1) is the
specification correct, unambiguous, complete, and consistent;
(2) can the specification be trusted to the extent that design
and implementation can commence while minimizing the risk
of costly errors; and (3) how can the specification be defined
to prevent the propagation of errors into downstream
activities?

The completeness of a specification is defined as a lack of

ambiguity in implementation. The specification is incomplete
if the system behavior is not specified precisely because the
required behavior for some events or conditions is omitted or
is subject to more than one interpretation (Ref. 1). Consistency
means that the specification is free from conflicting
requirements and undesired nondeterminism (Ref. 2).

The typical SRS is highly dependent on natural language.
Natural language (NL)-based specifications are often subject
to multiple interpretations. Even when such specifications are
developed systematically, it is difficult to ensure their integrity
without some form of correctness checking. Generally,
correctness checking obligates the use of a mathematically
based requirements specification language (RSL). Such
languages are notoriously difficult to understand, and
minimally require a proficient level of knowledge in discrete
mathematics and/or some formal logic system. This poses a
serious concern to industry because many different classes of
requirements exist. Different stakeholders typically signify
various ways of looking at the problem. Thus, in regards to the
requirements specification, a multi-perspective analysis is
important, as there is no single correct way to analyze system
requirements (Ref. 3). The usefulness of the requirements
specification is diminished by not being understandable to the
diverse set of stakeholders. Nevertheless, to avoid the
confusion caused by ambiguity, we investigated the merits of
two different mathematically based RSLs.

Consequently, in this case study Z was used to clarify
intentions, identify assumptions and explain correctness in
light of ambiguous statements found in the SRS. Statecharts
were chosen to model the Z specifications because a key goal
was visualization, testability and pre-development evaluation.
A clear distinction of our approach as compared to others is
that we did not combine Z and Statecharts together. We
translated the SRS into Z completely and then translated the Z
specification into Statecharts. Next, we evaluate the
usefulness of this approach by applying it to a small but
critical part of the SRS.

2. RELATED WORKS
There have been numerous studies conducted that combine a
Z representation with some formal method for the benefit of
visualization and dynamical assessment. Xudong He suggests
using a hybrid formal method called PZ-nets that combine

 313 2002 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

Petri nets and Z notations (Ref. 4). PZ-nets provide a unified
formal model for specifying the overall system structure,
control flow, data types and functionality. Sequential,
concurrent and distributed systems are modeled using a
valuable set of complementary compositional analysis
techniques. However, modular and hierarchical facilities are
needed to effectively apply this approach to large systems.

Hierons, Sadeghipour, and Singh present a hybrid
specification language µSZ (Ref. 5). The language uses
Statecharts to describe the dynamical system behavior and Z
to describe the data and data transformations. In µSZ,
Statecharts define sequencing while Z is used to define the
data and operations. Their data abstraction technique uses
information derived from the Z specifications to produce an
extended finite state machine (EFSM) defined by the
Statecharts. The EFSM poses properties that can be utilized
during test generation. These properties help solve the
problem of setting up the initial state and checking the final
state of a test to assist in test automation. Both the dynamic
behavior specified in Statecharts and the individual operations
are checked using this method.

Bussow and Weber present a mixed method consisting of
Z notations and Statecharts (Ref. 6). Each method was applied
to a separate part of the system. Z was used in defining the
data structures and transformations. Statecharts were used in
representing the overall system and the reactive behavior. The
Z notations were type checked with the ESZ type-checker but
the Statechart semantics were not fully formalized. In
addition, there are several other case studies that utilized Z for
defining data while Statecharts were used as a behavioral
description method (Ref. 7, 8, 9).

3. THE CHOICE OF METHODS
A 2-step process was performed using Z/Statecharts. First, the
NL-based GCS specification was transformed using the Z
notation. Z Schemas were abstracted from the GCS SRS. This
compositional process helped to clarify ambiguities. Second,
the Schemas were transformed into Statecharts/Activity-charts
and symbolically executed to assess the model’s behavior
based on the GCS-specified mission profile.
3.1. Z : a Mathematical Language of Logic, Sets, and

Relations
The Z notation is a mathematical language equipped with an
underlying theory of refinement that enables nondeterminism
to be removed (mechanically) from abstract formulations to
result in more concrete specifications. In combination with
natural language, it can be used to produce a formal
specification. Refinement yields a new Z description that
provably conforms to its predecessor and is closer to
executable code (Ref. 10). Schema's are the main structuring
mechanism used to create patterns and objects. The notation is
used to model system states. In this work, the state of the
system and the relationship between the ARSP and the state of
various components were explained. The production of such a
specification helps us to understand requirements, clarify
intentions, and construct proofs (i.e., identify assumptions and
explain correctness). These facilities were useful and essential
in clarifying ambiguities and solidifying our understanding of

the requirements.
3.2. Statecharts: State-based Formal Diagrammatic

Language
Statecharts constitute a visual formalism for describing states
and transitions in a modular fashion, enabling clustering
orthogonality (i.e., concurrency) and refinement, and
supporting capability for moving between levels of
abstraction. Technically speaking, the kernel of the approach
is the extension of conventional state diagrams by AND/OR
decomposition of states together with inter-level transitions,
and a broadcast mechanism for communication between
concurrent components. The two essential ideas enabling this
extension are the provision for depth (level) of abstraction and
the notation of orthogonality. In other words, Statecharts =
State-diagrams + depth + orthogonality + broadcast-
communication (Ref. 11).

