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Preface

Jack: You're quite perfect, Miss Fairfax.
Gwendolen: Oh! I hope I am not that. It would leave no room for
developments, and I intend to develop in many directions.

Oscar Wilde, The Importance of Being Earnest

The Z notation for specifying and designing software has evolved over the best
part of a decade, and it is now possible to identify a standard set of notations
which, although simple, capture the essential features of the method. This is the
aim of the reference manual in front of you, and it is written with the everyday
needs of readers and writers of Z speci�cations in mind. It is not a tutorial, for
a concise statement of general rules is often given rather than a presentation of
illustrative examples; nor is it a formal de�nition of the notation, for an informal
but rigorous style of presentation will be more accessible to Z users, who may
not be familiar with the special techniques of formal language de�nition.

It is perhaps worth recording here the causes which led to even this modest
step towards standardization of Z. The �rst of these is the growing trend towards
computer assistance in the writing and manipulation of Z speci�cations. While
the speci�er's tools amounted to little more than word-processing facilities, they
had enough inherent exibility to make small di�erences in notation unimportant.
But tools are now being built which depend on syntactic analysis, and to some
extent on semantic analysis, of speci�cations. For these tools { syntax checkers,
structure editors, type checkers, and so on { to be useful and reliable, there must
be agreement on the grammatical rules of the language they support.

Communication between people is also helped by an agreed common notation,
and here I expect the part of this manual devoted to the standard `mathematical
tool-kit' to be especially useful. In this part, I have given a formal de�nition of
each mathematical symbol, together with an informal description and a collection
of useful algebraic laws relating the symbol to others.

A third reason for standardization is the need to de�ne a syllabus for training
courses in the use of Z. Whilst there is an important di�erence between learning
the Z language and learning to be e�ective in reading and writing Z speci�cations,
just as learning to program is much more than learning a programming language,
I hope that this description of the language will provide a useful check-list of
topics to be covered in courses.

Finally, as the use of Z increases, there will be a need for a reference point

vii



viii Preface

for contracts and research proposals which call for a speci�cation to be written
in Z, and this manual is intended to �ll that need also.

In selecting the language features and the mathematical symbols to be in-
cluded, I have tried to maintain a balance between comprehensiveness and sim-
plicity. On one hand, there is a need to promote common notations for as many
important concepts as possible; but on the other hand, there is little point in
including notations which are used so rarely that they will be forgotten before
they are needed. This observation principally a�ects the choice of symbols to be
included in the `mathematical tool-kit'.

Because one of the aims is increased stability of Z, I have felt obliged to
omit from the account certain aspects of Z which still appear to be tentative.
I found it di�cult to reconcile the idea of overloading { that is, the possibility
that two distinct variables in the same scope might have identical names { with
the idea that common components are identi�ed when schemas are joined, so
overloading is forbidden in the language described. The relative weakness of the
Z type system would, in any case, make overloading less useful than it is in other
languages.

More importantly, I have also felt unable to include a system of formal infer-
ence rules for deriving theorems about speci�cations. The principles on which
such a system might be based are clear enough, at least for the parts of Z which
mirror ordinary mathematical notation; but the practical usefulness of inference
rules seems to depend crucially on making them interact smoothly, and we have
not yet gained enough experience to do this.

How to use this book

Here is a brief summary of the contents of each chapter:
Chapter 1 is an overview of the Z notation and its use in specifying and devel-

oping programs. The chapter begins with a simple example of a Z speci�cation;
this is followed by examples of the use of the schema calculus to modularize a
speci�cation and the use of data re�nement to relate speci�cations and designs.

Chapter 2 explains the concepts behind the Z language, such as schemas

and types. It contains de�nitions of the terms which are used later to explain
the constructs of Z. Although the presentation is informal, it assumes a basic
knowledge of naive set theory and predicate calculus.

Chapter 3 contains a description of the Z language itself. It is organized
according to the syntactic categories of the language, with separate sections on
declarations, predicates, expressions, and so on. Some more advanced features of
the language, generics and free types, are given their own sections at the end of
the chapter.

Chapter 4 describes a standard collection of mathematical symbols which are
useful in specifying information systems. It is divided into six sections, each
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dealing with a small mathematical theory such as sets, relations or sequences.
The chapter starts with a classi�ed list of the symbols it de�nes, on pages 86
to 88.

Chapter 5 explains the conventions used in describing sequential programs
with Z speci�cations, including the processes of operation and data re�nement,
by which abstract speci�cations can be developed into more concrete designs.

Chapter 6 contains a summary of the syntax of Z. It is here that the �ne
details of Z syntax are presented, such as the relative binding powers of operators,
connectives and quanti�ers.

Large parts of Chapters 3 and 4 are organized into `manual pages' with a
�xed layout. Each manual page deals with a single construct or symbol, or a
small group of related ones. In Chapter 3, the pages may contain the following
items:

Name The constructs de�ned on the page are listed, and a short descriptive title
is given for each of them.

Syntax The syntax rules for each construct are given in Backus{Naur Form
(BNF).

Scope rules If variables are introduced by a construct, this item identi�es the
region of text in the speci�cation where they are visible. If the meaning of a
construct depends implicitly on the values of certain variables, these variables
are listed.

Type rules The type of each kind of expression is described in terms of the
types of its sub-expressions. Restrictions on the types of sub-expressions are
stated.

Description The meaning of each construct is explained informally.

Laws Some mathematical properties of the constructs and relationships with
other constructs are listed.

In Chapter 4, the format is a little di�erent: each mathematical symbol is de�ned
formally in an item headed `De�nition', using the Z notation itself. Particular
emphasis is laid on the collection of mathematical laws obeyed by the symbols.
For brevity, the variables used in these laws are not declared explicitly if their
types are clear from the context. An item headed `Notation' sometimes explains
special-purpose notations designed to make the symbols easier to use.

Several special pages in Chapter 4 consist entirely of laws of a certain kind:
for example, the laws which express the monotonicity with respect to � of var-
ious operations on sets and relations are collected on page 104 under the title
`Monotonic operations'.

As well as the usual entries under descriptive terms, the general index at the
back of the book contains entries for each syntactic class of the language such
as Expression or Paragraph. These entries appear in sans-serif type, and refer to
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the syntax rules for the class. Each symbol de�ned as part of the mathematical
tool-kit has an entry, either under the symbol itself, if it is a word such as head ,
or under a descriptive name if it is a special symbol such as �. These special
symbols also appear in the one-page `Index of symbols'.

The glossary at the back of the book contains concise de�nitions of the tech-
nical terms used in describing Z. Each term de�ned in the glossary is set in italic

type the �rst time it appears in the text.
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Preface to the second edition

This second edition remedies a number of defects. There are several language
constructs that I had omitted from the �rst edition as being of marginal use, but
turn out to be far more widely used than I had imagined. The most signi�cant
of these is notation for the renaming of schema components, but there are many
other smaller changes. I have also made some additions to the library of mathe-
matical notation following suggestions from many people. Obviously, this process
of extension could go on for ever, and I have only adopted new notations when
they seem to be widely needed and to have a close relationship with the notation
that was already there. The purpose of the library is not to be an exhaustive list
of concepts that are used in speci�cations, but to provide a basic vocabulary that
readers and writers of Z speci�cations can have in common. All the substantive
changes to the language and library are listed in an appendix.

The new edition has also provided an opportunity to improve the exposition
in many small ways, and I am grateful to the many people who have written
with suggestions, or with questions that they could not answer from the account
of Z contained in the �rst edition. The biggest change is the introduction of an
explicit notation for bindings, the objects that inhabit schema types, and its use
in explaining the language constructs that involve schemas. I am grateful to Paul
Gardiner for persuading me that an explanation of non-generic schemas could be
given in this way.

Both the LaTEX style option that was used to print the Z speci�cations in
the book and a type-checking program that enforces the syntax, scope, and type
rules may be obtained from the author. For details, write to Mrs. A. Spivey, 34,
Westlands Grove, Stockton Lane, York, yo3 0ef.

Wolfson College, Oxford J. M. S.
April, 1998

You probably cannot a�ord elaborate equipment, and you certainly have no room
for it: but the right simple tools will stop you longing for the other, complicated
ones.

Katharine Whitehorn, Cooking in a Bedsitter
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CHAPTER 1

Tutorial Introduction

This chapter is an introduction to some of the features of the Z notation, and
to its use in specifying information systems and developing rigorously checked
designs. The �rst part introduces the idea of a formal speci�cation using a simple
example: that of a `birthday book', in which people's birthdays can be recorded,
and which is able to issue reminders on the appropriate day. The behaviour of
this system for correct input is speci�ed �rst, then the schema calculus is used to
strengthen the speci�cation into one requiring error reports for incorrect input.

The second part of the chapter introduces the idea of data re�nement as a
means of constructing designs which achieve a formal speci�cation. Re�nement
is presented through the medium of two examples: the �rst is a direct implemen-
tation of the birthday book from part one, and the second is a simple checkpoint
facility, which allows the current state of a database to be saved and later re-
stored. A Pascal-like programming language is used to show the code for some
of the operations in the examples.

1.1 What is a formal speci�cation?

Formal speci�cations use mathematical notation to describe in a precise way the
properties which an information system must have, without unduly constraining
the way in which these properties are achieved. They describe what the system
must do without saying how it is to be done. This abstraction makes formal
speci�cations useful in the process of developing a computer system, because
they allow questions about what the system does to be answered con�dently,
without the need to disentangle the information from a mass of detailed program
code, or to speculate about the meaning of phrases in an imprecisely-worded
prose description.

A formal speci�cation can serve as a single, reliable reference point for those
who investigate the customer's needs, those who implement programs to satisfy

1



2 Tutorial Introduction

those needs, those who test the results, and those who write instruction manuals
for the system. Because it is independent of the program code, a formal speci�-
cation of a system can be completed early in its development. Although it might
need to be changed as the design team gains in understanding and the perceived
needs of the customer evolve, it can be a valuable means of promoting a common
understanding among all those concerned with the system.

One way in which mathematical notation can help to achieve these goals is
through the use of mathematical data types to model the data in a system. These
data types are not oriented towards computer representation, but they obey a
rich collection of mathematical laws which make it possible to reason e�ectively
about the way a speci�ed system will behave. We use the notation of predicate
logic to describe abstractly the e�ect of each operation of our system, again in a
way that enables us to reason about its behaviour.

The other main ingredient in Z is a way of decomposing a speci�cation into
small pieces called schemas. By splitting the speci�cation into schemas, we can
present it piece by piece. Each piece can be linked with a commentary which
explains informally the signi�cance of the formal mathematics. In Z, schemas are
used to describe both static and dynamic aspects of a system. The static aspects
include:

� the states it can occupy;

� the invariant relationships that are maintained as the system moves from state
to state.

The dynamic aspects include:

� the operations that are possible;

� the relationship between their inputs and outputs;

� the changes of state that happen.

Later, we shall see how the schema language allows di�erent facets of a system to
be described separately, then related and combined. For example, the operation
of a system when it receives valid input may be described �rst, then the de-
scription may be extended to show how errors in the input are handled. Or the
evolution of a single process in a complete system may be described in isolation,
then related to the evolution of the system as a whole.

We shall also see how schemas can be used to describe a transformation from
one view of a system to another, and so explain why an abstract speci�cation is
correctly implemented by another containing more details of a concrete design.
By constructing a sequence of speci�cations, each containing more details than
the last, we can eventually arrive at a program with con�dence that it satis�es
the speci�cation.
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1.2 The birthday book

The best way to see how these ideas work out is to look at a small example. For
a �rst example, it is important to choose something simple, and I have chosen
a system so simple that it is usually implemented with a notebook and pencil
rather than a computer. It is a system which records people's birthdays, and is
able to issue a reminder when the day comes round.

In our account of the system, we shall need to deal with people's names and
with dates. For present purposes, it will not matter what form these names and
dates take, so we introduce the set of all names and the set of all dates as basic
types of the speci�cation:

[NAME ;DATE ]:

This allows us to name the sets without saying what kind of objects they contain.
The �rst aspect of the system to describe is its state space, and we do this with
a schema:

BirthdayBook
known : �NAME
birthday : NAME �DATE

known = dom birthday

Like most schemas, this consists of a part above the central dividing line, in which
some variables are declared, and a part below the line which gives a relationship
between the values of the variables. In this case we are describing the state space
of a system, and the two variables represent important observations which we
can make of the state:

� known is the set of names with birthdays recorded;

� birthday is a function which, when applied to certain names, gives the birth-
days associated with them.

The part of the schema below the line gives a relationship which is true in every
state of the system and is maintained by every operation on it: in this case, it
says that the set known is the same as the domain of the function birthday { the
set of names to which it can be validly applied. This relationship is an invariant

of the system.
In this example, the invariant allows the value of the variable known to be

derived from the value of birthday : known is a derived component of the state,
and it would be possible to specify the system without mentioning known at all.
However, giving names to important concepts helps to make speci�cations more
readable; because we are describing an abstract view of the state space of the
birthday book, we can do this without making a commitment to represent known
explicitly in an implementation.
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One possible state of the system has three people in the set known, with their
birthdays recorded by the function birthday :

known = f John;Mike; Susan g

birthday = f John 7! 25{Mar,
Mike 7! 20{Dec,
Susan 7! 20{Dec g.

The invariant is satis�ed, because birthday records a date for exactly the three
names in known.

Notice that in this description of the state space of the system, we have not
been forced to place a limit on the number of birthdays recorded in the birthday
book, nor to say that the entries will be stored in a particular order. We have
also avoided making a premature decision about the format of names and dates.
On the other hand, we have concisely captured the information that each person
can have only one birthday, because the variable birthday is a function, and that
two people can share the same birthday as in our example.

So much for the state space; we can now start on some operations on the
system. The �rst of these is to add a new birthday, and we describe it with a
schema:

AddBirthday
�BirthdayBook
name? : NAME
date? : DATE

name? =2 known

birthday 0 = birthday [ fname? 7! date?g

The declaration �BirthdayBook alerts us to the fact that the schema is describ-
ing a state change: it introduces four variables known, birthday , known 0 and
birthday 0. The �rst two are observations of the state before the change, and the
last two are observations of the state after the change. Each pair of variables is
implicitly constrained to satisfy the invariant, so it must hold both before and af-
ter the operation. Next come the declarations of the two inputs to the operation.
By convention, the names of inputs end in a question mark.

The part of the schema below the line �rst of all gives a pre-condition for
the success of the operation: the name to be added must not already be one of
those known to the system. This is reasonable, since each person can only have
one birthday. This speci�cation does not say what happens if the pre-condition
is not satis�ed: we shall see later how to extend the speci�cation to say that an
error message is to be produced. If the pre-condition is satis�ed, however, the
second line says that the birthday function is extended to map the new name to
the given date.
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We expect that the set of names known to the system will be augmented with
the new name:

known 0 = known [ fname?g:

In fact we can prove this from the speci�cation of AddBirthday , using the invari-
ants on the state before and after the operation:

known 0 = dom birthday 0 [invariant after]

= dom(birthday [ fname? 7! date?g) [spec. of AddBirthday ]

= dom birthday [ dom fname? 7! date?g [fact about `dom']

= dom birthday [ fname?g [fact about `dom']

= known [ fname?g: [invariant before]

Stating and proving properties like this one is a good way of making sure the
speci�cation is accurate; reasoning from the speci�cation allows us to explore the
behaviour of the system without going to the trouble and expense of implementing
it. The two facts about `dom' used in this proof are examples of the laws obeyed
by mathematical data types:

dom(f [ g) = (dom f ) [ (dom g)

domfa 7! bg = fag:

Chapter 4 contains many laws like these.
Another operation might be to �nd the birthday of a person known to the

system. Again we describe the operation with a schema:

FindBirthday
�BirthdayBook
name? : NAME
date! : DATE

name? 2 known

date! = birthday(name?)

This schema illustrates two new notations. The declaration �BirthdayBook in-
dicates that this is an operation in which the state does not change: the values
known 0 and birthday 0 of the observations after the operation are equal to their
values known and birthday beforehand. Including �BirthdayBook above the line
has the same e�ect as including �BirthdayBook above the line and the two
equations

known 0 = known

birthday 0 = birthday

below it. The other notation is the use of a name ending in an exclamation mark
for an output: the FindBirthday operation takes a name as input and yields the
corresponding birthday as output. The pre-condition for success of the operation
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is that name? is one of the names known to the system; if this is so, the output
date! is the value of the birthday function at argument name?.

The most useful operation on the system is the one to �nd which people have
birthdays on a given date. The operation has one input today?, and one output,
cards!, which is a set of names: there may be zero, one, or more people with
birthdays on a particular day, to whom birthday cards should be sent.

Remind
�BirthdayBook
today? : DATE
cards! : �NAME

cards! = f n : known j birthday(n) = today? g

Again the � convention is used to indicate that the state does not change. This
time there is no pre-condition. The output cards! is speci�ed to be equal to the
set of all values n drawn from the set known such that the value of the birthday
function at n is today?. In general, y is a member of the set f x : S j : : : x : : : g
exactly if y is a member of S and the condition : : : y : : :, obtained by replacing x
with y , is satis�ed:

y 2 f x : S j : : : x : : :g , y 2 S ^ (: : : y : : :):

So, in our case,

m 2 f n : known j birthday(n) = today? g
, m 2 known ^ birthday(m) = today? :

A name m is in the output set cards! exactly if it is known to the system and
the birthday recorded for it is today?.

To �nish the speci�cation, we must say what state the system is in when it
is �rst started. This is the initial state of the system, and it also is speci�ed by
a schema:

InitBirthdayBook
BirthdayBook

known = �

This schema describes a birthday book in which the set known is empty: in
consequence, the function birthday is empty too.

What have we achieved in this speci�cation? We have described in the same
mathematical framework both the state space of our birthday-book system and
the operations which can be performed on it. The data objects which appear in
the system were described in terms of mathematical data types such as sets and
functions. The description of the state space included an invariant relationship
between the parts of the state { information which would not be part of a program
implementing the system, but which is vital to understanding it.
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The e�ects of the operations are described in terms of the relationship which
must hold between the input and the output, rather than by giving a recipe to
be followed. This is particularly striking in the case of the Remind operation,
where we simply documented the conditions under which a name should appear
in the output. An implementation would probably have to examine the known
names one at a time, printing the ones with today's date as it found them, but
this complexity has been avoided in the speci�cation. The implementor is free
to use this technique, or any other one, as he or she chooses.

1.3 Strengthening the speci�cation

A correct implementation of our speci�cation will faithfully record birthdays and
display them, so long as there are no mistakes in the input. But the speci�cation
has a serious aw: as soon as the user tries to add a birthday for someone already
known to the system, or tries to �nd the birthday of someone not known, it says
nothing about what happens next. The action of the system may be perfectly
reasonable: it may simply ignore the incorrect input. On the other hand, the
system may break down: it may start to display rubbish, or perhaps worst of all,
it may appear to operate normally for several months, until one day it simply
forgets the birthday of a rich and elderly relation.

Does this mean that we should scrap the speci�cation and begin a new one?
That would be a shame, because the speci�cation we have describes clearly and
concisely the behaviour for correct input, and modifying it to describe the han-
dling of incorrect input could only make it obscure. Luckily there is a bet-
ter solution: we can describe, separately from the �rst speci�cation, the errors
which might be detected and the desired responses to them, then use the opera-
tions of the Z schema calculus to combine the two descriptions into a stronger
speci�cation.

We shall add an extra output result ! to each operation on the system. When
an operation is successful, this output will take the value ok , but it may take
the other values already known and not known when an error is detected. The
following free type de�nition de�nes REPORT to be a set containing exactly
these three values:

REPORT ::= ok j already known j not known:

We can de�ne a schema Success which just speci�es that the result should be ok ,
without saying how the state changes:

Success
result ! : REPORT

result ! = ok
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The conjunction operator ^ of the schema calculus allows us to combine this
description with our previous description of AddBirthday :

AddBirthday ^ Success:

This describes an operation which, for correct input, both acts as described by
AddBirthday and produces the result ok .