Statecharts (using STATEMATE1) provide a way to
specify complex reactive systems both in terms of how objects
communicate and collaborate and how they conduct their own
internal behavior. Together, Activity-charts and Statecharts
are used to describe the system functional building blocks,
activities, and the data that flows between them. These
languages are highly diagrammatic in nature, constituting full-
fledged visual formalisms, complete with rigorous semantics
providing an intuitive and concrete representation for
inspecting and checking for conflicts (Ref. 12). The Activity-
charts and Statecharts were used to specify our conceptual
system model for symbolic simulation. With the simulation
method, we verified our assumptions, injected faults, and
identified hidden errors that represent inconsistencies or
incompleteness in the specification.

4. TRANSFORMATION OF THE DIFFERENT
SPECIFICATIONS

We now discuss the transformation from the SRS to the
Statecharts representations via Z. The Altitude Radar Sensor
Processing (ARSP) module specification showing inputs,
outputs, and subsystem processing descriptions was chosen
for the purpose of our study. The SRS provides a data
dictionary with variable definitions, type, and units, and a
brief description of variables and functions. This descriptive
information is shown in Appendix A. We abstracted the NL-
based module specification into Z, preserving variable names,
operations (i.e., functionality), dependency and scope. Figure
1 provides an example using the FRAME_COUNTER input
variable that illustrates the complete translation from Z to
Statecharts. The FRAME_COUNTER is defined as an integer
with range [1,231-1]. In Z, the FRAME_COUNTER is
declared as a set of natural numbers in the signature part, and
the range of the variable is defined in the predicate part (lower
half of the schema). The Statechart representation of the
FRAME_COUNTER variable is presented with the direction
of data transfer from EXTERNAL into the ARSP Module. Its
type and value range are defined in the Statemate data

1 STATEMATE Magnum – product of i-Logix, was used for this case study.

314 2002 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

dictionary.
In translating from the NL-based SRS to Z, four

ambiguously specified requirements were identified. The first
one concerns the rotational direction assumed by the use of the
term “rotate.” Secondly, an undefined third order polynomial
was revealed that is used to estimate the AR_ALTITUDE
value (see Appendix A). The third issue (i.e., ambiguity)
concerns the use of the AR_COUNTER variable for two
different purposes, which implies that it has two different
types. Finally, there is uncertainty regarding the scope of the
AR_COUNTER variable that brings into question which
module should use and/or modify this variable.

Figure 1. Mapping example from NL-based to Statecharts
Given these various issues, two scenarios were

considered. The first scenario assumes the AR_COUNTER is
updated within the ARSP module while the second scenario
does not. Both scenarios were constructed separately and
compared to understand how Z could be useful in clarifying
ambiguity and avoiding conflicts. In the SRS, the sign bit of
AR_COUNTER represents whether the radar echo pulse is
received on time. In scenario one, this condition is split off
into the Echo variable while in scenario two the Echo variable
is not introduced. The Z specification is consistent with the
SRS as long as the newly defined Echo variable does not

cause a side affect outside of the ARSP module. Accordingly,
we defined the Z version of the ARSP specification to account
for two separate variables. As the result of the process, the
Echo variable was found to be treated as an additional ARSP
input, otherwise there is no way to determine if the radar echo
pulse has been received. This in turn caused the whole
specification to be revised to reflect the principle that
mandates decoupling data (Ref. 3). Therefore, the
interpretation of Scenario One is inconsistent with the SRS.

On the other hand, in Scenario Two no additional
variables were defined. Only those variables defined in the
SRS were specified, and all the requirements specified in
ARSP were covered. Therefore, this reformulation of the SRS
was considered as a complete and consistent transformation.
Consequently, Statecharts were developed based on Scenario
Two. In this way, Statemate could be used to analyze a model
that properly conformed to its requirements, which would be
useful in feeding back into the results of our assessment (i.e.,
symbolic simulation). We also wanted to confirm what we
had seen using Z with this other type of formalism, namely
Statecharts, and determined if indeed our reformulation
revealed similar ambiguity. The detailed Z specification for
Scenario Two is described in Appendix B.

5. THE TRANSFORMATION FROM Z TO
STATECHARTS

An ARSP project was created within the Statemate
framework. Graphic editors were used to create Statecharts
and Activity-charts. Once the graphical forms were
characterized, state transition conditions and data items were
defined.