For each error that might be detected in the input, we de�ne a schema which
describes the conditions under which the error occurs and speci�es that the ap-
propriate report is produced. Here is a schema which speci�es that the report
already known should be produced when the input name? is already a member
of known:

AlreadyKnown
�BirthdayBook
name? : NAME
result ! : REPORT

name? 2 known
result ! = already known

The declaration �BirthdayBook speci�es that if the error occurs, the state of the
system should not change.

We can combine this description with the previous one to give a speci�cation
for a robust version of AddBirthday :

RAddBirthday b= (AddBirthday ^ Success) _ AlreadyKnown:

This de�nition introduces a new schema called RAddBirthday , obtained by com-
bining the three schemas on the right-hand side. The operation RAddBirthday
must terminate whatever its input. If the input name? is already known, the state
of the system does not change, and the result already known is returned; other-
wise, the new birthday is added to the database as described by AddBirthday ,
and the result ok is returned.

We have speci�ed the various requirements for this operation separately, and
then combined them into a single speci�cation of the whole behaviour of the
operation. This does not mean that each requirement must be implemented sep-
arately, and the implementations combined somehow. In fact, an implementation
might search for a place to store the new birthday, and at the same time check
that the name is not already known; the code for normal operation and error
handling might be thoroughly mingled. This is an example of the abstraction
which is possible when we use a speci�cation language free from the constraints
necessary in a programming language. The operators ^ and _ cannot (in general)
be implemented e�ciently as ways of combining programs, but this should not
stop us from using them to combine speci�cations if that is a convenient thing
to do.
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The operation RAddBirthday could be speci�ed directly by writing a single
schema which combines the predicate parts of the three schemas AddBirthday ,
Success and AlreadyKnown. The e�ect of the schema _ operator is to make a
schema in which the predicate part is the result of joining the predicate parts
of its two arguments with the logical connective _. Similarly, the e�ect of the
schema ^ operator is to take the conjunction of the two predicate parts. Any
common variables of the two schemas are merged: in this example, the input
name?, the output result !, and the four observations of the state before and after
the operation are shared by the two arguments of _.

RAddBirthday
�BirthdayBook
name? : NAME
date? : DATE
result ! : REPORT

(name? =2 known ^
birthday 0 = birthday [ fname? 7! date?g ^
result ! = ok) _

(name? 2 known ^
birthday 0 = birthday ^
result ! = already known)

In order to write RAddBirthday as a single schema, it has been necessary to write
out explicitly that the state doesn't change when an error is detected, a fact that
was implicitly part of the declaration �BirthdayBook before.

A robust version of the FindBirthday operation must be able to report if the
input name is not known:

NotKnown
�BirthdayBook
name? : NAME
result ! : REPORT

name? =2 known
result ! = not known

The robust operation either behaves as described by FindBirthday and reports
success, or reports that the name was not known:

RFindBirthday b= (FindBirthday ^ Success) _ NotKnown:

The Remind operation can be called at any time: it never results in an error, so
the robust version need only add the reporting of success:

RRemind b= Remind ^ Success:
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The separation of normal operation from error-handling which we have seen
here is the simplest but also the most common kind of modularization possible
with the schema calculus. More complex modularizations include promotion or
framing, where operations on a single entity { for example, a �le { are made
into operations on a named entity in a larger system { for example, a named
�le in a directory. The operations of reading and writing a �le might be de-
scribed by schemas. Separately, another schema might describe the way a �le
can be accessed in a directory under its name. Putting these two parts to-
gether would then result in a speci�cation of operations for reading and writing
named �les.

Other modularizations are possible: for example, the speci�cation of a sys-
tem with access restrictions might separate the description of who may call an
operation from the description of what the operation actually does. There are
also facilities for generic de�nitions in Z which allow, for example, the notion of
resource management to be speci�ed in general, then applied to various aspects
of a complex system.

1.4 From speci�cations to designs

We have seen how the Z notation can be used to specify software modules, and
how the schema calculus allows us to put together the speci�cation of a module
from pieces which describe various facets of its function. Now we turn our at-
tention to the techniques used in Z to document the design of a program which
implements the speci�cation.

The central idea is to describe the concrete data structures which the pro-
gram will use to represent the abstract data in the speci�cation, and to derive
descriptions of the operations in terms of the concrete data structures. We call
this process data re�nement, and it is fully explained in Chapter 5. Often, a
data re�nement will allow some of the control structure of the program to be
made explicit, and this is achieved by one or more steps of operation re�nement

or algorithm development.
For simple systems, it is possible to go from the abstract speci�cation to the

�nal program in one step, a method sometimes called direct re�nement. In more
complex systems, however, there are too many design decisions for them all to
be recorded clearly in a single re�nement step, and the technique of deferred
re�nement is appropriate. Instead of a �nished program, the �rst re�nement
step results in a new speci�cation, and this is then subjected to further steps
of re�nement until a program is at last reached. The result is a sequence of
design documents, each describing a small collection of related design decisions.
As the details of the data structures are �lled in step by step, so more of the
control structure can be �lled in, leaving certain sub-tasks to be implemented
in subsequent re�nement steps. These sub-tasks can be made into subroutines
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in the �nal program, so the step-wise structure of the development leads to a
modular structure in the program.

Program developments are often documented by giving an idealized account
of the path from speci�cation to program. In these accounts, the ideas all appear
miraculously at the right time, one after another. There are no mistakes, no
false starts, no decisions taken which are later revised. Of course, real program
developments do not happen like that, and the earlier stages of a development
are often revised many times as later stages cast new light on the system. In
any case, speci�cations are seldom written without at least a rough idea of how
they might be implemented, and it is very rare to �nd that something similar has
not been implemented before. This does not mean that the idealized accounts
are worthless, however. They are often the best way of presenting the decisions
which have been made and the relationships between them, and such an account
can be a valuable piece of documentation.

The rest of this chapter concentrates on data re�nement in Z, although the
results of the operation re�nement which might follow it are shown. Two ex-
amples of data re�nement are presented. The �rst shows direct re�nement; the
birthday book we speci�ed in Section 1.2 is implemented using a pair of arrays.
In the second example, deferred re�nement is used to show the implementation
of a simple checkpoint{restart mechanism. The implementation uses two sub-
modules for which speci�cations in Z are derived as part of the re�nement step.
This demonstrates the way in which mathematics can help us to explore design
decisions at a high level of abstraction.

1.5 Implementing the birthday book

The speci�cation of the birthday book worked with abstract data structures cho-
sen for their expressive clarity rather than their ability to be directly represented
in a computer. In the implementation, the data structures must be chosen with
an opposite set of criteria, but they can still be modelled with mathematical data
types and documented with schemas.

In our implementation, we choose to represent the birthday book with two
arrays, which might be declared by

names : array [1 : : ] of NAME ;
dates : array [1 : : ] of DATE ;

I have made these arrays `in�nite' for the sake of simplicity. In a real system
development, we would use the schema calculus to specify a limit on the number
of entries, with appropriate error reports if the limit is exceeded. Finite arrays
could then be used in a more realistic implementation; but for now, this would
just be a distraction, so let us pretend that potentially in�nite arrays are part of
our programming language. We shall, in any case, only use a �nite part of them
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at any time. These arrays can be modelled mathematically by functions from
the set 1 of strictly positive integers to NAME or DATE :

names : 1 "NAME
dates : 1 "DATE :

The element names[i ] of the array is simply the value names(i) of the function,
and the assignment names[i ] := v is exactly described by the speci�cation

names 0 = names � fi 7! vg:

The right-hand side of this equation is a function which takes the same value as
names everywhere except at the argument i , where it takes the value v .

We describe the state space of the program as a schema. There is another
variable hwm (for `high water mark'); it shows how much of the arrays is in use.

BirthdayBook1
names : 1 "NAME
dates : 1 "DATE
hwm : 

8 i ; j : 1 : : hwm �
i 6= j ) names(i) 6= names(j )

The predicate part of this schema says that there are no repetitions among the
elements names(1), : : : , names(hwm).

The idea of this representation is that each name is linked with the date
in the corresponding element of the array dates. We can document this with a
schema Abs that de�nes the abstraction relation between the abstract state space
BirthdayBook and the concrete state space BirthdayBook1:

Abs
BirthdayBook
BirthdayBook1

known = f i : 1 : : hwm � names(i) g

8 i : 1 : : hwm �
birthday(names(i)) = dates(i)

This schema relates two points of view on the state of the system. The observa-
tions involved are both those of the abstract state { known and birthday { and
those of the concrete state { names, dates and hwm. The �rst predicate says
that the set known consists of just those names which occur somewhere among
names(1), : : : , names(hwm). The set f y : S � : : : y : : :g contains those values
taken by the expression : : : y : : : as y takes values in the set S , so known contains
a name n exactly if n = names(i) for some value of i such that 1 � i � hwm.
We can write this in symbols with an existential quanti�er:

n 2 known , (9 i : 1 : : hwm � n = names(i)):
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The second predicate says that the birthday for names(i) is the corresponding
element dates(i) of the array dates.

Several concrete states may represent the same abstract state: in the example,
the order of the names and dates in the arrays does not matter, so long as names
and dates correspond properly. The order is not used in determining which
abstract state is represented by a concrete state, so two states which have the
same names and dates in di�erent orders will represent the same abstract state.
This is quite usual in data re�nement, because e�cient representations of data
often cannot avoid including superuous information.

On the other hand, each concrete state represents only one abstract state.
This is usual, because we don't expect to �nd superuous information in the
abstract state that does not need to be represented in the concrete state. It does
sometimes happen that one concrete state represents several abstract states, but
this is often a sign of a badly-written speci�cation that has a bias towards a
particular implementation.

Having explained what the concrete state space is, and how concrete states
are related to abstract states, we can begin to implement the operations of the
speci�cation. To add a new name, we increase hwm by one, and �ll in the name
and date in the arrays:

AddBirthday1
�BirthdayBook1
name? : NAME
date? : DATE

8 i : 1 : : hwm � name? 6= names(i)

hwm 0 = hwm + 1
names 0 = names � fhwm 0 7! name?g
dates 0 = dates � fhwm 0 7! date?g

This schema describes an operation which has the same inputs and outputs as
AddBirthday , but operates on the concrete instead of the abstract state. It is a
correct implementation of AddBirthday , because of the following two facts:

1. Whenever AddBirthday is legal in some abstract state, the implementation
AddBirthday1 is legal in any corresponding concrete state.

2. The �nal state which results from AddBirthday1 represents an abstract state
which AddBirthday could produce.

Why are these two statements true? The operation AddBirthday is legal exactly
if its pre-condition name? =2 known is satis�ed. If this is so, the predicate

known = f i : 1 : : hwm � names(i) g

from Abs tells us that name? is not one of the elements names(i):

8 i : 1 : : hwm � name? 6= names(i):
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This is the pre-condition of AddBirthday1.
To prove the second fact, we need to think about the concrete states before

and after an execution of AddBirthday1, and the abstract states they represent
according to Abs. The two concrete states are related by AddBirthday1, and we
must show that the two abstract states are related as prescribed by AddBirthday :

birthday 0 = birthday [ fname? 7! date?g:

The domains of these two functions are the same, because

dom birthday 0 = known 0 [invariant after]

= f i : 1 : : hwm 0 � names 0(i) g [from Abs 0]

= f i : 1 : : hwm � names 0(i) g [ fnames 0(hwm 0)g [hwm 0 = hwm + 1]

= f i : 1 : : hwm � names(i) g [ fname?g
[names 0 = names � fhwm 0 7! name?g]

= known [ fname?g [from Abs]

= dom birthday [ fname?g: [invariant before]

There is no change in the part of the arrays which was in use before the operation,
so for all i in the range 1 : : hwm,

names 0(i) = names(i) ^ dates 0(i) = dates(i):

For any i in this range,

birthday 0(names 0(i))

= dates 0(i) [from Abs 0]

= dates(i) [dates unchanged]

= birthday(names(i)): [from Abs]

For the new name, stored at index hwm 0 = hwm + 1,

birthday 0(name?)

= birthday 0(names 0(hwm 0)) [names 0(hwm 0) = name?]

= dates 0(hwm 0) [from Abs 0]

= date? : [spec. of AddBirthday1]

So the two functions birthday 0 and birthday [ fname? 7! date?g are equal, and
the abstract states before and after the operation are guaranteed to be related
as described by AddBirthday .

The description of the concrete operation uses only notation which has a
direct counterpart in our programming language, so we can translate it directly
into a subroutine to perform the operation:
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procedure AddBirthday(name : NAME ; date : DATE );
begin

hwm := hwm + 1;
names[hwm] := name;
dates[hwm] := date

end;

The second operation, FindBirthday , is implemented by the following opera-
tion, again described in terms of the concrete state:

FindBirthday1
�BirthdayBook1
name? : NAME
date! : DATE

9 i : 1 : : hwm �
name? = names(i) ^ date! = dates(i)

The predicate says that there is an index i at which the names array contains
the input name?, and the output date! is the corresponding element of the array
dates. For this to be possible, name? must in fact appear somewhere in the array
names: this is the pre-condition of the operation.

Since neither the abstract nor the concrete operation changes the state, there
is no need to check that the �nal concrete state is acceptable, but we need to
check that the pre-condition of FindBirthday1 is su�ciently liberal, and that
the output date! is correct. The pre-conditions of the abstract and concrete
operations are in fact the same: that the input name? is known. The output is
correct because for some i , name? = names(i) and date! = dates(i), so

date! = dates(i) [spec. of FindBirthday1]

= birthday(names(i)) [from Abs]

= birthday(name?): [spec. of FindBirthday1]

The existential quanti�er in the description of FindBirthday1 leads to a loop in
the program code, searching for a suitable value of i :

procedure FindBirthday(name : NAME ; var date : DATE );
var i : INTEGER;

begin

i := 1;
while names[i ] 6= name do i := i + 1;
date := dates[i ]

end;

The operation Remind poses a new problem, because its output cards is a
set of names, and cannot be directly represented in the programming language.
We can deal with it by introducing a new abstraction relation, showing how
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it can be represented by an array and an integer. Since this decision about
representation a�ects the interface between the birthday book module we are
developing and a program that uses it, this abstraction relation will form part of
the documentation of that interface. Here is a schema AbsCards that de�nes the
abstraction relation:

AbsCards
cards : �NAME
cardlist : 1 "NAME
ncards : 

cards = f i : 1 : : ncards � cardlist(i) g

The concrete operation can now be described: it produces as outputs cardlist
and ncards:

Remind1
�BirthdayBook1
today? : DATE
cardlist ! : 1 "NAME
ncards! : 

f i : 1 : : ncards! � cardlist !(i) g
= f j : 1 : :hwm j dates(j ) = today? � names(j ) g

The set on the right-hand side of the equation contains all the names in the
names array for which the corresponding entry in the dates array is today?. The
program code for Remind uses a loop to examine the entries one by one:

procedure Remind(today : DATE ;
var cardlist : array [1 : : ] of NAME ;
var ncards : INTEGER);

var j : INTEGER;
begin

ncards := 0; j := 0;
while j < hwm do begin

j := j + 1;
if dates[j ] = today then begin

ncards := ncards + 1;
cardlist [ncards] := names[j ]

end

end

end;

The initial state of the program has hwm = 0:
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InitBirthdayBook1
BirthdayBook1

hwm = 0

Nothing is said about the initial values of the arrays names and dates, be-
cause they do not matter. If the initial concrete state satis�es this description,
and it is related to the initial abstract state by the abstraction schema Abs,
then

known = f i : 1 : : hwm � names(i) g [from Abs]

= f i : 1 : : 0 � names(i) g [from InitBirthdayBook1]

= �; [1 : : 0 = �]

so the initial abstract state is as described by InitBirthdayBook . This description
of the initial concrete state can be used to write a subroutine to initialize our
program module:

procedure InitBirthdayBook ;
begin

hwm := 0
end;

In this direct re�nement, we have taken the birthday book speci�cation and in
a single step produced a program module which implements it. The relationship
between the state of the book as described in the speci�cation and the values of
the program variables which represent that state was documented with an ab-
straction schema, and this allowed descriptions of the operations in terms of the
program variables to be derived. These operations were simple enough to imple-
ment immediately, but in a more complex example, rules of operation re�nement
could be used to check the code against the concrete operation descriptions.

1.6 A simple checkpointing scheme

This example shows how re�nement techniques can be used at a high level in
the design of systems, as well as in detailed programming. What we shall call a
database is simply a function from addresses to pages of data. We �rst introduce
ADDR and PAGE as basic types:

[ADDR;PAGE ]:

We de�ne DATABASE as an abbreviation for the set of all functions from ADDR
to PAGE :

DATABASE == ADDR" PAGE :
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We shall be looking at a system which { from the user's point of view { contains
two versions of a database. Here is a schema describing the state space:

CheckSys
working : DATABASE
backup : DATABASE

This schema has no predicate part: it speci�es that the two observations working
and backup may be any databases at all, and need not be related in any way.

Most operations a�ect only the working database. For example, it is possible
to access the page at a speci�ed address:

Access
�CheckSys
a? : ADDR
p! : PAGE

p! = working(a?)

This operation takes an address a? as input, and produces as its output p! the
page stored in the working database at that address. Neither version of the
database changes in the operation.

It is also possible to update the working database with a new page:

Update
�CheckSys
a? : ADDR
p? : PAGE

working 0 = working � fa? 7! p?g
backup0 = backup

In this operation, both an address a? and a page p? are supplied as input, and
the working database is updated so that the page p? is now stored at address a?.
The page previously stored at address a? is lost.

There are two operations involving the back-up database. We can take a copy
of the working database: this is the CheckPoint operation:

CheckPoint
�CheckSys

working 0 = working
backup0 = working

We can also restore the working database to the state it had at the last checkpoint:
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Restart
�CheckSys

working 0 = backup
backup0 = backup

This completes the speci�cation of our system, and we can begin to think of how
we might implement it. A �rst idea might be really to keep two copies of the
database, so implementing the speci�cation directly. But experience tells us that
copying the entire database is an expensive operation, and that if checkpoints
are taken frequently, then the computer will spend much more time copying than
it does accessing and updating the working database.

A better idea for an implementation might be to keep only one complete copy
of the database, together with a record of the changes made since creation of this
master copy. The master copy consists of a single database:

Master
master : DATABASE

The record of changes made since the last checkpoint is a partial function from
addresses to pages: it is partial because we expect that not every page will have
been updated since the last checkpoint.

Changes
changes : ADDR� PAGE

The concrete state space is described by putting these two parts together:

CheckSys1
Master
Changes

How does this concrete state space mirror our original abstract view? The mas-
ter database is what we described as the back-up, and the working database
is master � changes, the result of updating the master copy with the recorded
changes. We can record this relationship with an abstraction schema:

Abs
CheckSys
CheckSys1

backup = master
working = master � changes

The notation master � changes denotes a function which agrees with master
everywhere except in the domain of changes, where it agrees with changes.
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How can we implement the four operations? Accessing a page at address a?
should return a page from the working copy of the database, and according to
the abstraction relation,

working(a?) = (master � changes)(a?);

so a valid speci�cation of Access1 is as follows:

Access1
�CheckSys1
a? : ADDR
p! : PAGE

p! = (master � changes)(a?)

But we can do a little better than this: if a? 2 dom changes, then

(master � changes)(a?)

is equal to changes(a?) and if a? =2 dom changes, then it is equal to master(a?).
So we can use operation re�nement to develop the operation further; it is imple-
mented by

procedure Access(a : ADDR; var p : PAGE );
var r : REPORT ;

begin

GetChange(a; p; r);
if r 6= ok then

ReadMaster(a; p)
end;

What are the operations GetChange and ReadMaster? We need give only their
speci�cations here, and can leave their implementation to a later stage in the
development. GetChange operates only on the changes part of the state; it
checks whether a given page is present, returning a report and, if possible, the
page itself:

GetChange
�Changes
a? : ADDR
p! : PAGE
r ! : REPORT

(a? 2 dom changes ^
p! = changes(a?) ^
r ! = ok) _

(a? =2 dom changes ^
r ! = not present)
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As you will see, this is a speci�cation which could be structured nicely with the
schema _ operator. The ReadMaster operation simply returns a page from the
master database:

ReadMaster
�Master
a? : ADDR
p! : PAGE

p! = master(a?)