Figure 2. ARSP activity-chart generated with Statemate
These items and/or conditions trigger activities and state

transitions that occur within the Statemate model based on
definitions within the “data dictionary” and/or the “data bank
browser.” The Activity-chart (shown in Figure 2) and
Statecharts (see Appendix C) reflect all variables/conditions
defined in our Z formulation. During simulation, various color
changes help to show the sequence of state changes that occur
to validate the system according to its specified structure
(based on our Schema signatures) and constraints (based on
our Schema predicates). We changed initial (and current)
values and conditions while at the same time rerunning and/or
resuming the simulation in the process of verifying our
assumptions against the Statechart specification. In this way,
we exercised the Statechart-based model and generated C code

FRAME_COUNTER? : N
AR_ FREQUENCY? : R
AR_COUNTER? : Z
K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW: {0,1}
AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,
AR_ALTITUDE_NEW: R
AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4,
AR_STATUS_NEW: {healthy, failed}

K_ALT: K_ALT_1 x K_ALT_2 x K_ALT_3 x K_ALT_4
AR_STATUS: AR_STATUS_1 x AR_STATUS_2 x AR_STATUS_3 x

AR_STATUS_4

AR_ALTITUDE: AR_ALTITUDE_1 x AR_ALTITUDE_2 x AR_ALTITUDE_3 x
 AR_ALTITUDE_4

AR_COUNTER? e -1..32767
AR_FREQUENCY? e 1..2450000000
FRAME_COUNTER? e 1..2147483647
AR_ALTITUDE_1 e 1..2000 ¶ AR_ALTITUDE_2 e 1..2000 ¶
AR_ALTITUDE_3 e 1..2000 ¶ AR_ALTITUDE_4 e 1..2000 ¶
AR_ALTITUDE_NEW e 1..2000

ARSP_RESOURCE

1

2

3

4
5

6

7

8

9

*

+

,

-

INPUT
AR_ALTITUDE AR_COUNTER
AR_FREQUENCY AR_STATUS
FRAME_COUNTER K_ALT

OUTPUT
AR_ALTITUDE AR_STATUS

K_ALT

PROCESS:
It is only necessary that this functional module

NAME: FRAME_COUNTER
DESCRIPTION: Counter containing the number of the
present frame
USED IN: AECLP, ARSP, CP, GP, TDLRSP
UNITS: none

RANGE: [1, 231-1]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

Module Specification Data Dictionary

Z Specification

Statecharts

NL-Based

RUN_PARAMETER

EXTERNAL

ARSP

@INIT

CALCULATE

@ALTIMETER

GUIDANCE_STATE

SENSOR_OUTPUT
AR_FREQUENCY

AR_COUNTER

FRAME_COUNTER

AR_ALTITUDE
AR_ALTITUDE

AR_STATUS

AR_STATUS

K_ALT

K_ALT

RUN_PARAMETER

EXTERNAL

ARSP

@INIT

CALCULATE

@ALTIMETER

GUIDANCE_STATE

SENSOR_OUTPUT
AR_FREQUENCY

AR_COUNTER

FRAME_COUNTER

AR_ALTITUDE
AR_ALTITUDE

AR_STATUS

AR_STATUS

K_ALT

K_ALT

 315 2002 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

directly from the charts.

Figure 3. DFD 2.1 SP- Sensor Processing (Ref. 13)

 The ARSP Activity-chart shows the data flow between
the data stores and the ARSP module based on the information
in Figure 2. The direction of the data flow given by Figure 3,
which shows what parameters go where, follows the
information from the SRS data dictionary (Ref. 14).

6. SPECIFICATION TESTING
Now we discuss the results of our validation effort based on a
symbolic simulation of the ARSP Statechart model. In effect,
we verified that the ARSP subunit requirements are complete
and consistent by running the simulation against all of the
Activity/Statecharts. The data used in the simulation is
provided in Table 1.

Five conditions (Case 1-5) as shown in Table 1 were
defined to test the statecharts. They represent the way we
visualiZ and were able to scrutinize the Z specification. The
AR_FREQUENCY value was fixed at 1,500,000,000 to
calculate the value of AR_ALTITUDE for all test cases. In the
material presented below, we’ll explain how each of the
conditions was evaluated, this should help to convince the
reader that the ARSP subunit is significantly complex (one of
six different sensor units used by the GCS).

Table 1. ARSP Specification Test Input and Output
 Variable Case 1 Case 2 Case 3 Case 4 Case 5

FRAME_COUNTER 2 2 1 1 3
AR_STATUS - - [0, 0, 0, 0] - [0, 1, 0, 0] Input

AR_COUNTER -1 19900 -1 20000 -1
AR_STATUS KP KP [1, 0, 0, 0] [0, -, -, -] [1, 0, 1, 0]

K_ALT KP KP [1, 1, 1, 1] [1, -, -, -] [0, 1, -, 1] Output
AR_ALTITUDE KP KP [*, -, -, -] [2000,-,-,-] KP

- Don’t care, KP Keep Previous value, * An estimated value.

The values of the ARSP output variables are given in
Table 1 (KP indicates that the first two element values of the
output are the same). All of the output values are the same as
expected. All the transitions, activities, and states in the charts
were activated precisely as expected. All of the variables were
updated as expected. The expected values were calculated
based on the given equations in NL-based SRS. Therefore,
the result of this simulation shows the previous Z specification
was developed correctly. We used simulation of the
specification for discovering hidden faults and their location.
To accomplish this, faults were injected into the model to
simulate memory corruption (expected due to the harsh space
born lander mission environment.)

Four new issues arose during the fault injection process.
(1) Some correct inputs produced incorrect outputs; (2) The
Statecharts approach has a better chance of predicting possible
faults in the system. (Because the Z specification cannot
provide a way of predicting the transitions from state to state

i.e., Z is not executable); (3) During the symbolic simulation,
we found some week points where faults were lurking (e.g.,
errors described in Appendix C); (4) Consequently, there are
many design decisions to be made in the process of
developing a model (i.e., specification). Finding the correct
formulation is a process of refinement and validation, which
was facilitated using this approach combined with symbolic
simulation. Some requirements were found to be
inconsistent/incomplete because they produced incorrect
results.