For the Update operation, we want backup0 = backup, so

master 0 = backup0 = backup = master :

Also working 0 = working � fa? 7! p?g, so we want

master 0 � changes 0 = (master � changes)� fa? 7! p?g:

Luckily, the overriding operator � is associative: it satis�es the law

(f � g)� h = f � (g � h):

If we let changes 0 = changes � fa? 7! p?g, then

working 0 = working � fa? 7! p?g [spec. of Update]

= (master � changes)� fa? 7! p?g [from Abs]

= master � (changes � fa? 7! p?g) [associativity of �]

= master 0 � changes 0; [spec. of Update1]

and the abstraction relation is maintained. So the speci�cation for Update1 is

Update1
�CheckSys1
a? : ADDR
p? : PAGE

master 0 = master
changes 0 = changes � fa? 7! p?g

This is implemented by an operation MakeChange which has the same e�ect as
described here, but operates only on the Changes part of the state.

For the CheckPoint operation, we want backup0 = working , so we immediately
see that

master 0 = backup0 = working = master � changes:

We also want working 0 = working , so

master 0 � changes 0 = master � changes = master 0:
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This equation is solved by setting changes 0 = �, since the empty function � is a
right identity for �, as expressed by the law

f �� = f :

So a speci�cation for CheckPoint1 is

CheckPoint1
�CheckSys1

master 0 = master � changes
changes 0 = �

This can be re�ned to the code

MultiWrite(changes); ResetChanges

where MultiWrite updates the master database, and ResetChanges sets changes
to �.

Finally, for the operation Restart1, we have backup0 = backup, so we need
master 0 = master , as for Update. Again, we want

master 0 � changes 0 = master 0;

this time because working 0 = backup, so we choose changes 0 = � as before:

Restart1
�CheckSys1

master 0 = master
changes 0 = �

This can be re�ned to a simple call to ResetChanges.
Now we have found implementations for all the operations of our original

speci�cation. In these implementations, we have used two new sets of opera-
tions, which we have speci�ed with schemas but not yet implemented. One set,
ReadMaster and MultiWrite, operates on the master part of the concrete state,
and the other, containing MakeChange, GetChange, and ResetChanges, operates
only on the changes part of the state. The result is two new speci�cations for
what are in e�ect modules of the system, and in later stages they can be devel-
oped independently. Perhaps the master function would be represented by an
array of pages stored on a disk, and changes by a hash table held in main store.

In mathematics, we can describe data structures with equal ease, whether
they are held in primary or secondary storage. Operations are described in
terms of their function, and it makes no di�erence whether their execution takes
microseconds or hours to �nish. Of course, the designer must be very closely
concerned with the capabilities of the equipment to be used, and it is vital to
distinguish primary storage, which though fast has limited capacity, from the
slower but larger secondary storage. But we regard it as a strength and not a
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weakness of the mathematical method that it does not reect this distinction. By
modelling only the functional characteristics of a software module, a mathemat-
ical speci�cation technique encourages a healthy separation of concerns: it helps
the designer to focus his or her attention on functional aspects, and to compare
di�erent designs, even if they di�er widely in performance.

The rest of this book is a reference manual for the notation and ideas used
in the examples we have looked at here. In Chapter 2, an outline is given of
the mathematical world of sets, relations and functions in which Z operates,
and the way Z speci�cations describe objects in this world. These concepts are
applied in Chapter 3, where an account of the Z language is given. The language
is made usable by the library of de�nitions which is implicitly a part of every Z
speci�cation, described in Chapter 4 on `the mathematical tool-kit'. This chapter
contains many laws of the kind we have used in reasoning about the examples.
Chapter 5 covers the conventions by which Z speci�cations are used to describe
sequential programs, and the rules for developing concrete representations of
data types from their mathematical speci�cations. The �nal chapter contains a
summary of the syntax of the Z language described in the manual.



CHAPTER 2

Background

The language of Z speci�cations is grounded in mathematics, and this chapter
contains a description of the world of mathematical objects in which speci�ca-
tions have their meaning. It describes what objects exist, and how relationships
between them may be made into speci�cations. These two themes are developed
more fully in later chapters: Chapter 3 deals in detail with the Z language and
how it can be used to express speci�cations, and Chapter 4 extends the vocabu-
lary of mathematical objects into a collection of powerful data types, using the
Z language for the de�nitions.

2.1 Objects and types

A type is an expression of a restricted kind: it is either a given set name, or
a compound type built up from simpler types using one of a small collection of
type constructors. The value of a type is a set called the carrier of the type. By
abuse of language, we often say that an object is a member of a type when it is
a member of the carrier of the type.

Every expression that appears in a proper Z speci�cation is associated with
a unique type, and if the expression is de�ned, then the value of the expression
is a member of (the carrier of) its type. Each variable has a type that can be
deduced from its declaration, and there are rules for deriving the type of each
kind of compound expression from the types of its sub-expressions.

Types are important because it is possible to calculate automatically the
types of all the expressions in a speci�cation and check that they make sense.
For example, in the equation

(0; 1) = f1; 2; 3g;

the left-hand side is an ordered pair, but the right-hand side is a set, so (according
to the type system of Z) the equation is nonsense. This is the kind of mistake

24
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which can be detected by a type checker. There is, of course, no guarantee that
a speci�cation free from type errors can be implemented, and still less that it
really says what the customer wants. The possibility of automatic type-checking
is a strong pragmatic reason for having types in Z, and there are also theoretical
reasons connected with ensuring that every expression in a speci�cation exists as
a set, and avoiding the set-theoretic paradoxes of Russell and others.

Every Z speci�cation begins with certain objects that play a part in the
speci�cation but have no internal structure of interest. These atomic objects
are the members of the basic types or given sets of the speci�cation. Many
speci�cations have the integers as atomic objects, and these are members of the
basic type �, but there may be other basic types; for example, a speci�cation of
a �ling system might have �le-names as atomic objects belonging to the basic
type FNAME , and a speci�cation of a language might have expressions as atomic
objects belonging to the basic type EXP .

Starting with atomic objects, more complex objects can be put together in
various ways. These composite objects are the members of composite types, put
together with the type constructors of Z. There are three kinds of composite types:
set types, Cartesian product types, and schema types. The type constructors can
be applied repeatedly to obtain more and more complex types, whose members
have a more and more complex internal structure.

2.1.1 Sets and set types

Any set of objects that are members of the same type t is itself an object in the
set type � t . Sets may be written in Z by listing their elements. For example:

f1; 2; 4; 8; 16g

has type �� and is a set of integers, the �rst �ve powers of 2. They may also
be written by giving a property which is characteristic of the elements of the set.
For example:

f p : PERSON j age(p) � 16 g

has type �PERSON ; it is the set whose members are exactly those members of
the basic type PERSON for which the function age has value at least 16. Two
sets of the same type � t are equal exactly if they have the same members.

2.1.2 Tuples and Cartesian product types

If x and y are two objects that are members of the types t and u respectively,
then the ordered pair (x ; y) is an object in the Cartesian product type t � u.
Similarly, if x , y and z are three objects of types t , u and v respectively, then
the ordered triple (x ; y ; z ) is an object with type t � u � v .
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More generally, if x1, : : : , xn are n objects of types t1, : : : , tn respectively, then
the ordered n-tuple (x1; : : : ; xn) is an object of type t1 � � � � � tn . If (y1; : : : ; yn)
is another n-tuple of the same type, then the two are equal exactly if xi = yi for
each i with 1 � i � n.

Note that there is no connection between Cartesian products with di�erent
numbers of terms: for example, the ternary product t�u�v is di�erent from the
iterated binary products t�(u�v) and (t�u)�v : it is best to think of t�u�v as
an application of the type constructor � � of three arguments. Consequently,
the triple (a; b; c) is di�erent from both (a; (b; c)) and ((a; b); c): in fact, they
have di�erent types. This distinction allows the application of functions of several
arguments to be type-checked more closely. Although in theory it is possible to
have tuples with no components or only one component, there is no way to write
them in Z speci�cations.

2.1.3 Bindings and schema types

If p and q are distinct identi�ers, and x and y are objects of types t and u
respectively, then there is a binding z = hp � x ; q � yi with components z :p
equal to x and z :q equal to y . This binding is an object with the schema type

	 p : t ; q : u 
. More generally, if p1, : : : , pn are distinct identi�ers and x1, : : : , xn
are objects of types t1, : : : , tn respectively, then there is a binding

z = hp1 � x1; : : : ; pn � xni

with components z :pi = xi for each i , 1 � i � n. This binding is an object with
the schema type

	 p1 : t1; : : : ; pn : tn 
:

The binding z is equal to another binding w of the same type exactly if z :pi =
w :pi for each i with 1 � i � n. Two schema types are regarded as identical if
they di�er only in the order in which the components are listed; likewise, two
bindings are equal if they have the same components, regardless of the order in
which they are written down. The notation 	 x ; y : T 
 is sometimes used as an
abbreviation for 	 x : T ; y : T 
.

Bindings are used in the operations of Z which allow instances of a schema
to be regarded as mathematical objects in their own right: the components of
the binding correspond to the components of the schema. They are also used in
this manual to describe the meaning of the predicate parts of schemas. Although
the notation for bindings and schema types is not part of the Z language in the
way � and � are, the concept is implicit in the operations on schemas provided
by the language. The expression �S , where S is a schema, has a binding as its
value, and variables with schema types are introduced by declarations like x : S .

There are many schema types like 	 x : � 
 with only one component, and
their elements are one-component bindings like hx � 3i. There is also a unique
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schema type 	 
 that has no components; its only element is the empty binding
(which might be written hi if that were not the notation for the empty sequence).
Schema types with only one component are associated with schemas with one
component, and the empty schema type is associated with the result of hiding
all the variables of a schema, a possible but not very useful operation.

2.1.4 Relations and functions

The three kinds of object introduced so far { sets, tuples and bindings { are
the only ones which are fundamental to Z. Other mathematical objects can be
modelled by combining these three basic constructions, and Chapter 4 contains
de�nitions which accomplish this for several important classes of object.

Among the most important mathematical objects are binary relations and
functions, and both are modelled in Z by their graphs. The graph of a binary
relation is the set of ordered pairs for which it holds: for example, the graph of
the relation < on integers contains the pairs (0; 1), (0; 2), (1; 2), (�37; 42),
and so on, but not (3; 3) or (45; 34). The identi�cation between a binary relation
and its graph is so strong in Z that we speak of them as being the same object.
The notation X # Y , meaning the set of binary relations between the sets X
andY , is de�ned in Chapter 4 as a synonym for the set �(X � Y ) of subsets of
the set X � Y of ordered pairs.

Mathematical functions are a special kind of relation: those which relate each
object on the left to at most one object on the right. Chapter 4 de�nes the
notation X �Y as a synonym for the set of relations with this property. They
are called partial functions, because they need not give a result for every possible
argument. The set X " Y contains all the total functions from X to Y : they
relate each member of X to exactly one member of Y . The notation f (x ) can
be used if f is a function: the value of this expression is that unique element of
Y to which x is related by f . Functions with several arguments are modelled by
letting the set on the left of the arrow be a Cartesian product: in a sense, they
do not have many arguments, but only one, which happens to be a tuple.

In common with ordinary mathematical practice, Z regards functions as static
relations between arguments and results; this contrasts with the view encouraged
by some programming languages, where `functions' are methods for computing
the result from the argument. In particular, we can talk quite freely in Z about
two functions being equal { it simply means that they contain the same ordered
pairs { even though it is di�cult to tell whether two di�erent algorithms compute
the same result from the same argument, and in general the question is undecid-
able. Mathematical functions are a valuable tool for describing data abstractly,
even though they cannot be represented directly in the memory of a computer.
In implementing a speci�cation which talks about functions, design decisions will
have to be taken about how the data modelled by functions is to be represented,
but the speci�cation abstracts from this detail.



28 Background

The birthday-book speci�cation in Chapter 1 used a mathematical function
birthday to model the relationship between names and birthdays; later, the im-
plementation used a pair of arrays to represent the same information. This use of
functions in speci�cations can be compared to the use of real numbers to specify
numerical calculations. Even though only some real numbers can be represented
by oating point values, arithmetic on real numbers provides a convenient lan-
guage for describing and reasoning about the calculations that the computer
performs.

To make the system of types simple enough for types to be calculated auto-
matically, it is necessary to disregard some of the information given in the dec-
laration of a function when calculating its type. In fact, the type system makes
no distinction between functions and simple binary relations; the two variables f
and g declared by

f : A# B
g : A" B

have the same type �(A�B). This is because functions are just relations with a
certain property, so a relation declared like f could in fact be a function, perhaps
by virtue of its de�nition. So the equation f = g makes perfect sense, and if f
is indeed a function, the expression f (a) also makes sense. Deciding whether the
de�nition of f makes it a function is, in general, as di�cult as arbitrary theorem
proving, so we cannot expect an automatic type checker to do it for us.

2.2 Properties and schemas

A signature is a collection of variables, each with a type. Signatures are created by
declarations, and they provide a vocabulary for making mathematical statements,
which are expressed by predicates. For example, the declaration x ; y : � creates
a signature with two variables x and y , both of type �. In this signature, the
predicate x < y expresses the property that the value of x is less than the value
of y . This will be so when x and y take certain values { if, say, x is 3 and y
is 5 { and not when they take certain other values { if, say, x is 6 and y is 4.
Two di�erent predicates may express the same property: in the example, the
predicate y > x expresses the same property as x < y .

Each signature is naturally associated with a schema type; for example,
the signature created by declaring x ; y : � is associated with the schema type
	 x ; y : � 
. The values in this type are bindings in which the variables take dif-
ferent values drawn from their types. (These bindings are called `assignments',
`interpretations' or `structures' in mathematical logic; I have avoided these terms
because of their di�erent connotations in computing science.) A property over
the signature is characterized by the set of bindings under which it is true. For
example, the property expressed by x < y is true under the binding hx�3; y�5i
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and false under the binding hx � 6; y � 4i.
A predicate expresses a property, and by extension we say a predicate is true

under a binding if the property it expresses is true under that binding. We say
that the binding satis�es the property, or the predicate which expresses it, if the
property is true under the binding. As we have just seen, there may be more
than one way of expressing a property as a predicate: we say two predicates over
a signature are logically equivalent if they express the same property; that is, if
they are true under exactly the same bindings as each other.

A schema is a signature together with a property over the signature. The
schema Aleph with the signature and property in our example might be written

Aleph
x ; y : �

x < y

We call x and y the components of Aleph. For the moment, we may think of
the components of a schema as being simply the variables in its signature. Later
(in Section 2.3.2) we shall revise this de�nition to bring global variables into the
account.

Roughly speaking, the signature and property parts of a schema correspond
to the declaration and predicate written in the text of the schema. Sometimes,
however, the declaration contributes something to the property; for example, in
the schema

Beth
f : �"�

f (3) = 4

the type of f is �(���), and the fact that f is a function is part of the property,
as well as the fact that its value at 3 is 4. We call the property expressed in a
declaration the constraint of the declaration.

2.2.1 Combining properties

The simplest predicates are true, which expresses a property true under all
bindings, and false, which expresses a property true under no binding. An
equation

E1 = E2

expresses the property that the values of the expressions E1 and E2 are equal,
and the predicate

E1 2 E2
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expresses the property that the value of E1 is a member of whatever set is the
value of E2.

These basic predicates can be combined in various ways to express more
complicated properties. For example, the predicate

P1 ^ P2

expresses the conjunction of the properties expressed by the predicates P1 and
P2. It is true exactly when both P1 and P2 are true individually. The other
connectives of the propositional calculus, _, ), : and ,, may also be used to
combine predicates (see Section 3.7).

If x is a natural number, the universally quanti�ed predicate

8 z :  � x � z

expresses the property that the value of x is less than or equal to every natural
number, i.e. that x is zero. The existential quanti�er 9 and the unique quanti�er
9
1
may be used as well as 8. The most general form of a universally quanti�ed

predicate is

8D j P � Q

where D is a declaration and P and Q are predicates. D and P together form a
schema S , and the whole predicate expresses the following property: that what-
ever values are taken by the components of S , if the property of S is satis�ed, then
the predicate Q will also be satis�ed. The components of S are local variables
of the whole predicate, in a sense explained in Section 2.3.

2.2.2 Decorations and renaming

A fundamental operation on schemas is systematic decoration. If S is a schema,
then S 0 is the same as S , except that all the component names have been su�xed
with the decoration 0. The signature of S 0 contains a component x 0 for each
component x of S , and the type of x 0 in S 0 is the same as the type of x in S .

From a binding z for this new signature, a binding z0 for the signature of S
can be derived. In z0, each component x of S is given the value that x 0 takes in
z , so that z0:x = z :x 0. The property of S 0 is true under z exactly if the property
of S is true under the derived binding z0.

For example, if Aleph is the schema we de�ned before, then bindings for
Aleph have the type 	 x ; y : � 
, and bindings for Aleph 0 have the type 	 x 0; y 0 :
� 
. From the binding z = hx 0 � 3; y 0 � 5i for Aleph 0 is derived the binding
z0 = hx � 3; y � 5i for Aleph; since the property of Aleph is true under z0, the
property of Aleph 0 is true under z .

There are three standard decorations used in describing operations on abstract
data types (see Chapter 5): 0 for labelling the �nal state of an operation, ? for
labelling its inputs, and ! for labelling its outputs. Subscript digits may also be
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used as decorations. An identi�er or schema may have a sequence of decorations,
so the identi�ers x 00, x 000, etc. are allowed, as well as the less useful x 0?, x?!, and
so on. Note that the identi�ers x1! and x !1 are di�erent.

Another operation on schemas is renaming. If S is a schema, then

S [y1=x1; : : : ; yn=xn ]

is a schema obtained by replacing each component xi by the corresponding name
yi . For this to make sense, the identi�ers xi must be distinct, and they must all
be components of the schema S , but the yi 's need not be distinct from each other
or from the components of S . If any two components of the original schema end
up with the same name after the renaming has been done, they must have the
same type. Such merging can happen because two components are both renamed
with the same identi�er, or because a component is renamed with an identi�er
that is already in use by another component that is not renamed.

The signature of the schema S [y1=x1; : : : ; yn=xn ] is obtained from the signa-
ture of S by replacing each component xi by the corresponding yi , with merging
of components that have the same name after renaming. From a binding z for
this new signature, a binding z0 for the signature of S can be derived. In z0, each
component that matches one of the xi 's is given the value that z gives to the
corresponding yi . The other components take the same value in both bindings.
So z0:xi = z :yi for each i , and z0:w = z :w if w is distinct from all the xi 's.
The property of the renamed schema is true under the binding z exactly if the
property of S is true under the derived binding z0.

For example, the schema Aleph[y=x ] has a single component y , because the x
component of Aleph is renamed as y and merges with the original y component.
The binding z = hy � 3i has the correct type 	 y : � 
, but the binding z0 =
hx � 3; y � 3i for Aleph that is derived from it does not satisfy the property of
Aleph, so z does not satisfy the property of Aleph[y=x ].

2.2.3 Combining schemas

Two signatures are said to be type compatible if each variable common to the
two has the same type in both of them. If two signatures have this property, we
can join them to make a larger signature which contains all the variables from
each of them. For example, the two signatures

a : �X ; b : X �Y

and

b : X �Y ; c : Z

are type compatible because their only common variable b has the same type
X � Y in both of them. They can be joined to make the signature

a : �X ; b : X �Y ; c : Z :
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The new signature contains all the variables of each of the original ones, with the
same types; for this reason, we say that the original signatures are sub-signatures
of the new one. If one signature is a sub-signature of another one, a binding z1 for
the �rst can be derived from any binding z for the second by simply ignoring the
extra components: we call this binding z1 the restriction of the original binding
z to the smaller signature. Conversely, we say that z is an extension of z1 to the
larger signature.