Table 2 shows the specification testing results using fault
injection. It describes what state variable is altered at what
system state. The system states are the states defined in the
Statecharts model. Obviously, the starting state
“CURRENT_STATE” shows as a weak system state because
any module, improperly initialized, will produce an erroneous
output. According to the result table, the CALCULATION
and ODD system states are the most vulnerable states to incur
failures.

Table 2. Fault Injection Simulation Result
Altered state variable

FRAME_COUNTER AR_COUNTER AR_STATUS
Case Case Case

Fault injected State

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
CURRENT_STATE x x x x x x x x x x x x x x x

KEEP_PREVIOUS_VALUE b b b b b b b b b b b b b b b
CALCULATION b b b b b b b x x x b b x b x

ODD b b b b b b b x x x b b x b x
ESTIMATE_ALTITUDE b b b b b b b N/A b b b b N/A b b

CALCULATE_ALTITUDE b b b b b b b b x b b b b b b
KEEP_PREVIOUS b b b b b b b b b b b b b b b

DONE b b b b b b b b b b b b b b b
x incorrect outputs, b no defect

Based on the simulation results using fault injection, we
discovered that the SRS was incomplete. To remedy the
situation, the AR_FREQUENCY value must be bounded to
prevent the AR_ALTITUDE value from exceeding its limit.
Thus, one of the following conditions should be included:
1¯AR_FREQUENCY¯AR_COUNTER * 75000, or
AR_COUNTER = -1 v (0 ¯ AR_COUNTER ¯
AR_FREQUENCY/75000). In other words, one of these two
relational expressions must resolve to true.

7. CONCLUSION
The result of our analysis revealed that it is beneficial to
construct a complete and consistent specification using this
method (Z-to-Statecharts). In the process, we uncovered some
ambiguity issues associated with our interpretation of the NL-
based specification.

The outputs from the ARSP module were examined and
shown to be consistent with our expectations by running
simulations based on the Statecharts/Activity-charts. All of the
state activation/transition paths were in the correct order as
expected for all test cases. Moreover, no nondeterministic
state transitions were detected for all simulation runs (based
on the conditions provided). In this context, the simulation has
provided a way to determine the consistency of the
requirements.

The output values from the simulation were checked and
compared against the requirements found to be valid. After

EXTERNAL RUN_PARAMETERS

SENSOR_OUTPUT GUIDANCE_STATE

TDLRSP
.3

GSP
.4

ARSP
.2

ASP
.1

TSP
.5

TDSP
.6

316 2002 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

running various simulations using fault injection, we
uncovered several issues indicating that the SRS is
incomplete. In addition, several vulnerable states were
identified because faults were injected into the Statecharts and
tested. Though the GCS NL-based SRS did not specify fault
tolerance, we conclude that the system would not be able to
tolerate certain system faults. Through the whole process of
this case study, we found that the SRS for the ARSP module
was consistent yet not complete and not fault-tolerant.
Therefore, our findings indicate that one can better understand
the implications of the system requirements using this
approach (Z-Statecharts) to facilitate their specification and
analysis. Consequently, this approach can help to avoid the
problems that result when incorrectly specified artifacts (i.e.,
in this case requirements) force corrective rework.

APPENDIX A: NL-BASED ARSP SPECIFICATION
The specifications provided below are exactly as they appear in the
GCS SRS (Ver. 2.2). The material provided here in Appendix A has
been reproduced exactly as it appears in the original SRS. This is
done to document and preserve the basis form, which this case study
was conducted.

INPUT

OUTPUT

PROCESS: It is only necessary that this functional module perform
its normal calculations every other frame, namely on the odd-
numbered frames; however, it is required that this functional module
execute every frame. The reason for this is that during its normal
processing it must rotate history variables. This means that during
the frames when it does not need to calculate new outputs, namely
the even-numbered frames, it must still rotate its history variables
and set its new or current values equal to the previous values, thus
creating double entries for each rotated variable. By doubling the
entries, consistency of time histories will be maintained at the
expense of keeping two copies of each value in these variables, and
forcing the functional module to execute every frame.

The processing of the altimeter counter data (AR_COUNTER)
into the vehicle's altitude above the planet's terrain depends on
whether or not an echo is received by the altimeter radar for the
current time step. The distance covered by the radio pulses emitted
from the altimeter radar is directly proportional to the time between
transmission and reception of its echo. A digital counter
(AR_COUNTER) is started as the radar pulse is transmitted. The
counter increments AR_FREQUENCY times per second. If an echo
is received, the lower order fifteen bits of AR_COUNTER contain
the pulse count, and the sign bit will contain the value zero. If an
echo is not received, AR_COUNTER will contain sixteen one bits.

• ROTATE VARIABLES:
Rotate AR_ALTITUDE, AR_STATUS, and K_ALT.

• PERFORM ALTERNATE PROCESSING:
If FRAME_COUNTER is an even number, insure that the
current values of AR_ALTITUDE, AR_STATUS, and
K_ALT are equal to the previous values of AR_ALTITUDE,
AR_STATUS, and K_ALT respectively.

• DETERMINE ALTITUDE:
a. If an echo is received, convert the AR_COUNTER value to

a distance to be returned in the variable AR_ALTITUDE
according to the following equation:

b. If an echo is not received, compute AR_ALTITUDE as
follows:

1) If all four previous values of AR_STATUS are healthy:
order to smooth the estimate of altitude; fit a third-or
polynomial to the previous four values
AR_ALTITUDE. Use this polynomial to extrapolate
value for AR_ALTITUDE for the current time step.

2) If any of the previous four values of AR_STATUS
failed: Set the current value of AR_ALTITUDE equal
the previous value of AR_ALTITUDE.

• UPDATE STATE: Set the current values for AR_STATUS a
K_ALT according to the following table.

Table 3: Determination of Altitude Status
CURRENT STATE ACTIONS TO BE TAKEN

ECHO RETURNED?
All 4 previous

AR_STATUS values
healthy?

AR_STATUS K_ALT2

yes don’t care healthy 1
no yes failed 1
no no failed 0

APPENDIX B: Z ARSP SPECIFICATION
The second Z scenario of the ARSP module is described here. T
only assumption in this scenario is that the AR_COUNTER va
must be updated from outside of the ARSP module and is ready
immediate use. When the AR_COUNTER value is –1 this indica
that the echo of the radar pulse has not yet been received. If
AR_COUNTER value is a positive integer, this means that the ec
of the radar pulse arrived at the time indicated by the value of
counter.

The ARSP_RESOURCE schema (Figure 1) defines the AR
module input and output variables. The FRAME_COUNTER
(Signature [Sig.] 1) is an input variable giving the present fra
number and is typed as a natural number. AR_FREQUENCY? (S
2) represents the rate at which the AR_COUNTER? has b
incremented and is typed as a real number. The AR_COUNTE
(Sig. 3) is an input variable that is used to determine
AR_ALTITUDE value and its type is an integer. The K_ALT
K_ALT_2, K_ALT_3, K_ALT_4, and K_ALT_NEW (Sig.
variables are defined as sets of binary elements. T
AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE
AR_ALTITUDE_4, and AR_ALTITUDE_NEW (Sig. 5)

2 The K_ALT value is used in the Guidance Processing (GP) module
determine the correction term value of GP_ALTITUDE variable. If K_AL
0, the correction term is set to zero. Otherwise, a non-zero value is used in
correction term.
3 The "?" notation in Z represents a variable as an input. The NL-Based S
defined some variables as both input and output. Z does not provide a wa
describe this. So, those variables were treated as variables with neither
nor "!" notation.

AR_ALTITUDE AR_COUNTER
AR_FREQUERNCY AR_STATUS
FRAME_COUNTER K_ALT

AR_ALTITUDE AR_STATUS
K_ALT

2CYAR_FREQUEN
sec

103AR_COUNTER
EAR_ALTITUT

8

•

×•
=

m
(
1)

 In
der
of
 a

 is
 to

nd

he
lue
for
tes
the
ho
the

SP
? 3
me
ig.

een
R?
the
_1,
4)
he

_3,
are

 to
T =
 the

RS
y to
"?",

 317 2002 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

defined as a set of real numbers that altitude as determined by
altimeter radar. AR_STATUS_1, AR_STATUS_2, AR_STATUS_3,
AR_STATUS_4, and AR_STATUS_NEW (Sig. 6) are defined as
binary values that represent health status for the various elements of
the altimeter radar. The AR_STATUS, AR_ALTITUDE, and
K_ALT (Sig.s 7-9) arrays hold the previous 4 values of their
elements respectively.

Figure 1. ARSP_RESOURCE Schema

Figure 2. ARSP Schema
The ARSP schema (Figure 2) is the main functional schema of

the ARSP module. The ARSP_RESOURCE schema is imported (and
is modified) in the Signature 1. The Altitude_Polynomial function
(Sig. 2) obtains the AR_ALTITUDE as input and estimates the
current altitude by fitting a third-order polynomial to the previous
value of the AR_ALTITUDE. AR_STATUS_Update (Sig. 3),
K_ALT_Update (Sig. 4), and AR_ALTITUDE_Update (Sig. 5)
update AR_STATUS, K_ALT, and AR_ALTITUDE array with their

_NEW values respectively. The expression “FRAME_COUNTER?
mod 2” is used on 7 occasions to determine if the
FRAME_COUNTER? is odd or even.

Predicate * requires that the current AR_ALTITUDE,
AR_STATUS, and K_ALT element values be the same as the
predecessors when FRAME_COUNTER? is even. Predicate +
defines the AR_ALTITUDE update. The update takes the current
value, calculated by the Eq. 1, when FRAME_COUNTER? is odd
and AR_COUNTER? is greater than or equal to zero. Predicate ,
states that the AR_ALTITUDE value is updated (i.e., estimated) by
the Altitude_Polynomial function. This is done when
FRAME_COUNTER? is odd, AR_COUNTER? is -1, and all the
AR_STATUS elements are healthy.