To be type compatible, two signatures must give the same type to their com-
mon variables, but this does not mean that the variables must be declared in the
same way, for as we have seen, a declaration can provide more information than
just the type of a variable. As a simple example, both binary relations between
two sets X and Y and functions from X to Y have the same type �(X �Y ), so
two signatures would be type compatible even if one resulted from the declaration

f : X #Y

and the other from the declaration

f : X "Y :

Two schemas S and T with type compatible signatures may be combined with
the schema conjunction operator to give a new schema S ^ T . The signature
of this new schema is the result of joining the signatures of S and T , and its
property is in e�ect the conjunction of the properties of S and T : it is true
under any binding z exactly if both the restriction of z to the signature of S
satis�es the property of S and the restriction of z to the signature of T satis�es
the property of T .

Provided that no component of S has the same name as a global variable
mentioned in the body of T , and vice versa (see Section 2.3.2), the schema
S ^ T can be expanded textually: the declaration part of the expansion has
all the declarations from both S and T (with duplicates eliminated), and the
predicate part is the conjunction of the predicate parts of S and T . For example,
if schema Aleph is as before, and Gimel is de�ned by

Gimel
y : �
z : 1 : : 10

y = z � z

then Aleph ^ Gimel is schema like this:

x ; y : �
z : 1 : : 10

x < y ^ y = z � z

(Unnamed schemas like this are not really part of the Z syntax.)
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Other logical connectives such as _, ), and , may also be used to combine
two type compatible schemas. They join the signatures as for ^, and combine the
properties in a way which depends on the connective: for example, the property
of S _ T is true under a binding z exactly if either or both of the restrictions of
z satisfy the properties of S or T respectively. The negation : S of a schema S
has the same signature as S but the negation of its property.

Compound schemas resulting from these operations can also be expanded
textually, but care is necessary if the declaration part contributes to the property
of the schema. For example, the negation of the schema Gimel de�ned above is

y ; z : �

z < 1 _ z > 10 _
y 6= z � z

This expansion of : Gimel is reached by �rst making explicit the contribution
made by the declaration part of Gimel to its property:

Gimel
y ; z : �

1 � z � 10 ^
y = z � z

Only when this information is made explicit can the predicate part be negated
directly.

The hiding operators n and � provide ways of removing components from
schemas. If S is a schema, and x1, : : : , xn are components of S then

S n (x1; : : : ; xn)

is a schema. Its components are the components of S , except for x1, : : : , xn , and
they have the same types as in S . The property of this schema is true under
exactly those bindings that are restrictions of bindings that satisfy the property
of S . Provided there is no clash of variables, the schema can be written using an
existential quanti�er: if Gimel is the schema de�ned above, then Gimel n (z ) is
the schema

y : �

9 z : 1 : : 10 � y = z � z

It is possible (but not very useful) to hide all the components of a schema: the
result is a schema with an empty signature and a property which is either true
or false under the (unique) empty binding, depending on whether any bindings
satis�ed the property of the original schema.
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If S and T are schemas with type compatible signatures, then S � T is also a
schema: it has the signature of T , and its property is satis�ed by exactly those
bindings which are a restriction of a binding satisfying the property of S ^ T . It
is the same as (S ^ T ) n (x1; : : : ; xn), where x1, : : : , xn are all the components
of S not shared by T .

Quanti�ers provide another way of hiding components of schemas. If D is a
declaration, P is a predicate, and S is a schema, then

8D j P � S

is a schema. The schema S must have as components all the variables introduced
by D , and they must have the same types. The signature of the result contains
all the components of S except those introduced by D , and they have the same
types as in S . The property of the result is derived as follows: for any binding z
for the signature of the result, consider all the extensions z1 of z to the signature
of S . If every such extension z1 which satis�es both the constraint of D and the
predicate P also satis�es the property of S , then the original binding satis�es the
property of 8D j P � S .

The schema 9D j P � S has the same signature as 8D j P � S , but its prop-
erty is true under a binding z if at least one of the extensions of z simultaneously
satis�es the constraint of D , the predicate P , and the property of S . Similarly,
the schema 9

1
D j P � S has the same signature, but its property is true under

any binding which can be extended in exactly one way so that these three are
simultaneously satis�ed.

Quanti�ed schema expressions can be expanded textually by introducing a
quanti�er into the body of the schema. As an example, the expression

8 z : � j z > 5 � Gimel

can be written as

y : �

8 z : � j z > 5 � z 2 1 : : 10 ^ y = z � z

Again, it has been necessary to make explicit the information about z given by
its declaration before making the expansion.

2.3 Variables and scope

Speci�cations can contain global variables, components of schemas, and local
variables introduced, for example, by the universal quanti�er 8. The scope rules
of Z de�ne the collection of names which may be used at each point in the
speci�cation, and identify the declaration to which a name refers at each point.
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2.3.1 Nested scopes

Like many programming languages (e.g. Algol 60, Pascal) and many formal sys-
tems (e.g. �-calculus, �rst-order logic), Z has a system of nested scopes. For
each variable introduced by a declaration, there is a region of the speci�cation,
called the scope of the declaration, where the name of the variable refers to this
declaration. We say that the variable is local to this region of the speci�cation,
and that it is in scope throughout the region.

In many cases, the names of variables which are local to a region in a speci-
�cation can be changed without a�ecting the meaning: for example, in the
predicate

9 y :  � x > y ;

the name of the variable y can be changed without changing the property being
expressed; this predicate is logically equivalent to the predicate

9 u :  � x > u:

The renaming of the local variables of a universally quanti�ed predicate is possible
because the names themselves are not part of the meaning of the predicate: we
only care about which bindings make it true.

Sometimes the scope of a declaration has `holes' in it, caused by a nested
declaration of another variable with the same name. For example, in the predicate

9 x :  � ((9 x :  � x < 10) ^ x > 3);

the occurrence of x in x < 10 refers to the inner declaration of x : the whole of
the inner quanti�cation is a hole in the scope of the declaration of x introduced
by the outer quanti�er. Where renaming of local variables is possible, this kind
of confusion can be avoided, and it is usually good practice to do so: our example
might be rewritten as

9 x :  � ((9 y :  � y < 10) ^ x > 3)

by renaming the local variable of the inner quanti�er, or even { since the inner
quanti�cation is now independent of x { as

(9 x :  � x > 3) ^ (9 y :  � y < 10):

There are two special features added to this system of scopes by the schema
notation. The �rst is that some declarations, those which call for the inclusion
of a schema, do not mention explicitly the variables being declared. If Aleph is
the schema de�ned by

Aleph
x ; y : �

x < y
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then Aleph used as a declaration introduces the two variables x and y without
naming them explicitly. The second special feature is that the components of
a schema, although they are in some respects local to the schema's de�nition,
cannot be renamed without a�ecting the meaning. For example, the schema
NewAleph de�ned by

NewAleph
u; v : �

u < v

is di�erent from Aleph, because it has di�erent component names.
Nevertheless, the scope of the component names consists only of the predicate

part of the schema, unless the schema is included in a declaration elsewhere as
explained above. Component names are also used in the notation a:x for selecting
a component x from a binding a, but, properly speaking, this is not a use of the
variable x , but just of x as an identi�er. Its meaning does not depend on x 's being
in scope, because the information about which selectors are allowed is carried in
the type of a.

Other kinds of name can appear in Z speci�cations besides variables. Basic

types and generic constants respect the nesting of scopes. Basic type names may
be global, or may be local to a generic de�nition, as described in Section 2.4.
Generic constants are always global. Objects of each of these three kinds can be
hidden by inner declarations of other objects with the same name, but it is not
possible to have two di�erent objects with the same name at the same level of
nesting.

Schema names do not have any nesting of scope. Any name which is de�ned
as a schema may only be used as such throughout the speci�cation document.
The �rst place in the speci�cation where the name occurs must be its de�nition.
A schema can have only one de�nition, and all uses of the name refer to this
de�nition.

2.3.2 Schemas with global variables

So far, we have been considering schemas in isolation: the only variables which
have appeared in the predicate part have been the components of the schema.
This is not the whole story, however, because Z speci�cations can also contain
global variables that are declared outside any schema, and these variables can
be used in de�ning schemas. The mathematical library of Z declares many such
variables, and in fact we have been taking for granted symbols like + and < that
are really global variables from the library.

In addition to using global variables declared as part of the mathematical
library, a speci�cation will often introduce global variables of its own. An example
might be the speci�cation of a counter whose value is bounded by some limit.
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We might �rst introduce, by an axiomatic description, a global variable limit to
stand for the maximum value to be taken by the counter:

limit : 

limit � 65535

Incidentally, the limit is itself restricted to be at most 65535. Now we can de�ne
a schema to represent the state space of the counter:

Counter
value : 

value � limit

The predicate part of this schema mentions both the component value and the
global variable limit , constraining one to be no greater than the other.

Together with their types, the global variables of a Z speci�cation form a
global signature. The axioms that relate the values of the global variables con-
tribute to a global property of the speci�cation. Just like a schema, the global
part of a speci�cation consists of a signature and a property over the signa-
ture. In the example, limit is a variable in this global signature, and the axiom
limit � 65535 forms part of the global property.

In a schema de�nition, the predicate part may mention both the components
of the schema itself and global variables. In e�ect, it is written with respect
to a signature formed by adding the components of the schema to the global
signature, with { strictly speaking { special provision to avoid a clash of variables.
In the schema Counter , the signature for the predicate part contains both the
global variable limit and the component value, and the predicate value � limit
mentions both of them. The global property of the speci�cation is incorporated
in the property of every schema: in the example, the fact that limit � 65535 is
part of the property of Counter , so we can conclude that value � 65535.

Although the signature of each schema in a speci�cation is e�ectively an ex-
tension of the global signature, decoration a�ects only the schema's own compo-
nents, not its inherited global variables; when schemas are combined, their global
parts merge, so that in S ^ S 0 there is just one `copy' of the global variables.
Also, the expressions �S and S or f S g (where S is a schema) form bindings that
contain only the components of S and not the global variables.

One way to understand a speci�cation with global variables is to imagine
�xing on one binding for them, so that they take �xed values that satisfy the
global property. The property of each schema then restricts the components of
the schema to take values that bear a certain relationship to the values of the
global variables. Di�erent choices of values for the global variables will make
the properties of the schemas pick out di�erent ranges of possible values for the
components, but whatever choice is made, it is applied consistently throughout
the speci�cation.
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Understood in this way, a speci�cation describes a family with one member
for each binding that satis�es the global property. If this family has more than
one member, we say the speci�cation is loose. The Counter example is a loose
speci�cation, because the predicate limit � 65535 does not �x a single value for
the global variable limit . The use of loose speci�cations for describing families
of abstract data types is described in Section 5.3.

Sometimes it happens that a component of a schema has the same name as
a global variable: in this case, the component hides the global variable on the
predicate part of the schema, which forms a `hole' in the scope of the global
variable. Occurrences of the name in the predicate part of the schema refer to
the component, rather than the global variable.

2.4 Generic constructions

Many mathematical constructions are independent of the elements from which
the construction starts: for example, we recognize sequences of numbers and se-
quences of characters as being the same kind of object, even though the elements
they are built from { numbers and characters { are di�erent, and we recognize
concatenation of sequences as being the same operation whatever set the ele-
ments are drawn from. Equally, we can often describe parts of computer systems
independently of the particular data they operate on: a resource management
module, for example, does the same kind of thing whether it is managing printers
or tape drives.

The generic constructs of Z allow such families of concepts to be captured
in a single de�nition. Z allows both generic constants, like the set of sequences
over a particular set and the operation of concatenation, and generic schemas,
like the state space of a resource manager. In the de�nition of these generic
objects, the collection of basic types is locally extended with one or more formal
generic parameters, which stand for the as-yet-unknown sets of elements on which
the de�nition is based. Later, when the generic object is used, actual generic
parameters are supplied; these determine the sets which the formal parameters
take as their values.

The following generic schema Pool describes the state space of a generic re-
source manager. It has the set RESOURCE of resource units as a formal generic
parameter, but assumes a set USER of user names from its context:

Pool [RESOURCE ]
owner : RESOURCE �USER
free : �RESOURCE

(dom owner) [ free = RESOURCE
(dom owner) \ free = �
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The two components of this schema have types which are built from both the
basic types of the speci�cation (e.g. USER) and the formal generic parameters
(e.g. RESOURCE ):

owner : �(RESOURCE �USER); free : �RESOURCE :

The state space of a particular resource manager can be described as an
instance of this general pattern; an example might be a pool of disks identi�ed
by numbers from 0 to 7:

DiskPool b= Pool [0 : : 7]:

The actual generic parameter 0 : : 7 has been supplied here; its type is ��, so
the signature of DiskPool is obtained by substituting � for RESOURCE in the
signature of Pool :

owner : �(��USER); free : ��:

More generally, if the type of the actual parameter is � t , the signature of the
instance of the generic schema is obtained by substituting t for the formal param-
eter. If there are several parameters, the substitutions of actual parameter types
are performed simultaneously. The property part of the meaning of DiskPool
includes the fact that owner is a partial function from 0 : : 7 to USER, and that
free is a subset of 0 : : 7:

owner 2 0 : : 7�USER
free 2 �(0 : : 7):

These constraints are implicit in the declaration of owner and free. The property
of DiskPool also includes instances of the predicates from Pool :

(dom owner) [ free = 0 : : 7
(dom owner) \ free = �:

More useful than generic schemas are generic constants: several dozen of
them are de�ned in Chapter 4 to capture such concepts as relations, functions,
and sequences, and the operations on them. An example is the function �rst for
selecting the �rst element of an ordered pair:

[X ;Y ]
�rst : X �Y "X

8 x : X ; y : Y �
�rst(x ; y) = x

This has two formal generic parameters X and Y , and de�nes a family of func-
tions �rst . When one of these functions is used, we may supply the actual generic
parameters explicitly, as in

�rst [;] (3; 4) = 3;
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or leave them implicit, as in the equivalent assertion

�rst(3; 4) = 3:

The rules for determining implicit parameters from the context are given in
Section 3.9.2.

A restriction must be obeyed by the de�nitions of generic constants for them
to be mathematically sound: the de�nition must uniquely determine the value
of the constant for each possible value of the formal parameters. For example,
the following de�nition would not be allowed, because it does not specify which
two elements of X are chosen as the values of left and right when there are more
than two, nor which is chosen as left when there are exactly two. What's worse,
no choice at all is possible when X is empty or has only one element.

[X ]
left ; right : X

left 6= right

The requirement that generic de�nitions of constants uniquely determine the
values of the constants places a proof obligation on the author of a speci�cation,
but it is one that is easily repaid when, for example, the constant is a function,
and the predicate part of the de�nition contains an equation giving its value at
each point of its domain.

2.5 Partially-de�ned expressions

The meaning of a mathematical expression can be explained by saying what
value it takes in each binding: for example, the expression x + y takes the value
5 in the binding hx � 2; y � 3i. An expression need not have a de�ned value
in every binding: for example, the value of x div y is not de�ned in any binding
where y is 0. We call such expressions partially-de�ned. The precise meaning of
a partially-de�ned expression can be explained by saying in which bindings its
value is de�ned, and for each of these, what value the expression takes.

There are two constructs in Z which form expressions that may be partially-
de�ned. One is the application of a partial function such as the `div' operator
to arguments which may not be in its domain, and the other is the de�nite-
description construct � (see page 58).

Partially-de�ned expressions may appear in predicates of the form E1 = E2
or E1 2 E2, and it is necessary to say under what bindings these predicates are
true. Whenever both E1 and E2 are de�ned, the predicates mean exactly what
we expect: E1 = E2 is true if and only if the values of E1 and E2 are equal, and
E1 2 E2 is true if and only if the value of E1 is a member of whatever set is the
value of E2. If one or both of E1 and E2 are unde�ned, then we say that the



2.5 Partially-de�ned expressions 41

predicates E1 = E2 and E1 2 E2 are undetermined: we do not know whether they
are true or false. This does not mean that the predicates have some intermediate
status in which they are `neither true nor false', simply that we have chosen not
to say whether they are true or not.

A common usage in Z speci�cation is the predicate

x 2 dom f ^ f (x ) = y :

As might be expected, this predicate asserts that x is in the domain of f and the
value of f for argument x is y . We can reason as follows: if x is in the domain of
f , then the conjunct x 2 dom f will be true, so the whole predicate will be true
exactly if the other conjunct, f (x ) = y , is true also. If x is not in the domain
of f , then x 2 dom f is false, so the whole predicate is false whether f (x ) = y is
true or not (in fact, it is undetermined). The predicate

x 2 dom f ) f (x ) = y

is true if either x is outside the domain of f , or the value of f at x is y . If
the antecedent x 2 dom f is false, the whole predicate is true, whatever the
(undetermined) status of f (x ) = y .

Partial functions may be de�ned by giving their domain and their value for
each argument in the domain. A typical de�nition might look like this:

f : X �Y

dom f = S

8 x : S � f (x ) = E

Here, E is an expression which need only be de�ned in bindings satisfying x 2 S .
By �xing the domain of f and its value at each point on the domain, this de�nition
completely determines the partial function f .



CHAPTER 3

The Z Language

The speci�cation language described in this chapter is a minimal language for
speci�cation in the Z style. For practical use, it needs to be augmented with
the basic mathematical de�nitions in Chapter 4, and for some purposes it will
need to be extended, perhaps with programming notations for expressing opera-
tion re�nements, or with notations for expressing synchronization of concurrent
processes; but the minimal language described here will be part of all these ex-
tensions, and any extension should be constructed on a mathematical foundation
consistent with the one used here and presented in Chapter 2.

3.1 Syntactic conventions

The syntactic description of Z constructs given in this chapter is intended as
a guide to the way the constructs look on paper: it treats each construct in
isolation, and does not properly respect the relative binding powers of connectives
and quanti�ers, for example. Also not fully treated are the rules that allow an
operator symbol ! to appear wherever an identi�er is allowed, using a notation
such as ` ! '. A full grammar for Z is given in Chapter 6, and you should refer
to this for the answers to any detailed syntactic questions like these.

A few extensions to BNF are used to make the syntax descriptions more
readable. The notation S; : : : ; S stands for one or more instances of the syntactic
class S, separated by semicolons; similarly, the notation S; : : : ; S stands for one or
more S's separated by commas. Slanted square brackets [ ] enclose items which
are optional. Lists of items which may be empty are indicated by combining
these two notations.

42
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3.1.1 Words, decorations and identi�ers

A word (Word) is the simplest kind of name in a Z speci�cation: it is either
a non-empty sequence of upper and lower case letters, digits, and underscores
beginning with a letter, or a special symbol. Words are used as the names of
schemas. An identi�er (Ident) is a word followed by a decoration (Decoration),
which is a possibly empty sequence of 0, ? or ! characters and subscript digits:

Ident ::= Word Decoration

If a word is used in a speci�cation as the name of a schema, it is called a schema
name and is no longer available for use as in an ordinary identi�er. Schemas are
named with words rather than identi�ers to allow for systematic decoration: if A
is a schema and we write A0, this means a copy of A in which all the component
names have been decorated with 0. When an identi�er which already has a non-
empty decoration is decorated, the two decorations are juxtaposed, with the new
decoration on the right.

Some words are given the special status of operator symbols. They are classi-
�ed as function symbols (In-Fun or Post-Fun), relation symbols (Pre-Rel or In-Rel)
or generic symbols (Pre-Gen or In-Gen).

3.1.2 Operator symbols

The mathematical notation of Z contains only a few basic forms of expression,
but these are enough to express almost any mathematical property of interest.
For example, here is a predicate which expresses the fact that the sum of a and
b is at least a:

(plus(a; b); a) 2 geq ;

and here is a predicate which expresses the associativity of addition:

plus(plus(a; b); c) = plus(a; plus(b; c)):

These predicates look quite unfamiliar, and any predicate much more complicated
than these would become very di�cult to read if expressed purely in these basic
notations.

We can sugar the pill by allowing in�x symbols as abbreviations for the basic
forms. If instead of plus(x ; y) we write x +y , and instead of (x ; y) 2 geq we write
x � y , then the two predicates take on a more familiar form:

a + b � a

(a + b) + c = a + (b + c):
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This is possible because + is an in�x function symbol in Z, and � is an in�x

relation symbol. We call all such special symbols operator symbols, and classify
then into three groups: function symbols, relation symbols, and generic symbols.

Function symbols are of two kinds: in�x function symbols, which appear
between two arguments, and post�x function symbols, such as the transitive
closure operators + and �, which follow a single argument. An expression such as
a+b is an abbreviation for applying the + function to the ordered pair (a; b). An
expression such as R� is an abbreviation for applying the � function to argument
R. There is no need for pre�x function symbols, because ordinary symbols are
taken as functions when they precede an argument.

Each in�x function symbol has a priority, a number from 1 to 6 which deter-
mines its binding power, with higher numbers indicating tighter binding. When
function symbols of equal priority are used in the same expression, they associate
to the left, so that x + y + z means (x + y) + z .

There are two kinds of relation symbols: in�x and pre�x. In�x relation sym-
bols have binary relations { sets of ordered pairs { as their values. A predicate
may consist of two expressions separated by an in�x relation symbol: the predi-
cate is true if the values of the two expressions form an ordered pair in the
relation. Pre�x relation symbols simply have sets as their values. A predicate
which consists of a pre�x relation symbol followed by an expression is true if the
value of the expression is an element of the set.

In�x relation symbols have no priority or association; instead, a sequence

E1 R1 E2 R2 : : : Rn�1 En ;

where the Ei are expressions and each Ri is `=' or `2' or an in�x relation symbol,
is equivalent to the conjunction

E1 R1 E2 ^ E2 R2 E3 ^ � � � ^ En�1 Rn�1 En :

Both function and relation symbols may be generic, and when they appear in
expressions or predicates they are implicitly supplied with actual generic para-
meters, as described in Section 3.9.2. In addition, there are in�x generic symbols
such as ". These appear between two set-valued expressions which are actual
generic parameters of the symbol. For example, in the expression X � Y " Z ,
the sub-expressions X � Y and Z are generic parameters of the symbol ".
There are also unary pre�x generic symbols such as �, which precede a single
set-valued expression. There is no priority among in�x generic symbols. They
bind less tightly than any function symbol, and they associate to the right, so
that A" B "C means A" (B " C ).

If a symbol is an operator, then so are all decorated variants of the symbol: so
as well as +, the symbols +0, +!, etc., are all in�x function symbols. If a schema
has an operator symbol as a component, then decorating the schema produces a
new schema that has a decorated operator symbol as a component. The syntax
in Chapter 6 makes full allowance for this use of decorated operator symbols, but
they are used rarely, so for simplicity they are omitted in this chapter.
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Sometimes it is necessary to name a symbol without applying it to arguments;
this can be done by replacing the arguments with the special marker ` '. So, for
example, + is the name of a function which takes a pair of numbers and adds
them; � is the name of an ordering relation on numbers; and " is a
generic symbol whose value is the total function space between its parameters.
To avoid confusion, these names must be enclosed within parentheses whenever
they appear as part of an expression. Using this notation, we can make explicit
the expression for which each abbreviation stands:

x + y is an abbreviation for ( + )(x ; y)

x � y is an abbreviation for (x ; y) 2 ( � )

X "Y is an abbreviation for ( " )[X ;Y ]

disjoint x is an abbreviation for x 2 (disjoint )

�X is an abbreviation for (� )[X ]

R� is an abbreviation for ( �)R:

The names are also used in declarations: for example,

+ : �� �"�
� : �#�

are the declarations of + and �.
Some operator symbols are standard; they are shown in the table below.

Others may be introduced as they are needed, but each symbol should be used
consistently throughout a document. Some speci�cation tools work with a table
of symbols which can be extended, but there is no standard way of doing this.
In�x relation symbols are a little special, because any identi�er may be underlined
and used as a relation, so that x R y means (x ; y) 2 R, just as x � y means
(x ; y) 2 ( � ). This notation is provided because speci�cations that use a lot
of binary relations commonly use them both between arguments and as objects
in their own right.

A few standard symbols do not �t in with the pattern described so far. The
minus sign appears to be both an in�x function symbol, and an ordinary symbol
that may be applied as a function to a single number. The role played by the
minus sign is decided by syntactic context, and its two roles are, in e�ect, two
di�erent symbols ( � ) and (�), rather than two meanings overloaded on one
symbol. Wherever possible, the minus sign is interpreted as an in�x operator;
the other interpretation can always be forced with parentheses.

The notation R�S � for the relational image of S through R is an abbrevia-
tion for the expression ( � �)(R; S ), in which the symbol � � is applied to the
pair (R; S ). The notation Rk for iteration of a relation is an abbreviation for
the expression iter k R, the application of the curried function iter to the two
arguments k and R. Finally, the symbols �, n, and � are used as operations in
schema expressions as well as in�x function symbols in ordinary expressions.
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Standard operator symbols

Here are the standard operator symbols of the various kinds:

In�x function symbols (In-Fun)

Priority 1: 7!

Priority 2: : :

Priority 3: + � [ n � ] !

Priority 4: � div mod \  � � � 


Priority 5: � ]

Priority 6: � � � �

Post�x function symbols (Post-Fun)

� � +

In�x relation symbols (In-Rel)

6= =2 � � < � � > pre�x su�x in � v partition

Pre�x relation symbols (Pre-Rel)

disjoint

In�x generic symbols (In-Gen)

# � " � � � � � � �

Pre�x generic symbols (Pre-Gen)

�
1
id � �

1
seq seq1 iseq bag

3.1.3 Layout

In the formal text of a Z speci�cation, spaces are generally not considered to
be signi�cant, except where they serve to separate one symbol from the next.
The break between one line and the next is signi�cant, because in an axiomatic
description, vertical schema, or generic de�nition, such breaks may be used in-
stead of semicolons in both the declaration part and the predicate part. Several
newlines in succession are always regarded as equivalent to one, and newlines are
ignored before and after in�x function, relation and generic symbols, and before
and after the following symbols:

; : ; j � == b= ::= = 2 ^ _ ) , then else � n � � >>

In all these places, a semicolon would not be syntactically valid in any case.
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3.2 Speci�cations

A Z speci�cation document consists of interleaved passages of formal, mathemat-
ical text and informal prose explanation. The formal text consists of a sequence
of paragraphs which gradually introduce the schemas, global variables and basic
types of the speci�cation, each paragraph building on the ones which come before
it. Except in the case of free type de�nitions (see Section 3.10), recursion is not
allowed.

Each paragraph may de�ne one or more names for schemas, basic types,
global variables or global constants. It may use the names de�ned by preceding
paragraphs, and the names it de�nes are available in the paragraphs which follow.
This gradual building-up of the vocabulary of a speci�cation is called the principle
of de�nition before use. The scope of each global name extends from its de�nition
to the end of the speci�cation.

In presenting a formal speci�cation, it is often convenient to show the para-
graphs in an order di�erent from the one they would need to have for the rule of
de�nition before use to be obeyed. Some software tools may be able to perform
analysis on speci�cations presented in this way, but there must always exist a
possible order which obeys the rule. The account of the language in this manual
assumes that the paragraphs of a speci�cation are presented in this order.

There are several kinds of paragraph. Basic type de�nitions, axiomatic de-
scriptions, constraints, schema de�nitions, and abbreviation de�nitions are de-
scribed here; generic schema and constant de�nitions are described in Section
3.9; and free type de�nitions are described in Section 3.10.

3.2.1 Basic type de�nitions

Paragraph ::= [Ident; : : : ; Ident]

A basic type de�nition introduces one or more basic types. These names must not
have a previous global declaration, and their scope extends from the de�nition
to the end of the speci�cation. The names become part of the global vocabulary
of basic types.

An example of a basic type de�nition is the introduction of NAME and DATE
in the birthday book example of Chapter 1:

[NAME ;DATE ]:
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3.2.2 Axiomatic descriptions

Paragraph ::=
Declaration

[
Predicate; : : : ; Predicate ]

An axiomatic description introduces one or more global variables, and optionally
speci�es a constraint on their values. These variables must not have a previous
global declaration, and their scope extends from their declaration to the end
of the speci�cation. The variables become part of the global signature of the
speci�cation. The predicates relate the values of the new variables to each other
and to the values of variables that have been declared previously, and they become
part of the global property.

The slanted square brackets [ : : :] indicate that the dividing line and the
predicate list below it are optional, so that

Declaration

is an acceptable form of axiomatic description. If the predicate part is absent,
the default is the predicate true.

An example of an axiomatic description is the following de�nition of the
function square:

square : "

8 n :  �
square(n) = n � n

3.2.3 Constraints

Paragraph ::= Predicate

A predicate may appear on its own as a paragraph; it speci�es a constraint on
the values of the global variables that have been declared previously. The e�ect
is as if the constraint had been stated as part of the axiomatic description in
which the variables were introduced.

An example of a constraint is the following predicate, which asserts that the
variable n disks has a value less than �ve:

n disks < 5:
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3.2.4 Schema de�nitions

Paragraph ::=

Schema-Name

Declaration
[

Predicate; : : : ; Predicate ]

Paragraph ::= Schema-Name b= Schema-Exp

These forms introduce a new schema name. The word heading the box or ap-
pearing on the left of the de�nition sign becomes associated with the schema
which is the contents of the box or appears to the right of the de�nition sign. It
must not have appeared previously in the speci�cation, and from this point to
the end of the speci�cation it is a schema name. Again, if the predicate part in
the vertical form is absent, the default is true.

The right-hand side of the horizontal form of schema de�nition is a schema
expression, so new schemas may be de�ned by combining old ones with the
operations of the schema calculus (see Section 3.8). The vertical form

S
D1; : : : ; Dm

P1; : : : ; Pn

is equivalent to the horizontal form

S b= [D1; : : : ; Dm j P1; : : : ; Pn ];

except that semicolons may be replaced by line breaks in the vertical form. The
right-hand side of the horizontal form is a simple schema expression consisting
of a schema text in square brackets.

Here is an example of a schema de�nition taken from the birthday-book
speci�cation:

BirthdayBook
known : �NAME
birthday : NAME �DATE

known = dom birthday

This de�nition may also be written in horizontal form:

BirthdayBook b=
[ known : �NAME ; birthday : NAME �DATE j

known = dom birthday ]:
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The following de�nition of RAddBirthday uses a more complex schema expression
on the right-hand side:

RAddBirthday b= (AddBirthday ^ Success) _ AlreadyKnown:

3.2.5 Abbreviation de�nitions

Paragraph ::= Ident == Expression

An abbreviation de�nition introduces a new global constant. The identi�er on
the left becomes a global constant; its value is given by the expression on the
right, and its type is the same as the type of the expression. The scope of the
constant extends from here to the end of the speci�cation. (In fact, this notation
is a special case of the notation for de�ning generic constants, in which the list
of generic parameters is empty: compare Section 3.9.2.)

This example of an abbreviation de�nition introduces the name DATABASE
as an abbreviation for the set of functions from ADDR to PAGE :

DATABASE == ADDR" PAGE :

3.3 Schema references

When a name has been attached to a schema as described in Section 3.2.4, it can
be used in a schema reference to refer to the schema. A schema reference can be
used as a declaration, an expression, or a predicate, and it forms a basic element
of schema expressions.

Schema-Ref ::= Schema-Name Decoration [Renaming]

Renaming ::= [Ident=Ident; : : : ; Ident=Ident]

A schema reference consists of a schema name, followed by a decoration (which
may be empty), and an optional list of renamings. It stands for a copy of the
named schema that has been modi�ed by applying the decoration to all the
components, then renaming components in the result according to the renamings,
if any.

If a list of renamings [y1=x1; : : : ; yn=xn ] is given, then the xi 's must be distinct
identi�ers, and they must all be components of the schema after the decoration
has been applied. The yi 's need not be distinct from each other, nor from the
components of the schema being renamed, but if two components of the schema
coincide after renaming, then their types must agree: see Section 2.2.2.

There is another form of schema reference in which actual generic parameters
are supplied to a generic schema: see Section 3.9.1.
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3.4 Declarations

Variables are introduced and associated with types by declarations. As explained
in Section 2.2, a declaration may also require that the values of the variables
satisfy a certain property, which we call the constraint of the declaration. There
are two kinds of declaration in Z:

Basic-Decl ::= Ident; : : : ; Ident : Expression
j Schema-Ref

The �rst kind introduces a collection of variables that are listed explicitly in the
declaration. In the declaration

x1; : : : ; xn : E

the expression E must have a set type � t for some type t . The variables x1,
: : : , xn are introduced with type t . The values of the variables are constrained
to lie in the set E . For example, the declaration

p; q : 1 : : 10

introduces two variables p and q . The expression 1 : : 10 has type ��, for it
is a set of integers. The type of p and q is therefore taken to be �: they are
simply integers. This declaration constrains the values of p and q to lie between
1 and 10.

The second kind of declaration is a schema reference; it introduces the com-
ponents of the schema as variables, with the same types as they have in the
schema, and constrains their values to satisfy its property. For example, if A is
the schema

A
x ; y : �

x > y

then the declaration A introduces the variables x and y , both of type �, with the
property that the value of x is greater than the value of y .

In every context where a single declaration is allowed, a sequence of declara-
tions may also appear:

Declaration ::= Basic-Decl; : : : ; Basic-Decl

This declaration introduces all the variables introduced by each of its constituent
basic declarations, with the same types. The values of these variables are con-
strained to satisfy all the properties from the basic declarations. The same vari-
able may be introduced by several of the basic declarations, provided it is given
the same type in each of them: this rule allows schemas that have components
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in common to appear in the same declaration. The rule that types must match
allows for the merging of common components.

The scope of the variables introduced by a declaration is determined by the
context in which it appears: the variables may be global to the whole of the
succeeding speci�cation, they may form the components of a schema, or they
may be local to a predicate or expression. However, the scope never includes the
declaration itself: variables may not be used on the right of a colon, nor as an
actual generic parameter (see Section 3.9), in the declaration which introduces
them.

3.4.1 Characteristic tuples

A set-comprehension expression has the form

fDeclaration j Predicate; : : : ; Predicate � Expression g

and its value is the set of values taken by the expression when the variables
introduced by the declaration take all values which satisfy both the constraint
of the declaration and the predicates (see page 57). The expression part may
be omitted, and the default is then the characteristic tuple of the declaration.
Characteristic tuples are also used in the de�nitions of � and � (see page 58).

To �nd the characteristic tuple of a declaration, �rst replace each multiple
declaration

x1; : : : ; xn : E

by the following sequence of simple declarations:

x1 : E ; : : : ; xn : E :

Now form the list of representatives of the basic declarations:

� The representative of a simple declaration x : E is the variable x ; in the scope
of the declaration, this has whatever type is given to x by the declaration.

� The representative of a schema reference

A0[E1; : : : ;En ][y1=x1; : : : ; yk=xk ]

to a schema A, with decoration 0 (which may be empty), actual generic
parameters E1, : : : , En and renamings y1=x1, : : : , yk=xk , is the �-expression

�A0[y1=x1; : : : ; yk=xk ]

(see Section 3.6, page 62). In the scope of the declaration, this has a schema
type whose components are the components of A, each with the type given
to it by A.



3.5 Schema texts 53

If the list of representatives has exactly one member E , then the characteristic
tuple is E ; its type is simply the type of E . Otherwise, the list of expressions
contains n � 2 members E1, : : : , En , and the characteristic tuple is the tuple

(E1; : : : ;En):

This has type t1 � � � � � tn , where t1, : : : , tn are the types of the representatives
E1, : : : , En respectively.

Examples

� The characteristic tuple of the declaration x ; y : X ; z : Z is (x ; y ; z ). If X
and Z are basic types, the type of this tuple is X � X � Z .

� The declaration A, where A is a schema, has characteristic tuple �A; its type
is 	 x1 : t1; : : : ; xn : tn 
, where x1, : : : , xn are the components of A and t1,
: : : , tn respectively are their types in A.

� The characteristic tuple of the declaration A[y=x ]; A0; x ; y : X (where X is a
basic type) is the tuple (�A[y=x ]; �A0; x ; y). Its type is t � t �X �X , where
t is the type of �A[y=x ] (and of �A0). This is so whether x is a component of
A or not.

As the last example illustrates, a variable may be involved in more than one
element of a characteristic tuple. If A is the schema de�ned by

A b= [ x ; y :  ];

then the set expression fA; x :  g is another way of writing the projection
function (�A � x ). The characteristic tuple of the declaration A; x :  is (�A; x ),
and both elements depend on x .

3.5 Schema texts

A schema text consists of a declaration and an optional list of predicates. Most
Z constructs which introduce variables allow a schema text rather than simply
a declaration, so that a relationship between the values of the variables can be
described. Schema texts appear in vertical form in axiomatic descriptions and
schema de�nitions, but they also have a horizontal form:

Schema-Text ::= Declaration [ j Predicate; : : : ; Predicate]

This form is used after the quanti�ers 8, 9, and 9
1
, and in expressions formed

with �, �, and f g (set comprehension). A schema text in square brackets is
the simplest kind of schema expression (see Section 3.8). If the optional list of
predicates is absent, the default is the predicate true. The scope of the variables
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introduced by a schema text depends on the context in which it appears, but it
always includes the predicate part of the schema text.

3.6 Expressions

The following pages contain concise descriptions of the basic forms of expression
in Z:

(: : :), f: : :g Tuple and set display (p. 55)

�, � Power set, Cartesian product (p. 56)

f j � g Set comprehension (p. 57)

�, � Lambda- and mu-expressions (p. 58)

let Local de�nition (p. 59)

Application Function application (p. 60)

: Selection (p. 61)

� Binding formation (p. 62)

Schema-Ref Schema reference (p. 63)

if then else Conditional (p. 64)

These are the basic forms of expression, but as Section 3.1.2 explains, operator
symbols allow the convenient abbreviation of certain common kinds of expression.
For ease of reference, the rules for these are given explicitly on their own page:

Operators Rules for operator symbols (p. 65)

Finally, some extra notations are introduced as part of the mathematical tool-kit
in Chapter 4, and there is a page which summarizes these:

h: : :i, �: : :� Sequence and bag displays (p. 66)

Each page shows the syntax of the expressions, states any scope and type rules
which must be obeyed, and describes the meaning. The meaning is �xed by
saying in what bindings an expression is de�ned, and when it is de�ned, what
its value is (see Section 2.2 for an explanation of bindings). For expressions with
optional parts, the defaults are stated.

The simplest kinds of expression are identi�ers and natural numbers (which
are written in decimal notation); parentheses may be used for grouping in ex-
pressions:

Expression ::= Ident

j Number

j (Expression)
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Name

(: : :) { Tuple
f: : :g { Set display

Syntax

Expression ::= (Expression; : : : ;Expression)
j f [ Expression; : : : ;Expression] g

To avoid ambiguity with parenthesized expressions, at least two expressions
must appear in a tuple. There is no way to write a tuple containing fewer
than two components.

To avoid ambiguity with set comprehension (see page 57), the list of expres-
sions in a set display must not consist of a single schema reference. A set
display containing a single schema reference S can be written f(S )g.

Type rules

In the expression (E1; : : : ;En), if the arguments Ei have types ti , then the
expression itself has type t1 � � � � � tn .

In the expression fE1; : : : ;Eng, each sub-expression Ei must have the same
type t . The type of the expression is then � t . See Section 3.9.2 for an
explanation of what happens when n = 0.