The AR_STATUS, AR_ALTITUDE, and K_ALT variables
were defined as a 4-element array in the SRS. Z does not have a
specific array construct so these variables are designed as 4-element
Cartesian products. The array can also be represented as a 4-element
sequence. The Cartesian product method was chosen because this
composition assumes that any element can be accessed directly
without having to search though the sequence. The predicates *, +,
and , represent the variables ranges. The predicate - defines the
values for the sets in the Signature 5.
Predicate - requires that the current value in AR_ALTITUDE be the
same as the previous values when FRAME_COUNTER? is odd,
AR_COUNTER? is -1 and any of the elements in AR_STATUS are
not healthy. Predicate . requires that the updates to AR_STATUS
and K_ALT occur when FRAME_COUNTER? is odd and the
AR_COUNTER? is -1. Predicate / requires that the updates to
AR_STATUS and K_ALT occur when FRAME_COUNTER? is odd,
the AR_COUNTER? is -1, and all of the AR_STATUS elements are
healthy. Predicate 0 requires that the updates to AR_STATUS and
K_ALT occur when FRAME_COUNTER? is odd, AR_COUNTER?
is -1, and any of the elements in AR_STATUS is not healthy.

APPENDIX C: STATECHARTS

Figure 3. INIT Statechart
The “@INIT” control activity in the ARSP activity chart represents
the link to the INIT Statechart. INIT Statechart shows the
initialization of the ARSP module and a portion of the ARSP
operational schema (Fig.2). The default transition activates the
CURRENT_STATE when the ARSP activity of the ARSP activity
chart is begun. The transition from the CURRENT_STATE state to
KEEP_PREVIOUS_VALUE state describes predicate * of Fig.2.
The KEEP_PREVIOUS_VALUE state is one of the module
termination states. The termination states are marked with “>” at the
end of the state name. The transition from the CURRENT_STATE to
the CALCULATION state represents a condition where the value of

FR A M E _C O U N T E R ? : N
A R _ FR E Q U E N C Y ? : R
A R _C O U N T E R ? : Z
K _A LT _1 , K _A LT _2 , K _ A LT _3, K _A LT _ 4 , K _A LT _N E W : {0,1}
A R _A LT IT U D E _ 1 , A R _A LT IT U D E _ 2, A R _A LT IT U D E _ 3 ,
A R _A LT IT U D E _ 4 , A R _A LT IT U D E _ N E W : R
A R _ST A T U S_1 , A R _ST A T U S_2 , A R _ST A T U S_3, A R _ ST A T U S_4,
A R _ST A T U S_N E W : {healthy, fa iled}
K _A LT : K _A LT _ 1 x K _A LT _2 x K _ A LT _3 x K _A LT _4
A R _ST A T U S: A R _S T A T U S _1 x A R _ST A T U S_2 x A R _ST A T U S_3 x

A R _ST A T U S_4
A R _A LT IT U D E : A R _ A L T IT U D E _1 x A R _ A LT IT U D E _2 x
A R _A LT IT U D E _ 3 x A R _ A LT IT U D E _ 4
A R _C O U N T E R ? e -1 ..32767
A R _FR E Q U E N C Y ? e 1 ..245 0000 000
FR A M E _C O U N T E R ? e 1 ..2147483647
A R _A LT IT U D E _ 1 e 1 ..2000 ¶ A R _ A L T IT U D E _2 e 1 ..2000 ¶
A R _A LT IT U D E _ 3 e 1 ..2000 ¶ A R _ A L T IT U D E _4 e 1 ..2000 ¶
A R _A LT IT U D E _ N E W e 1 ..2000

A R SP_R E SO U R C E

1

2

3

4

5

6

7

8

9

*

+

,

-

INIT

[MOD(FRAME_COUNTER, 2)=1]/
st!(CALCULATE)

CURRENT_STATE

KEEP_PREVIOUS_VALUE> CALCULATION

[MOD(FRAME_COUNTER, 2)=0]/
AR_ALTITUDE(3):=AR_ALTITUDE(2);
AR_ALTITUDE(2):=AR_ALTITUDE(1);
AR_ALTITUDE(1):=AR_ALTITUDE(0);
AR_STATUS(3):=AR_STATUS(2);
AR_STATUS(2):=AR_STATUS(1);
AR_STATUS(1):=AR_STATUS(0);
K_ALT(3):=K_ALT(2);
K_ALT(2):=K_ALT(1);
K_ALT(1):=K_ALT(0)

D A R S P _ R E S O U R C E
A lti tu d e_ P o lyn o m ia l: A R _ A L T IT U D E f R
A R _ S T A T U S _ U p d ate : A R _ S T A T U S _ N E W x A R _ S T A T U S f
A R _ S T A T U S
K _ A L T _ U p d ate : K _ A L T _ N E W x K _ A L T f K _ A L T
A R _ A L T IT U D E _ U p d ate : A R _ A L T IT U D E _ N E W x A R _ A L T IT U D E f

A R _ A L T IT U D E

F R A M E _ C O U N T E R ? m o d 2 = 0 ¤ A R _ A L T IT U D E ’ =
A R _ A L T IT U D E _ U p d ate (A R _ A L T IT U D E _ 1 , A R _ A L T IT U D E)
¶ A R _ S T A T U S ’ = A R _ S T A T U S _ U p d a te (A R _ S T A T U S _ 1 ,
A R _ S T A T U S) ¶ K _ A L T ’ = K _ A L T _ U p d ate
(K _ A L T _ 1 , K _ A L T)