Description

The expression (x1; : : : ; xn) denotes an n-tuple whose components are x1,
: : : , xn .

The set fx1; : : : ; xng has as its only members the objects x1, : : : , xn . Several
of the xi 's may be equal, in which case the repetitions are ignored; since a set
is characterized solely by which objects are members and which are not, the
order in which the members are listed does not matter.

Laws

(x1; : : : ; xn) = (y1; : : : ; yn), x1 = y1 ^ � � � ^ xn = yn

y 2 fx1; : : : ; xng , y = x1 _ � � � _ y = xn
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Name

� { Power set
� { Cartesian product

Syntax

Expression ::= �Expression

j Expression � � � � � Expression

Type rules

In the expression �E , the argument E must have a set type � t . The type
of the expression is then �(� t). For example, if E is a set of integers having
type ��, then �E has type �(��) { it is a set of sets of integers.

In the expression E1 � � � � � En , each argument Ei must have a set type � ti .
The type of the expression is then �(t1 � � � � � tn). For example, if E1 has
type ��, and E2 has type �CHAR, then E1 � E2 has type �(�� CHAR) {
it is a set of pairs, each containing an integer and a character.

Description

If S is a set, �S is the set of all subsets of S .

If S1, : : : , Sn are sets, then S1� � � � � Sn is the set of all n-tuples of the form
(x1; : : : ; xn), where xi 2 Si for each i with 1 � i � n. Note that, for example,
the sets S � T �V and S � (T �V ) and (S �T )�V are considered to be
di�erent.

Laws

S1 � � � � � Sn = f x1 : S1; : : : ; xn : Sn � (x1; : : : ; xn) g



3.6 Expressions 57

Name

f j � g { Set comprehension

Syntax

Expression ::= f Schema-Text [ � Expression] g

Defaults

If the expression part is omitted, the default is the characteristic tuple of the
declaration appearing in the schema text part (see Section 3.4.1).

Scope rules

In the expression f S � E g, the schema text S introduces local variables; their
scope includes the expression E .

Type rules

In the expression f S � E g, if the type of the sub-expression E is t , then the
type of the expression is � t .

Description

The members of the set f S � E g are the values taken by the expression E
when the variables introduced by S take all possible values which make the
property of S true.

Laws

y 2 f S � E g , (9 S � y = E )

provided y is not a variable of S .



58 The Z Language

Name

� { Lambda-expression
� { Mu-expression

Syntax

Expression ::= (� Schema-Text � Expression)
::= (� Schema-Text [ � Expression])

Defaults

In a mu-expression, if the expression part is omitted, the default is the char-
acteristic tuple of the declaration appearing in the schema text part (see
Section 3.4.1).

Scope rules

In the expressions (�S � E ) and (�S � E ), the schema text S introduces
local variables; their scope includes the expression E .

Type rules

In the expression (� S � E ), let t be the type of E , and let t 0 be the type of
the characteristic tuple of the declaration appearing in S (see Section 3.4.1).
The type of the whole expression is �(t 0 � t).

In the expression (� S � E ), if the type of the sub-expression E is t , then the
type of the expression is t also. If the expression E is omitted, the type of the
expression is the type of the characteristic tuple of the declaration appearing
in S .

Description

The expression (� S � E ) denotes a function which takes arguments of a shape
determined by S , and yields as its result the value of E . It is equivalent to the
set comprehension f S � (T ;E ) g, where T is the characteristic tuple of S .

The expression (�S � E ) is de�ned only if there is a unique way of giving
values to the variables introduced by S which makes the property of S true;
if this is so, then its value is the value of E when the variables introduced by
S take these values.

Lambda- and mu-expressions must (almost) always be put in parentheses to
avoid ambiguity. Without parentheses there would be a danger of confusion
about which `�' sign should be associated with which quanti�er.
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Name

let { Local de�nition

Syntax

Expression ::= (let Let-Def; : : : ; Let-Def � Expression)

Let-Def ::= Ident == Expression

Scope rules

In the let-expression (let x1 == E1; : : : ; xn == En � E ), the variables x1,
: : : , xn are local; their scope includes the expression E , but not the expressions
E1, : : : , En that are the right-hand sides of the local de�nitions.

Type rules

In the let-expression (let x1 == E1; : : : ; xn == En � E ), each local variable
xi has the same type as the corresponding expression Ei . The type of the
whole expression is the type of E .

Description

The value of a let-expression is the value taken by its body when the local
variables take the values given by the right-hand sides of their de�nitions.
The expression (let x1 == E1; : : : ; xn == En � E ) is de�ned if all the
right-hand sides E1, : : : , En are de�ned and E is also de�ned in the binding
where x1, : : : , xn take the values of E1, : : : , En respectively. The value of the
expression is the value of E in this binding.

To avoid ambiguity with the predicate form of the let operator (see page 71),
a let-expression must always be enclosed in parentheses.

Laws

(let x1 == E1; : : : ; xn == En � E )
= (� x1 : t1; : : : ; xn : tn j x1 = E1; : : : ; xn = En � E );

provided all the Ei 's are de�ned and there is no capture of variables.
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Name

Application { Function application

Syntax

Expression ::= Expression Expression

Type rules

In the expression E1E2, the sub-expression E1 must have type �(t1 � t2),
and E2 must have type t1, for some types t1 and t2. The type of the whole
expression is then t2.

Description

The expression f x denotes the application of the function f to the argument
x . Strictly speaking, f does not have to be a function, but the expression
f (x ) is de�ned if and only if there is a unique value y such that (x ; y) 2 f
(i.e. f is `functional at x '), and the value of the expression is this value y .

Function applications are often written with parentheses around the argu-
ment, as in f (x ), but this is just a special case of the rule that allows brackets
to be added around any expression. Application associates to the left, so
f x y means (f x ) y : when f is applied to x , the result is a function, and this
function is applied to y .

Laws

(9
1
y : Y � (x ; y) 2 f ))
(x ; f (x )) 2 f ^
f (x ) = (� y : Y j (x ; y) 2 f )
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Name

: { Selection

Syntax

Expression ::= Expression : Ident

Type rules

In the expression E :y , the sub-expression E must have a schema type of the
form 	 x1 : t1; : : : ; xn : tn 
, and the identi�er y must be identical with one
of the component names xi , for some i with 1 � i � n. The type of the
expression is the corresponding type ti .

Description

This is the notation for selecting a component from a binding. If a is the
binding hx1 � v1; : : : ; xn � vni and y is identical with xi , then the value of
a:y is vi .

Normally the component selected is named by an identi�er, but if a schema
has components named by in�x symbols such as +, the notation a:( + )
may be used to select them also.

Laws

a 2 S ) a:y = (�S � y)(a)

If a and b have type 	 x1 : t1; : : : ; xn : tn 
, then

a = b , a:x1 = b:x1 ^ � � � ^ a:xn = b:xn :
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Name

� { Binding formation

Syntax

Expression ::= � Schema-Name Decoration [Renaming]
Renaming ::= [Ident=Ident; : : : ; Ident=Ident]

Type rules

In the expression �S 0, in which the symbol 0 stands for a (possibly empty)
decoration, let the components of S be x1, : : : , xn . The variables x

0

1, : : : , x
0

n

must be in scope: let their types be t1, : : : , tn . The type of the expression
is the schema type 	 x1 : t1; : : : ; xn : tn 
. Note that the components in this
type have names without the decoration: this means that �S 0 has the same
type as �S .

If a renaming [q1=p1; : : : ; qk=pk ] is present, then the list of variables that must
be in scope is modi�ed by substituting each qj for the corresponding pj . The
type of the expression is formed from the types of these variables; as before,
its components are the undecorated and unmodi�ed names x1, : : : , xn .

Description

The value of the expression �S 0 in a binding u is itself a binding z with
the schema type shown above; for each i , 1 � i � n, the component z :xi
is the value of the variable x 0i in the binding u, so that z is the binding
hx1� u:x 01; : : : ; xn � u:x 0ni. If the decoration is empty, then it is the values of
the undecorated variables xi themselves which form the components z :xi .

Note that the types of the components x1, : : : , xn are taken from the current
environment, and not from the schema S . There is no guarantee that their
values satisfy the property of S , or even that the predicate �S 2 S is well-
typed. If a new schema T is de�ned by

T b= S 0

then �T will have the type 	 x 01 : t1; : : : ; x 0n : tn 
, in which the component
names are decorated; this is di�erent from the type of �S 0.

The form of theta-expression that contains a renaming is allowed mostly to
provide a characteristic tuple for schema references that use renaming (see
Section 3.4.1). In this form, it is the values of the components after decoration
and renaming that are used to form the value of the expression.

Laws

(�S 0):xi = x 0i
�S 0 = �S , x 01 = x1 ^ � � � ^ x 0n = xn
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Name

Schema-Ref { Schema references as expressions

Syntax

Expression ::= Schema-Ref

where the decoration and renaming parts of the schema reference are empty.

Type rules

The type of the schema reference S used as an expression is

� 	 x1 : t1; : : : ; xn : tn 
:

where S has components x1, : : : , xn with types t1, : : : , tn respectively.

Description

A schema reference may be used as an expression: its value is the set of
bindings in which the values of the components obey the property of the
schema. The schema reference S used as an expression is equivalent to the
set comprehension f S � �S g. The generic case is given as a law below.

Laws

S [E1; : : : ;En ] = f S [E1; : : : ;En ] � �S g
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Name

if then else { Conditional expression

Syntax

Expression ::= if Predicate then Expression else Expression

Type rules

In the expression if P then E1 else E2, the types of E1 and E2 must be the
same. Their common type is the type of the whole expression.

Description

If the predicate P is true, then the value of the conditional expression

if P then E1 else E2

is the same as the value of E1; otherwise, its value is the same as the value of
E2.

Laws

P ) if true then E1 else E2 = E1

: P ) if false then E1 else E2 = E2

if P then E else E = E
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Name

Operators { Rules for in�x and post�x function symbols

Syntax

Expression ::= Expression In-Fun Expression

j Expression Post-Fun

Type rules

In the expression E1 ! E2, where ! is an in�x function symbol, the type of !
must be �((t1� t2)� t3), and the types of the sub-expressions E1 and E2 must
be t1 and t2 respectively, for some types t1, t2 and t3. The type of the whole
expression is t3. Note that the type of ! is that of a function from t1 � t2
to t3.

In the expression E !, where ! is a post�x function symbol, the type of !
must be �(t1 � t2), and the type of E must be t1, for some types t1 and t2.
The type of the whole expression is t2. Note that the type of ! is that of a
function from t1 to t2.

Description

The expression E1 ! E2 is an abbreviation for ( ! )(E1;E2), the application
of ! to the pair (E1;E2). According to the rules for function application, it
is de�ned exactly when there is a unique y such that ((E1;E2); y) 2 ( ! ),
and its value is this y .

The expression E ! is an abbreviation for ( !)E , the application of ! to E .
It is de�ned exactly when there is a unique y such that (E ; y) 2 ( !), and
its value is this y .

Laws

E1 ! E2 = ( ! )(E1;E2)

E ! = ( !)E
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Name

h: : :i { Sequence display
�: : :� { Bag display

Syntax

Expression ::= h [ Expression; : : : ;Expression] i
j � [ Expression; : : : ;Expression] �

Type rules

In the expression hE1; : : : ;Eni, all the sub-expressions Ei must have the same
type t . The type of the whole expression is �(� � t); note that this is the
type of a sequence of elements of t .

In the expression �E1; : : : ;En�, all the sub-expressions Ei must have the same
type t . The type of the whole expression is �(t � �); note that this is the
type of a bag of elements of t .

Description

For a full description of these forms of expression, see the pages in Chapter 4
about sequences (page 115) and bags (page 124) respectively. The expressions
are de�ned only if all the sub-expressions Ei are de�ned, and the value is then
a sequence or bag made from these elements.

Laws

hx1; x2; : : : ; xni = f1 7! x1; 2 7! x2; : : : ; n 7! xng

�x1; x2; : : : ; xn� = fx1 7! k1; x2 7! k2; : : : ; xn 7! kng

where for each i , the element xi appears ki times in the list x1, x2, : : : , xn .
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3.7 Predicates

The following pages contain concise descriptions of the various forms of predicate
in Z:

=;2 Equality, membership (p. 68)

:;^;_;);, Propositional connectives (p. 69)

8; 9; 9
1

Quanti�ers (p. 70)

let Local de�nition (p. 71)

Schema-Ref Schema reference (p. 72)

These are the basic forms of predicate, but as Section 3.1.2 explains, relation
symbols allow the convenient abbreviation of certain common kinds of predicate.
For ease of reference, the rules for these are given explicitly:

Relations Rules for relation symbols (p. 73)

Each page shows the syntax of the predicates, states any scope and type rules
which must be obeyed, and describes the meaning. The meaning is �xed by
saying what bindings satisfy the predicate; see Section 2.2 for an explanation of
`bindings'. For predicates with optional parts, the defaults are stated.

Parentheses may be used for grouping in predicates, and the predicates true
and false are the logical constants, satis�ed by every binding and by no binding
respectively:

Predicate ::= (Predicate)
j true
j false
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Name

= { Equality
2 { Membership

Syntax

Predicate ::= Expression = Expression

j Expression 2 Expression

Type rules

In the predicate E1 = E2, the expressions E1 and E2 must have the same
type. In the predicate E1 2 E2, if E1 has type t , then E2 must have type � t .

Description

The predicate x = y is true if x and y are the same object. The predicate
x 2 S is true if the object x is a member of the set S .

Laws

x = x

x = y ) y = x

x = y ^ y = z ) x = z

If S and T are subsets of X ,

(8 x : X � x 2 S , x 2 T ), S = T :

If x and y are elements of X ,

(8 S : �X � x 2 S , y 2 S ), x = y :
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Name

: { Negation
^ { Conjunction
_ { Disjunction
) { Implication
, { Equivalence

Syntax

Predicate ::= : Predicate

j Predicate ^ Predicate

j Predicate _ Predicate

j Predicate ) Predicate

j Predicate , Predicate

These connectives are shown in decreasing order of binding power; the con-
nective ) associates to the right, and the other binary ones associate to the
left.

Description

These are the connectives of propositional logic; they allow complex predicates
to be built from simpler ones in such a way that the truth or falsity of the
compound in some binding depends only on the truth or falsity of the parts in
the same binding. For example, the predicate P1 ^ P2 is true in any binding
if and only if both P1 and P2 are true in that binding. The following table
lists the circumstances under which each kind of compound predicate is true:

: P P is not true

P1 ^ P2 Both P1 and P2 are true

P1 _ P2 Either P1 or P2 or both are true

P1 ) P2 Either P1 is not true or P2 is true or both

P1 , P2 Either P1 and P2 are both true, or they are both false.
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Name

8 { Universal quanti�er
9 { Existential quanti�er
9
1

{ Unique quanti�er

Syntax

Predicate ::= 8 Schema-Text � Predicate
j 9 Schema-Text � Predicate
j 9

1
Schema-Text � Predicate

The predicate governed by these quanti�ers extends as far as possible to
the right; the quanti�ers bind less tightly than any of the propositional
connectives.

Scope rules

In the predicates 8 S � P , 9 S � P , and 9
1
S � P , the schema text S introduces

local variables; their scope includes the predicate P .

Description

These are the quanti�ers of predicate logic. The predicate 8 S � P (pro-
nounced `For all S ;P ') is true if, whatever values are taken by the variables
introduced by S which make the property of S true, the predicate P is true
as well. The predicate 9 S � P (pronounced `There exists S such that P ') is
true if there is at least one way of giving values to the variables introduced by
S so that both the property of S and the predicate P are true; the predicate
9
1
S � P (pronounced `There is exactly one S such that P ') is true if there is

exactly one such way of giving values to the variables introduced by S .

Laws

(8D j P � Q), (8D � P ) Q)

(9D j P � Q), (9D � P ^ Q)

(9
1
D j P � Q), (9

1
D � P ^ Q)

(9 S � P), : (8 S � : P)

(9
1
x : A � : : : x : : :),
(9 x : A � : : : x : : : ^ (8 y : A j : : : y : : : � y = x ))
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Name

let { Local de�nition

Syntax

Predicate ::= (let Let-Def; : : : ; Let-Def � Predicate)

Let-Def ::= Ident == Expression

Scope and type rules

In the predicate (let x1 == E1; : : : ; xn == En � P), the variables x1, : : : , xn
are local; their scope includes the predicate P , but not the expressions E1,
: : : , En that are the right-hand sides of the local de�nitions. Each local
variable xi has the same type as the corresponding expression Ei .

Description

The predicate (let x1 == E1; : : : ; xn == En � P) is true in a binding z if
and only if the predicate P is true in the binding obtained by augmenting z
so that each variable xi takes the value of the corresponding expression Ei . If
any of the Ei 's is unde�ned, the truth of the whole predicate is undetermined.

The let operator may also be used to form expressions: see page 59.

Laws

(let x1 == E1; : : : ; xn == En � P)
, (9

1
x1 : t1; : : : ; xn : tn j x1 = E1; : : : ; xn = En � P);

provided all the Ei 's are de�ned and there is no capture of variables.
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Name

Schema-Ref { Schema references as predicates

Syntax

Predicate ::= Schema-Ref

j pre Schema-Ref

Scope and type rules

In the predicate S 0, where S is a schema name, all the components of the
decorated schema S 0 must be in scope, and they must have the same types
as in the signature of the schema.

In the predicate `pre S ', where S is a schema, all the components of the
schema S except those decorated with a single 0 or ! must be in scope, and
must have the same type as in the signature of the schema.

Description

A schema reference S 0 may be used as a predicate: it is true in exactly those
bindings which, when restricted to the signature of the schema, satisfy its
property. It is e�ectively equivalent to the predicate �S 0 2 S ; here S as an
expression means f S � �S g. The generic case is given as a law below.

The predicate `pre S ' is used when S is a schema describing an operation
under the conventions explained in Chapter 5. It is equivalent to the predicate
PreS , where PreS is a schema de�ned by

PreS b= pre S

(compare page 77). If State describes the state space of the operation S and
its output is y ! : Y , the predicate `pre S ' is also equivalent to

(9 State 0; y ! : Y � S ):

Laws

S 0[E1; : : : ;En ], �S 0 2 f S [E1; : : : ;En ] � �S g
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Name

Relations { Rules for relation symbols

Syntax

Predicate ::= Expression Rel Expression Rel : : : Rel Expression
j Pre-Rel Expression

Type rules

In the predicate E1 R E2, where R is an in�x relation symbol, R must have
type �(t1 � t2), and E1 and E2 must have types t1 and t2 respectively, for
some types t1 and t2.

In the predicate R E , where R is a pre�x relation symbol, R must have type
� t , and E must have type t , for some type t .

Description

As explained in Section 3.1.2, the chain of relationships

E1 R1 E2 R2 E3 : : : En�1 Rn�1 En

is equivalent to the conjunction of the individual relationships:

E1 R1 E2 ^ E2 R2 E3 ^ � � � ^ En�1 Rn�1 En :

The equality and membership signs = and 2 may also appear in such a chain:
they can be used as if they were built-in relation symbols. Also, any ordinary
identi�er may be used as an in�x relation symbol if it is underlined.

This rule explains arbitrary chains of relations in terms of simple relationships
E1 R E2, for which the type rule is given above. Such a relationship is a
shorthand for (E1;E2) 2 ( R ), and it is satis�ed exactly if whatever set is
the value of R contains the ordered pair (E1;E2).

The predicate R E , where R is a pre�x relation symbol, is a shorthand for
E 2 (R ); it is satis�ed exactly if the value of E is a member of whatever
set is the value of R.
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3.8 Schema expressions

The following pages describe the syntax of the various kinds of schema expression:

:;^;_;);, Logical schema operations (p. 75)

8; 9; 9
1
; n; � Hiding operations (p. 76)

pre Pre-condition (p. 77)

�, >> Composition of operations (p. 78)

The meanings of these forms of expression are given in Section 2.2.3.
Although the same symbols are used both as the connectives and quanti�ers of

logic in forming predicates (see Section 3.7) and as operators in forming schema
expressions, the syntax of Z always allows it to be deduced from the context
which operator is meant, since schema expressions appear only on the right-hand
side of the de�nition sign b= .

The simplest kinds of schema expression are schema references (see Sec-
tion 3.3) and schema texts (see Section 3.5). Parentheses may be used for
grouping in schema expressions:

Schema-Exp ::= Schema-Ref

j [ Schema-Text ]
j (Schema-Exp)
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Name

: { Schema negation
^ { Schema conjunction
_ { Schema disjunction
) { Schema implication
, { Schema equivalence

Syntax

Schema-Exp ::= : Schema-Exp

j Schema-Exp ^ Schema-Exp

j Schema-Exp _ Schema-Exp

j Schema-Exp ) Schema-Exp

j Schema-Exp , Schema-Exp

Description

These are the logical operations on schemas which were introduced in Sec-
tion 2.2.3. The negation : S of a schema S has the same signature as S , but
its property is true in just those bindings where the property of S is not true.

For one of the binary operations to be allowed, its two arguments must have
type compatible signatures. The signatures are joined to form the signature
of the result. The truth of its property in any binding z is de�ned in terms of
the truth in the argument schemas of the restrictions of z to their signatures.
For example, the property of S _ T is true in a binding z if and only if
either the property of S is true in the restriction of z to the signature of S ,
or the property of T is true in the restriction of z to the signature of T (or
both). The other operations follow the rules for propositional connectives (see
page 69).
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Name

8 { Universal schema quanti�er
9 { Existential schema quanti�er
9
1

{ Unique schema quanti�er
n { Schema hiding
� { Schema projection

Syntax

Schema-Exp ::= 8 Schema-Text � Schema-Exp

j 9 Schema-Text � Schema-Exp

j 9
1
Schema-Text � Schema-Exp

j Schema-Exp n (Ident; : : : ; Ident)
j Schema-Exp � Schema-Exp

Description

These operations are grouped together because they all hide some of the
components of their argument schemas.

For the schema expression 8D j P � S to be allowed, all variables introduced
by the schema text `D j P ' must be among the components of the schema S
and have the same types; they are removed from the signature of the result in
the way described in Section 2.2.3. Similar rules apply to the other quanti�ers
9 and 9

1
.

The hiding operation S n (x1; : : : ; xn) removes from the schema S the com-
ponents x1, : : : , xn explicitly listed, which must exist. The schema projection
operator S � T hides all the components of S except those that are also com-
ponents of T . The schemas S and T must be type compatible, but T may
have components that are not shared by S ; the signature of the result is the
same as the signature of T . Again, for the de�nitions of these operations, see
Section 2.2.3.

Laws

S n (x1; : : : ; xn) is equivalent to (9 x1 : t1; : : : ; xn : tn � S );

where x1, : : : , xn have types t1, : : : , tn in S .

S � T is equivalent to (S ^ T ) n (x1; : : : ; xn);

where x1, : : : , xn are the components of S not shared by T .
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Name

pre { Pre-condition

Syntax

Schema-Exp ::= pre Schema-Exp

Description

This operation gives the pre-condition of an operation described by a schema
according to the conventions of Chapter 5.

If S is a schema, and x 01, : : : , x
0

m are the components of S that have the
decoration 0, and y1!, : : : , yn ! are the components that have the decoration !,
then the schema `pre S ' is the result of hiding these variables of S :

S n (x 01; : : : ; x
0

m ; y1!; : : : ; yn !):

It contains only the components of S corresponding to the state before the
operation and its input.
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Name

� { Sequential composition
>> { Piping

Syntax

Schema-Exp ::= Schema-Exp � Schema-Exp

j Schema-Exp >> Schema-Exp

Description

These schema operations are useful in describing sequential systems. They
depend on the conventions for decorating inputs and outputs and the states
before and after an operation: for details, see Chapter 5.

For the composition S � T to be de�ned, for each word x such that x 0 is
a component of S and x itself is a component of T , the types of these two
components must be the same. We call x a matching state variable. Also,
the types of any other components they share (including inputs, outputs, and
state variables that do not match) must be the same.

The schema S � T has all the components of S and T , except for the compo-
nents x 0 of S and x of T , where x is a matching state variable. If State is a
schema containing just the matching state variables, then S � T is de�ned as

9 State 00 �
(9State 0 � [ S ; State 00 j �State 0 = �State 00 ]) ^
(9State � [T ; State 00 j �State = �State 00 ]):

In this de�nition, State 00 is the hidden state in which S terminates and T
starts. The de�nition assumes that the components of State 00 do not clash
with other components of S and T ; otherwise, some other decoration than 00

is to be used.

For the piping S >> T to be de�ned, for each word x such that S has an
output x ! and T has an input x?, the types of these two components must
be the same. We call x a piped variable. Any other components (including
initial and �nal state variables) that S and T share must have the same type
in both.

The schema S >> T has all the components of S and T except for outputs
x ! of S and inputs x? of T , where x is a piped variable. If Pipe is a schema
containing just the piped variables, then S >> T is de�ned to be

9Pipe!? �
(9Pipe! � [ S ; Pipe!? j �Pipe! = �Pipe!? ]) ^
(9Pipe? � [T ; Pipe!? j �Pipe? = �Pipe!? ]):

Again, this de�nition assumes that the components of Pipe!? do not clash
with other components of S and T .
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3.9 Generics

The generic constructs of Z allow generic schemas and constants to be de�ned
and applied. The ideas behind generics are explained in Section 2.4. This sec-
tion contains a description of the syntax of the paragraphs which de�ne generic
schemas and constants, and the rules for using them. The type rules explained
in Section 3.9.2 are also used to infer the types of empty set, sequence, and bag
displays (see Section 3.6).

3.9.1 Generic schemas

Generic schemas have de�nitions similar to those of ordinary schemas, but with
generic parameters:

Paragraph ::=

Schema-Name[Ident; : : : ; Ident]
Declaration

[
Predicate; : : : ; Predicate ]

Paragraph ::= Schema-Name[Ident; : : : ; Ident] b= Schema-Exp

In the body or the right-hand side of the de�nition, the collection of basic types
is locally extended with the formal generic parameters. As for ordinary schemas,
the name must not have appeared before in the speci�cation, and it becomes a
schema name. Each use of the name, except in a �-expression (see page 62), must
be supplied with actual generic parameters:

Schema-Ref ::=
Schema-Name Decoration [ [Expression; : : : ;Expression]] [Renaming]

Renaming ::= [Ident=Ident; : : : ; Ident=Ident]

The signature of the resulting schema is obtained by applying the decoration
to the variables of the generic schema, performing the renaming (if any) and
substituting the types of the actual parameters for the formal parameters. The
property of the result is augmented with the constraint that the formal para-
meters take as their values whatever sets are the values of the actual parameters.
For an explanation and an example of this, see Section 2.4.
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3.9.2 Generic constants

Generic constants can be de�ned with a paragraph which looks like an axiomatic
description but has a double bar on top with formal generic parameters:

Paragraph ::=

[ [Ident; : : : ; Ident] ]
Declaration

[
Predicate; : : : ; Predicate ]

The formal generic parameters are local to the de�nition, and each variable in-
troduced by the declaration becomes a global generic constant. These identi�ers
must not previously have been de�ned as global variables or generic constants,
and their scope extends from here to the end of the speci�cation. The predicates
must determine the values of the constants uniquely for each value of the formal
parameters.

Generic constants may also be introduced by an abbreviation de�nition in
which the left-hand side has generic parameters:

Paragraph ::= Def-Lhs == Expression

Def-Lhs ::= Ident [ [Ident; : : : ; Ident]]
j Ident In-Gen Ident

j Pre-Gen Ident

This is a generalization of the simple abbreviation facility described in Sec-
tion 3.2.5. The left-hand side may be a pattern containing a pre�x or in�x
generic symbol: an example is the de�nition

X #Y == �(X �Y )

of the relation sign ( # ). The formal generic parameters are local to right-
hand side, and the left-hand side becomes a global generic constant. It must
not previously have been de�ned as a global variable or generic constant, and its
scope extends from here to the end of the speci�cation.

When a generic constant is used, the actual generic parameters may be
supplied explicitly or left implicit.

Expression ::= Ident [ [Expression; : : : ;Expression]]

The form E1 ! E2, where ! is an in�x generic symbol, is an abbreviation for
( ! )[E1;E2], and the form !E , where ! is a pre�x generic symbol, is an
abbreviation for (! )[E ]. If actual parameters are left implicit, they are inferred
from the typing information in the expression: they are chosen to be whatever
types make the expression obey the type rules. If there are no such types, the
expression is wrong; likewise if there are several ways of �lling in types as the
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actual parameters, the expression is wrong, and more information needs to be
made explicit. For example, consider the generic function �rst de�ned by

[X ;Y ]
�rst : X �Y "X

8 x : X ; y : Y � �rst(x ; y) = x

In the expression �rst(3; 4), the generic constant �rst has the type

�((�� �)� �);

where � and � are the types �lled in for the two generic parameters X and Y .
Its argument (3; 4) has type �� �, so � and � must both be �, and the type of
the whole expression �rst(3; 4) is �:

�rst(3; 4) = �rst [�;�](3; 4):

One kind of error is illustrated by the expression �rst f3; 4g. As before, �rst has
a type matching the pattern �((�� �)��). This time, however, the type of the
argument f3; 4g is ��, and this does not match �� �: there is no choice of the
generic parameters which makes the expression obey the type rules, and this is
not allowed.

The expression �rst(3;�) illustrates the other kind of error. Here the second
component of the argument, �, is itself generic. It is de�ned by

[X ]
� : �X

� = f x : X j false g

and its type is � , where  is the type �lled in for the generic parameter X . So
the argument (3;�) has type (��� ), and matching this with ��� gives � = �
and � = � . We are tempted to deduce that � is the type of the whole expression,
but this is not so, since the type  is undetermined: there is more than one way
of �lling in the types. In this example, the inde�niteness seems rather benign,
since the value of the expression �rst(3;�) does not depend on the type chosen
as ; but other cases are not so simple, and this is the reason for the general rule.
The error of leaving types undetermined can usually be avoided by supplying one
or actual parameters explicitly: as in the legal expression �rst(3;�[�]).

The method used in these examples can be used generally for inferring ac-
tual generic parameters which have been left implicit: the unknown types are
represented by place-markers like those written with Greek letters above. When
two types are required to be the same by the type rules, the two types (possibly
containing place-markers) are matched with each other by uni�cation, and an
expression is correctly typed exactly if the type rules give enough information to
eliminate all the unknowns. The same method allows type-checking of the empty
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set fg, the empty sequence hi, and the empty bag ��: these can have any types
��, �(�� �), and �( � �) respectively, where �, �, and  are unknowns.

3.10 Free types

The notation for free type de�nitions adds nothing to the power of the Z language,
but it makes it easier to describe recursive structures such as lists and trees. The
syntax of a free type de�nition is as follows:

Paragraph ::= Ident ::= Branch j : : : j Branch

Branch ::= Ident [�Expression�]

(In the �rst of these syntax rules, the second occurrence of the symbol `::='
stands for exactly that symbol.) The meaning of this construct is given here by
showing how to translate free type de�nitions into the other Z constructs. In
the translation, we shall use for convenience some of the notation introduced in
Chapter 4 on `the mathematical tool-kit'. A free type de�nition

T ::= c1 j : : : j cm j d1�E1[T ]� j : : : j dn�En [T ]�

introduces a new basic type T , and m + n new variables c1, : : : , cm and d1,
: : : , dn , declared as if by

[T ]

c1; : : : ; cm : T
d1 : E1[T ]� T
...
dn : En [T ]� T

: : : see below : : :

The ci 's are constants of type T , and the dj 's, called the constructors, are in-
jections from the sets Ej [T ] to T . What makes things interesting is that the
expressions Ej [T ] may contain occurrences of T ; I have used the notation Ej [T ]
to make explicit the possibility that these expressions depend on T .

A free type de�nition may appear to be circular, since the name T being
de�ned appears on the right as well as on the left. But this translation removes
the circularity, introducing T as a basic type before the di 's are declared.

There are two axioms constraining the constants and constructors. First, all
the constants are distinct, and the constructors have disjoint ranges which do
not contain any of the constants:

disjoint hfc1g; : : : ; fcmg; ran d1; : : : ; ran dni:
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Second, the smallest subset of T which contains all the constants and is closed un-
der the constructors is T itself. Informally, a set is closed under the constructors
if performing any of them on elements of the set can only yield another element
of the set. In the following axiom, Ej [W ] is the expression which results from
replacing all free occurrences of T in Ej [T ] by W , a name appearing nowhere
else in the speci�cation. The axiom is an induction principle for the free type:

8W : �T �
fc1; : : : ; cmg [ d1�E1[W ]� [ � � � [ dn�En [W ]� �W
) T �W :

If the constructions Ej used in the de�nition are �nitary (see Section 3.10.2),
then this induction principle implies that the constants and constructors together
exhaust the whole of T , so that

hfc1g; : : : ; fcmg; ran d1; : : : ; ran dni partition T :

If n = 0, so we are de�ning an enumerated type with no constructors but only
constants, then this property is actually equivalent to the induction principle.
For general free types, the induction principle justi�es the method of proof by
induction described below.

3.10.1 Example: binary trees

The details of this axiomatization of free types may be a little di�cult to under-
stand all at once, but perhaps a small example will help to make things clear.
We can describe the set of binary trees labelled with natural numbers by saying
that the constant tip is a tree (the empty one), and that if n is a number and t1
and t2 are trees, then fork(n; t1; t2) is a tree:

TREE ::= tip j fork�� TREE � TREE�:

This free type de�nition is equivalent to the following axiomatic description:

[TREE ]

tip : TREE
fork : � TREE � TREE � TREE

disjoint hftipg; ran forki

8W : �TREE �
ftipg [ fork��W �W � �W
) TREE �W

The constructor fork is declared as an injection, so putting together di�erent
trees, or the same trees with a di�erent label, gives di�erent results. The range
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of fork is disjoint from the set ftipg, that is

tip =2 ran fork ;

so tip cannot result from putting two trees together with fork .
The induction principle justi�es proofs by structural induction on trees, which

are analogous to the proofs by induction on natural numbers, �nite sets, and
sequences described in Chapter 4. Suppose we want to prove that a predicate
P(t) is true of all trees t . The induction principle says that it is enough to prove
the following two facts:

(a1) P(tip) holds.

(a2) If P(t1) and P(t2) hold, so does P(fork(n; t1; t2)):

8 n : ; t1; t2 : TREE �
P(t1) ^ P(t2)) P(fork(n; t1; t2)):

If these facts hold, the induction principle lets us derive 8 t : TREE � P(t). Let
W be the set of trees satisfying P : that is,

W = f t : TREE j P(t) g:

Fact (a1) says that tip 2W , and fact (a2) says that fork��W �W � �W , so
by the induction principle, TREE �W . This means that 8 t : TREE � t 2W ,
or equivalently, that 8 t : TREE � P(t).

3.10.2 Consistency

There is a snag with the notation for de�ning free types, and that is the possibility
that the de�nition will be inconsistent: that there will be no sets and functions
which satisfy the axioms given above. The classic example of an inconsistent free
type de�nition is that of a type containing both natural numbers as atoms, and
all the functions from the type to itself:

T ::= atom�� j fun�T " T�:

Briey, no such set T can exist, because however large T is, there are many more
functions from T to T than there are members of T .

A su�cient condition for a free type de�nition

T ::= c1 j : : : j cm j d1�E1[T ]� j : : : j dn�En [T ]�

to be consistent is that all the constructions E1[T ], : : : , En [T ] which appear on
the right-hand side are �nitary, in a sense explained below. Examples of �nitary
constructions include Cartesian products X �Y , �nite sets �X , �nite functions
X � Y , and �nite sequences seqX , as well as set constants not containing the
type T being de�ned. Any composition of �nitary constructions is also �nitary.
Any construction on T which involves objects containing in�nitely many elements
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of T will not be �nitary { for example, the power-set construction �T and in�nite
sequences " T are not �nitary.

The examples just given provide enough �nitary constructions for most prac-
tical purposes; but for completeness, here is a precise de�nition of the concept.
We say that E [T ] is �nitary if any element of E [T ] is also an element of E [V ]
for some �nite subset V of T :

E [T ] =
S
fV : �T � E [V ] g:

If each element x of E [T ] involves only �nitely many members of T , then these
members of T form a �nite subset V of T , and x 2 E [V ], so E [T ] is �nitary in
this formal sense.

If a construction is �nitary, then it is monotonic, in the sense that S � T
implies E [S ] � E [T ]. It is also continuous, in the sense that it preserves the limits
of ascending chains of sets: if S0 � S1 � : : : , then (thanks to monotonicity)

E [S0] � E [S1] � : : : ;

and also

E [
S
f i :  � Si g] =

S
f i :  � E [Si ] g:

Standard mathematical techniques can be used to show that this continuity prop-
erty of �nitary constructions guarantees the consistency of free type de�nitions
that use them.



CHAPTER 4

The Mathematical Tool-kit

An important part of the Z method is a standard library or tool-kit of mathemat-
ical de�nitions. This tool-kit allows many structures in information systems to
be described very compactly, and because the data types it contains are oriented
towards mathematical simplicity rather than computer implementation, reason-
ing about properties of the systems is made easier. This chapter consists almost
entirely of independent manual pages, each introducing an operation or group
of related operations from the tool-kit. Each page includes laws which relate its
operations to each other and to the operations de�ned on preceding pages. These
laws are stated without explicitly declaring the variables they contain; their types
should be clear from the context. A number of pages consist entirely of laws of a
certain kind: for example, the induction principles for natural numbers and for
sequences are summarized on their own pages.

The tool-kit begins with the basic operations of set algebra (Section 4.1).
Many of these operations have a strong connection with the subset ordering �,
and the laws relating them are listed on a separate page.

6=, =2 Inequality, non-membership (p. 89)

�, �, �, �
1

Empty set, subsets, non-empty sets (p. 90)

[, \, n Set algebra (p. 91)S
,
T

Generalized union and intersection (p. 92)

�rst , second Projection functions (p. 93)

� Order properties of set operations (p. 94)

Next, the idea of a relation as a set of ordered pairs is introduced, together with
various operations on relations (Section 4.2). Again, the subset ordering plays
a special part, in that many of the operations are monotonic with respect to it:
these laws are shown on their own page.

#, 7! Binary relations, maplet (p. 95)

dom, ran Domain and range of a relation (p. 96)

86
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id, �, � Identity relation, composition (p. 97)

�, � Domain and range restriction (p. 98)

�, � Domain and range anti-restriction (p. 99)
� Relational inversion (p. 100)

� � Relational image (p. 101)

� Overriding (p. 102)
+, � Transitive closure (p. 103)

� Monotonic operations (p. 104)

In Section 4.3, functions are introduced as a special kind of relation; and in-
jections, surjections and bijections are introduced as special kinds of function.
Because functions are really relations, the operations on relations may be used
on functions too. Extra laws about this usage are listed on a separate page.

�, ", �, �, Partial and total functions, injections,

�, �, � surjections, bijections (p. 105)

� Relational operations on functions (p. 107)

Natural numbers are introduced in Section 4.4, together with the ideas of iteration
of a relation and of �nite sets and functions. Induction is an important proof
method for natural numbers, and it is given its own page.