F R A M E _ C O U N T E R ? m o d 2 = 1 ¶ A R _ C O U N T E R ˘ 0 ¤
A R _ A L T IT U D E ’= A R _ A L T IT U D E _ U p d a te (A R _ C O U N T E R ? *
3 0 0 0 0 0 0 0 0 d iv A R _ F R E Q U E N C Y d iv 2 , A R _ A L T IT U D E)

F R A M E _ C O U N T E R ? m o d 2 = 1 ¶ A R _ C O U N T E R = -1 ¶ A R _ S T A T U S
= (h ea lth y , h e a lth y , h e a lth y , h e a lth y) ¤ A R _ A L T IT U D E ’ =
A R _ A L T IT U D E _ U p d ate (A lti tu d e _ P o lyn o m ia l A R _ A L T IT U D E ,
A R _ A L T IT U D E)

F R A M E _ C O U N T E R ? m o d 2 = 1 ¶ A R _ C O U N T E R = -1 ¶ A R _ S T A T U S
Î (h e a lth y , h e a lth y , h ea lth y , h ea lth y) ¤ A R _ A L T IT U D E ’ =
A R _ A L T IT U D E _ U p d ate (A R _ A L T IT U D E _ 1 , A R _ A L T IT U D E)

F R A M E _ C O U N T E R ? m o d 2 = 1 ¶ A R _ C O U N T E R ˘ 0 ¤
A R _ S T A T U S ’ = A R _ S T A T U S _ U p d a te(h e a lth y , A R _ S T A T U S) ¶
K _ A L T ’ = K _ A L T _ U p d ate (1 , K _ A L T)

F R A M E _ C O U N T E R ? m o d 2 = 1 ¶ A R _ C O U N T E R = -1 ¶ A R _ S T A T U S
= (h ea lth y , h e a lth y , h e a lth y , h e a lth y) ¤ A R _ S T A T U S ’ =
A R _ S T A T U S _ U p d ate (fa iled , A R _ S T A T U S) ¶ K _ A L T ’ =
K _ A L T _ U p d ate(1 , K _ A L T)

F R A M E _ C O U N T E R ? m o d 2 = 1 ¶ A R _ C O U N T E R = -1 ¶ A R _ S T A T U S
Î (h ea lth y , h e a lth y , h e a lth y , h e a lth y) ¤ A R _ S T A T U S ’ =
A R _ S T A T U S _ U p d ate (fa iled , A R _ S T A T U S) ¶ K _ A L T ’ =
K _ A L T _ U p d ate(0 , K _ A L T)

A R S P

1

2
3

4

5

*

+

,

-

.

/

0

318 2002 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

FRAME_COUNTER is odd which is described as
“FRAME_COUNTER mod 2 = 1” in Fig. 2.

Figure 4. ALTIMETER Statechart
The Altimeter Statechart (Figure 4) is represented by the

“@ALTIMETER” control activity of the ARSP activity chart. The
ODD state is activated by the default transition when the
CALCULATION activity of the ARSP activity chart is begun. The
transition from the ODD state to the ESTIMATE_ALTITUDE state
occurs when the AR_COUNTER value is set to -1 and all the
elements of the AR_STATUS value are set to “healthy.” When this
transition begins the AR_STATUS and K_ALT values will be
updated as described by predicate / of Fig.2. The 0 (zero) value of
the AR_STATUS means “healthy” which corresponds to the value
given in the SRS data dictionary (Ref. 14).

The transition from the ODD state to the
CALCULATE_ALTITUDE state begins when a positive value of the
AR_COUNTER is given which is equivalent to predicate . of Fig.2.
The transition from the ODD to the KEEP_PREVIOUS state is
triggered when the AR_COUNTER value is set to -1 and at least one
of the AR_STATUS elements is not healthy. This transition has the
same meaning as predicate 0 in Fig.2. The transition from the
ESTIMATE_ALTITUDE state to the DONE state happens when the
ESTIMATION_FINISHED event occurs. We represented this
process as an event because the transaction was described as an
undefined third-order polynomial estimation in the SRS4. The
transaction from the CALCULATE_ALTITUDE state to the DONE
state denotes predicate + (Fig.2). The transaction from the
KEEP_PREVIOUS state to the DONE state denotes the predicate -
(Fig.2) operation.

REFERENCE
1. Leveson, N., Safeware - system safety and computers. 1995: Addison

Wesley.
2. Heimdahl, M.P.E., Leveson, Nancy G., Completeness and consistency

in Hierarchical State-Based Requirements. IEEE Trans on SE, 1996. Vol. 22.
(N0.6, June 1996).

3. Sommerville, I., Software Engineering. 6th ed. 2000, Reading, MA:
Addison-Wesley.

4. He, X., PZ nets - a formal method integrating Petri nets with Z.
Information and Software Technology, 2001. Vol. 43.

5. Hierons, R.M., Sadeghipour, S., Singh, H., Testing a system specified
using Statecharts and Z. Information and Software Technology, 2001. Vol.
43. (Feb).

4 Statemate does not provide predefined mathematical functions, which in this
case, would need to support solving a differential equation to estimate the
AR_ALTITUDE value.

6. Bussow, R., Weber, M., A Steam-boiler Control Specification with
Statecharts and Z. Lecture Notes in Computer Science, 1996. Vol. 1165.

7. Grieskamp, W., Heisel, M., and Dorr, H., Specifying Embedded
Systems with Statecharts and Z: An Agenda for Cyclic Software Components.
LNCS 1382, 1998.

8. Damm, W., Hungar, H., Kelb, P., and Schlor, R., Statecharts - Using
Graphical Specification Languages and Symbolic Model checking in the
Verification of a Production Cell. LNCS 891, 1995.

9. Bussow, R., Geisler, R., and Klar, M., Specifying Safety-Critical
Embedded Systems with Statecharts and Z: A Case Study. LNCS 1382, 1998.

10. Woodcock, J., and Davies, J., Using Z: Specification, Refinement, and
Proof. Series of Computer Science. 1996: Prentice Hall International.

11. Harel, D., Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming, 1987. Vol. 8.

12. Harel, D., and Politi, M., Modeling Reactive Systems with Statecharts.
1998: McGraw-Hill.

13. Software Requirements - Guidance and Control Software
Development Specification Version 2.2 with formal mods 1-26., NASA,
Langley Research Center, 1993.

14. Software Requirements - Guidance and Control Software
Development Specification Version 2.2 with the formal mods 1-8, NASA,
Langley Research Center, 1993.

BIOGRAPHY
Frederick T. Sheldon, PhD, AP
School of Electrical Engineering and Computer Science
Washington State University
EME 102 Spokane Street
Pullman, WA 99164-2752 USA
Internet (e-mail): Sheldon@acm.org

Frederick T. Sheldon is an Assistant Professor at the Washington State
University teaching and conducting research in the area of software
engineering. His research is concerned with developing and validating
methods and supporting tools for the creation of safe and correct software
(focused on verification and validation of systems using modeling and
analysis of both logical and stochastic properties). Dr. Sheldon received his
Ph.D. at the University of Texas at Arlington (UTA) and has worked at
NASA Langley and Ames Research Centers in various capacities since 1993.
Prior to that, he worked as a Software Engineer in the area of avionics and
diagnostics software development for the YF-22, F-16 and Tornado aircraft
programs at General Dynamics and Texas Instruments. He is a member of the
IEEE Computer and Reliability Societies, ACM, AIAA, and The Tau Beta Pi
and Upsilon Pi Epsilon societies.

Hye Yeon Kim
School of Electrical Engineering and Computer Science
Washington State University
EME 102 Spokane Street
Pullman, WA 99164-2752 USA
Internet (e-mail): hkim@eecs.wsu.edu

Hye Yeon Kim is a Graduate Student at Washington State University
pursuing her Master’s degree in Software Engineering. Her research interests
are Formal methods used in software requirements specification analysis and
validation. She had an experience doing research on the Object Oriented
Software Metrics on quality aspects. Ms. Kim received her first BS in Science
Education from Dankook University and her second BS in Computer Science
from Washington State University. She had been a member of the Samsung
Electronics Software Membership as an Education Software Developer. She is
currently a student member of IEEE Computer Society and ACM. She has
been working as a research assistant to Dr. Frederick Sheldon.

ALTIMETER

/AR_ALTITUDE(3) := AR_ALTITUDE(2);
AR_ALTITUDE(2) := AR_ALTITUDE(1);
AR_ALTITUDE(1) := AR_ALTITUDE(0)

ESTIMATION_FINISHED

/AR_ALTITUDE(3) := AR_ALTITUDE(2);
AR_ALTITUDE(2) := AR_ALTITUDE(1);
AR_ALTITUDE(1) :=
(AR_COUNTER /AR_FREQUENCY)* 300000000/2

[AR_COUNTER=-1]
and ([AR_STATUS(0)=1]
or [AR_STATUS(1)=1]
or [AR_STATUS(2)=1]
or [AR_STATUS(3)=1]
/AR_STATUS(3) := AR_STATUS(2);
AR_STATUS(2) := AR_STATUS(1);
AR_STATUS(1) := AR_STATUS(0);
AR_STATUS(0):=1;
K_ALT(3) := K_ALT(2);
K_ALT(2) := K_ALT(1);
K_ALT(1) := K_ALT(0);
K_ALT(0) := 0

[AR_COUNTER>=0]
/AR_STATUS(3) := AR_STATUS(2);
AR_STATUS(2) := AR_STATUS(1);
AR_STATUS(1) := AR_STATUS(0);
AR_STATUS(0):=0;
K_ALT(3) := K_ALT(2);
K_ALT(2) := K_ALT(1);
K_ALT(1) := K_ALT(0);
K_ALT(0) := 1

ODD
[AR_COUNTER=-1]
and [AR_STATUS(0)=0]
and [AR_STATUS(1)=0]
and [AR_STATUS(2)=0]
and [AR_STATUS(3)=0]
/AR_STATUS(0):=1;
K_ALT(3) := K_ALT(2);
K_ALT(2) := K_ALT(1);
K_ALT(1) := K_ALT(0);
K_ALT(0) := 1

DONE>

ESTIMATE_ALTITUDE CALCULATE_ALTITUDE KEEP_PREVIOUS