, �, +, �, �, div, Natural numbers, integers (p. 108)

mod, <, �, �, >

1, succ, : : Strictly positive integers, successor

function, number range (p. 109)

Rk , iter Iteration (p. 110)

�, �
1
, # Finite sets, number of members (p. 111)

�, � Finite partial functions and injections (p. 112)

min, max Minimum and maximum numbers (p. 113)

� Proof by induction (p. 114)

Next, sequences are introduced as functions whose domains are certain segments
of the natural numbers (Section 4.5). There are several important operations on
sequences, and they inherit the operations on relations; some extra laws about
these are listed on a separate page. There are specialized induction principles for
sequences, and these too have their own page.

seq, seq1, iseq Finite and injective sequences (p. 115)

�, rev Concatenation, reverse (p. 116)

head , last , tail , front Sequence decomposition (p. 117)

 , �, squash Extraction, �ltering, compaction (p. 118)
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pre�x, su�x, in Subsequences (p. 119)

� Relational operations on sequences (p. 120)

�= Distributed concatenation (p. 121)

disjoint , partition Disjointness, partitions (p. 122)

� Induction for sequences (p. 123)

Bags are like sets, except that it matters how many times a bag contains each of
its elements. Bags and operations on bags are de�ned in Section 4.6.

bag, count , ], 
 Bags, counting, scaling (p. 124)

�, v Bag membership, sub-bags (p. 125)

], ! Bag union and di�erence (p. 126)

items Bag of elements of a sequence (p. 127)

The `de�nition' parts of this chapter are a formal speci�cation of the tool-kit.
The principle of de�nition before use has been observed in all but two cases, the
symbols # and ". For completeness, their de�nitions are given here:

X #Y == �(X �Y )

X "Y == f f : X #Y j 8 x : X � 9
1
y : Y � (x ; y) 2 f g:
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4.1 Sets

Name

6= { Inequality
=2 { Non-membership

De�nition

[X ]
6= : X #X
=2 : X #�X

8 x ; y : X � x 6= y , : (x = y)

8 x : X ; S : �X � x =2 S , : (x 2 S )

Description

The relations 6= and =2 are the complements of the equality and membership
relations expressed by = and 2 respectively.

Laws

x 6= y ) y 6= x
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Name

� { Empty set
� { Subset relation
� { Proper subset relation
�
1

{ Non-empty subsets

De�nition

�[X ] == f x : X j false g

[X ]
� ; � : �X #�X

8 S ;T : �X �
(S � T , (8 x : X � x 2 S ) x 2 T )) ^
(S � T , S � T ^ S 6= T )

�
1
X == f S : �X j S 6= � g

Description

� is the empty set. It has no members.

A set S is a subset of a set T (S � T ) if every member of S is also a member
of T . We say S is a proper subset of T (S � T ) if in addition S is di�erent
from T .

For any set X , �
1
X is the set of all subsets of X which are not empty.

Laws

x =2 �

S � T , S 2 �T

S � S : (S � S )

S � T ^ T � S , S = T : (S � T ^ T � S )

S � T ^ T � V ) S � V S � T ^ T � V ) S � V

� � S � � S , S 6= �

�
1
X = � , X = �

X 6= �, X 2 �
1
X
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Name

[ { Set union
\ { Set intersection
n { Set di�erence

De�nition

[X ]
[ ; \ ; n : �X � �X "�X

8 S ;T : �X �
S [ T = f x : X j x 2 S _ x 2 T g ^
S \ T = f x : X j x 2 S ^ x 2 T g ^
S n T = f x : X j x 2 S ^ x =2 T g

Description

These are the ordinary operations of set algebra. The members of the set
S [T are those objects which are members of S or T or both. The members
of S \T are those objects which are members of both S and T . The members
of S n T are those objects which are members of S but not of T .

Laws

S [ S = S [� = S \ S = S n� = S

S \� = S n S = � n S = �

S [ T = T [ S S \ T = T \ S

S [ (T [V ) = (S [ T ) [V S \ (T \ V ) = (S \ T ) \V

S [ (T \V ) = (S [ T ) \ (S [ V ) S \ (T [ V ) = (S \ T ) [ (S \V )

(S \ T ) [ (S n T ) = S S [ (T nV ) = (S [ T ) n (V n S )

(S n T ) \ T = � S \ (T nV ) = (S \ T ) nV

S n (T nV ) = (S n T ) [ (S \ V ) (S [ T ) nV = (S nV ) [ (T nV )

(S n T ) nV = S n (T [ V ) S n (T \V ) = (S n T ) [ (S nV )
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Name
S

{ Generalized union
T

{ Generalized intersection

De�nition

[X ]S
;
T
: �(�X )"�X

8A : �(�X ) �
S
A = f x : X j (9 S : A � x 2 S ) g ^

T
A = f x : X j (8 S : A � x 2 S ) g

Description

If A is a set of sets,
S
A is its generalized union: it contains all objects which

are members of some member of A. The set
T
A is the generalized intersection

of A: it contains those objects which are members of all members of A.

Laws
S
(A [ B) = (

S
A) [ (

S
B)T

(A [ B) = (
T
A) \ (

T
B)

S
[X ]� = �T
[X ]� = X

S \ (
S
A) =

S
fT : A � S \ T g

S [ (
T
A) =

T
fT : A � S [ T g

(
S
A) n S =

S
fT : A � T n S g

S n (
T
A) =

S
fT : A � S n T g

A 6= �) S n (
S
A) =

T
fT : A � S n T g

A 6= �) (
T
A) n S =

T
fT : A � T n S g

A � B )
S
A �

S
B

A � B )
T
B �

T
A
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Name

�rst ; second { Projection functions for ordered pairs

De�nition

[X ;Y ]
�rst : X �Y "X
second : X �Y "Y

8 x : X ; y : Y �
�rst(x ; y) = x ^
second(x ; y) = y

Description

These projection functions split ordered pairs into their �rst and second co-
ordinates.

Laws

(�rst p; second p) = p
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Order properties of set operations

The subset relation � on sets is a partial order: this is the content of three of the
laws shown on its page in the manual. The operations of union and intersection
are least upper bound and greatest lower bound operations for this partial order,
as is expressed in the laws which follow. If S and T are sets, then S [ T is the
smallest set which contains both S and T as subsets:

S � S [ T

T � S [ T

S �W ^ T �W ) S [ T �W :

For a set of sets A, the generalized union
S
A is the smallest set which contains

each member of A as a subset:

8 S : A � S �
S
A

(8 S : A � S �W ))
S
A �W :

Similarly, S \ T is the largest set which is a subset of both S and T :

S \ T � S

S \ T � T

W � S ^W � T )W � S \ T :

The set
T
A is the largest set which is a subset of each member of A:

8 S : A �
T
A � S

(8 S : A �W � S ))W �
T
A:

Finally, S n T is the largest subset of S which is disjoint from T :

S nT � S

(S n T ) \ T = �

W � S ^W \ T = �)W � S n T :
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4.2 Relations

Name

# { Binary relations
7! { Maplet

De�nition

X #Y == �(X �Y )

[X ;Y ]
7! : X �Y "X � Y

8 x : X ; y : Y �
x 7! y = (x ; y)

Description

If X and Y are sets, then X # Y is the set of binary relations between X
and Y . Each such relation is a subset of X �Y . The `maplet' notation x 7! y
is a graphic way of expressing the ordered pair (x ; y).

The de�nition of X #Y given here repeats the one given on page 88.
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Name

dom; ran { Domain and range of a relation

De�nition

[X ;Y ]
dom : (X #Y )"�X
ran : (X #Y )"�Y

8R : X #Y �
domR = f x : X ; y : Y j x R y � x g ^
ranR = f x : X ; y : Y j x R y � y g

Description

If R is a binary relation between X and Y , then the domain of R (domR) is
the set of all members of X which are related to at least one member of Y by
R. The range of R (ranR) is the set of all members of Y to which at least
one member of X is related by R.

Laws

x 2 domR , (9 y : Y � x R y)

y 2 ranR , (9 x : X � x R y)

dom fx1 7! y1; : : : ; xn 7! yng = fx1; : : : ; xng

ran fx1 7! y1; : : : ; xn 7! yng = fy1; : : : ; yng

dom(Q [ R) = (domQ) [ (domR)

ran(Q [ R) = (ranQ) [ (ranR)

dom(Q \ R) � (domQ) \ (domR)

ran(Q \ R) � (ranQ) \ (ranR)

dom� = �

ran� = �
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Name

id { Identity relation
� { Relational composition
� { Backward relational composition

De�nition

idX == f x : X � x 7! x g

[X ;Y ;Z ]
� : (X #Y )� (Y # Z )" (X # Z )
� : (Y # Z )� (X #Y )" (X # Z )

8Q : X #Y ; R : Y # Z �
Q � R = R �Q = f x : X ; y : Y ; z : Z j

x Q y ^ y R z � x 7! z g

Description

The identity relation idX on a set X relates each member of X to itself. The
composition Q � R of two relations Q : X # Y and R : Y # Z relates a
member x of X to a member z of Z if and only if there is at least one element
y of Y to which x is related by Q and which is itself related to z by R. The
notation R �Q is an alternative to Q � R.

Laws

(x 7! x 0) 2 idX , x = x 0 2 X

(x 7! z ) 2 P �Q , (9 y : Y � x P y ^ y Q z )

P � (Q � R) = (P � Q) � R

idX � P = P

P � idY = P

idV � idW = id(V \W )

(f � g)(x ) = f (g(x ))
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Name

� { Domain restriction
� { Range restriction

De�nition

[X ;Y ]
� : �X � (X #Y )" (X #Y )
� : (X #Y )� �Y " (X #Y )

8 S : �X ; R : X #Y �
S � R = f x : X ; y : Y j x 2 S ^ x R y � x 7! y g

8R : X #Y ; T : �Y �
R � T = f x : X ; y : Y j x R y ^ y 2 T � x 7! y g

Description

The domain restriction S � R of a relation R to a set S relates x to y if and
only if R relates x to y and x is a member of S . The range restriction R�T
of R to a set T relates x to y if and only if R relates x to y and y is a member
of T .

Laws

S � R = id S � R = (S �Y ) \ R

R � T = R � idT = R \ (X � T )

dom(S � R) = S \ (domR)

ran(R � T ) = (ranR) \ T

S � R � R

R � T � R

(S � R)� T = S � (R � T )

S � (V � R) = (S \V )� R

(R � T )�W = R � (T \W )
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Name

� { Domain anti-restriction
� { Range anti-restriction

De�nition

[X ;Y ]
� : �X � (X #Y )" (X #Y )
� : (X #Y )� �Y " (X #Y )

8 S : �X ; R : X #Y �
S � R = f x : X ; y : Y j x =2 S ^ x R y � x 7! y g

8R : X #Y ; T : �Y �
R � T = f x : X ; y : Y j x R y ^ y =2 T � x 7! y g

Description

These two operations are the complemented counterparts of the restriction
operations � and � . An object x is related to an object y by the
relation S � R if and only if x is related to y by R and x is not a member of
S . Similarly, x is related to y by R � T if and only if x is related to y by R
and y is not a member of T .

Laws

S � R = (X n S )� R

R � T = R � (Y n T )

(S � R) [ (S � R) = R

(R � T ) [ (R � T ) = R
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Name

� { Relational inversion

De�nition

[X ;Y ]
� : (X #Y )" (Y #X )

8R : X #Y �
R� = f x : X ; y : Y j x R y � y 7! x g

Notation

The notation R�1 is often used for the inverse of a homogeneous relation R
{ one that is in X #X ; it is a special case of the notation for iteration (see
page 110).

Description

An object y is related to an object x by the relational inverse R� of R if and
only if x is related to y by R.

Laws

(y 7! x ) 2 R� , (x 7! y) 2 R

(R�)� = R

(Q � R)� = R� �Q�

(idV )� = idV

dom(R�) = ranR

ran(R�) = domR

id(domR) � R � R�

id(ranR) � R� � R
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Name

� � { Relational image

De�nition

[X ;Y ]
� � : (X #Y )� �X "�Y

8R : X #Y ; S : �X �
R�S � = f x : X ; y : Y j x 2 S ^ x R y � y g

Description

The relational image R�S � of a set S through a relation R is the set of all
objects y to which R relates some member x of S .

Laws

y 2 R�S �, (9 x : X � x 2 S ^ x R y)

R�S � = ran(S � R)

dom(Q � R) = Q��domR�

ran(Q � R) = R�ranQ�

R�S [ T � = R�S � [ R�T �

R�S \ T � � R�S � \ R�T �

R�domR� = ranR

domR = �rst�R�

ranR = second�R�
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Name

� { Overriding

De�nition

[X ;Y ]
� : (X #Y )� (X #Y )" (X #Y )

8Q ;R : X #Y �
Q � R = ((domR)� Q) [ R

Description

The relation Q �R relates everything in the domain of R to the same objects
as R does, and everything else in the domain of Q to the same objects as Q
does.

Laws

R � R = R

P � (Q � R) = (P � Q)� R

�� R = R �� = R

dom(Q � R) = (domQ) [ (domR)

domQ \ domR = �) Q � R = Q [ R

V � (Q � R) = (V � Q)� (V � R)

(Q � R)�W � (Q �W )� (R �W )

If f and g are functions, then

x 2 (dom f ) n (dom g)) (f � g) x = f x

x 2 dom g ) (f � g) x = g x :
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Name

+ { Transitive closure
� { Reexive{transitive closure

De�nition

[X ]
+; � : (X #X )" (X #X )

8R : X #X �

R+ =
T
fQ : X #X j R � Q ^ Q �Q � Q g ^

R� =
T
fQ : X #X j idX � Q ^ R � Q ^ Q � Q � Q g

Description

If R is a relation from a set X to itself, R+ is the strongest or smallest relation
containing R which is transitive, and R� is the strongest relation containing
R which is both reexive and transitive.

For an alternative de�nition of R+ and R� in terms of iteration, see the laws
on page 110.

Laws

R � R+

R+ � R+ � R+

R � Q ^ Q � Q � Q ) R+ � Q

idX � R�

R � R�

R� � R� = R�

idX � Q ^ R � Q ^ Q �Q � Q ) R� � Q

R� = R+ [ idX = (R [ idX )+

R+ = R � R� = R� � R

(R+)+ = R+

(R�)� = R�

S � R��S �

R�R��S �� � R��S �

S � T ^ R�T � � T ) R��S � � T
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Monotonic operations

A function f : �X "�Y is monotonic if

S � T ) f (S ) � f (T ):

A function g : �X � �Y "�Z is monotonic in both arguments if

S � U ^ T � V ) g(S ;T ) � g(U ;V ):

Many operations on sets and relations are monotonic, including the closure op-
erators R+ and R�; others satisfy the stronger property of being disjunctive (see
below). It is a theorem that a function f : �X "�Y is monotonic if and only
if for all S ;T : �X ,

f (S \ T ) � f (S ) \ f (T ):

Also, a function f is monotonic if and only if the following inequality holds for
all S and T :

f (S ) [ f (T ) � f (S [ T ):

If the stronger property f (S[T ) = f (S )[f (T ) holds, we say that f is disjunctive.
Disjunctive functions include the domain and range operations dom and ran and
inversion R�. A function g of two arguments is disjunctive in both arguments if

g(S [ T ;U ) = g(S ;U ) [ g(T ;U )

g(S ;U [V ) = g(S ;U ) [ g(S ;V ):

Many binary operations on sets and relations are disjunctive in both arguments,
including [, \, �, �, � and � �. These disjunctive operations are also monotonic,
so they share all the properties of monotonic functions.

A few other operations, such as n, � and � are disjunctive in one argument
and `anti-monotonic' in the other, in the sense that, for example,

S � (Q [ R) = (S � Q) [ (S � R)

S � T ) T � R � S � R:

If f : �X "�X is monotonic, then Tarski's theorem says that it has a least
�xed point S given by

S =
T
fT : �X j f (T ) � T g:

This set S has the following two properties:

f (S ) = S

8T : �X j f (T ) � T � S � T :

The �rst property is that S is a �xed point of f , and the second is that S is
included in all `pre-�xed points' of f : in particular, it is a subset of every other
�xed point of f .
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4.3 Functions

Name

� { Partial functions
" { Total functions
� { Partial injections
� { Total injections
� { Partial surjections
� { Total surjections
� { Bijections

De�nition

X �Y == f f : X #Y j (8 x : X ; y1; y2 : Y �
(x 7! y1) 2 f ^ (x 7! y2) 2 f ) y1 = y2) g

X "Y == f f : X �Y j dom f = X g

X �Y == f f : X �Y j (8 x1; x2 : dom f � f (x1) = f (x2)) x1 = x2) g

X �Y == (X �Y ) \ (X "Y )

X �Y == f f : X �Y j ran f = Y g

X �Y == (X �Y ) \ (X "Y )

X �Y == (X �Y ) \ (X �Y )

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x ). The set X "Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative de�nition of X "Y was given on page 88. It is equivalent
to the one given here.

The arrows �, �, and � with barbed tails make sets of functions that
are injective. X �Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map di�erent elements of their domain
to di�erent elements of their range. X �Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows �, �, and � with double heads make sets of functions that
are surjective. X � Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.
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X �Y is the set of total surjections from X to Y , the functions which have
the whole of X as their domain and the whole of Y as their range.

The set X�Y is the set of bijections from X to Y . These map the elements
of X onto the elements of Y in a one-to-one correspondence. As suggested
by its shape, X � Y contains exactly those total functions that are both
injective and surjective.

Laws

f 2 X �Y , f � f � = id(ran f )

f 2 X �Y , f 2 X �Y ^ f � 2 Y �X

f 2 X �Y , f 2 X "Y ^ f � 2 Y �X

f 2 X �Y ) f �S \ T � = f �S � \ f �T �

f 2 X �Y , f 2 X "Y ^ f � 2 Y "X

f 2 X �Y ) f � f � = idY
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Relational operations on functions

Functions are just a special kind of relation, so the relational operations, such as
�, � and �, may be used on functions. Many of these operations yield functions
when applied to functions, and some preserve other properties such as injectivity.

The identity relation is a function { in fact, an injection { and composition,
restriction and overriding map functions to functions:

S � X ) id S 2 X �X

idX 2 X �X

f 2 X �Y ^ g 2 Y � Z ) g � f 2 X � Z

f 2 X "Y ^ g 2 Y � Z ^ ran f � dom g ) g � f 2 X " Z

f 2 X �Y ) S � f 2 X �Y

f 2 X �Y ) f � T 2 X �Y

f 2 X �Y ^ g 2 X �Y ) f � g 2 X �Y :

The composition of two injections and the restriction of an injection are again
injections, and inversion maps injections to injections:

f 2 X �Y ^ g 2 Y � Z ) g � f 2 X � Z

f 2 X �Y ) S � f 2 X �Y

f 2 X �Y ) f � T 2 X �Y

f 2 X �Y ) f � 2 Y �X :

Finally, set-theoretic operations may be used to combine functions. Note espe-
cially that the union of two functions is a function only if they agree on the
intersection of their domains:

f 2 X �Y ^ g 2 X �Y ^
(dom f )� g = (dom g)� f ) f [ g 2 X �Y

f 2 X �Y ^ g 2 X �Y ) f \ g 2 X �Y

f 2 X �Y ^ g 2 X �Y ) f \ g 2 X �Y :

The last two laws are special cases of the laws that any subset of a function is a
function, and any subset of an injection is an injection:

f 2 X �Y ^ g � f ) g 2 X �Y

f 2 X �Y ^ g � f ) g 2 X �Y :
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4.4 Numbers and �niteness

Name

 { Natural numbers
� { Integers
+;�; �; div;mod { Arithmetic operations
<;�;�; > { Numerical comparison

De�nition

[�]

+ ; � ; � : �� �"�
div ; mod : �� (� n f0g)"�

� : �"�

< ; � ; � ; > : �#�

: : : de�nitions omitted : : :

 == f n : � j n � 0 g

Notation

Decimal notation may be used for elements of . Negative numbers may be
written down using the unary minus function (�).

Description

 is the set of natural numbers f0; 1; 2; : : :g, and � is the set of integers
f: : : ;�2;�1; 0; 1; 2; : : :g. The usual arithmetic operations of addition, sub-
traction, multiplication, integer division and modulo are provided. Integer
division and the modulo operation use truncation towards minus in�nity,
so that they together obey the three laws listed below. Numbers may be
compared with the usual ordering relations.

Laws

b > 0) 0 � a mod b < b

b 6= 0) a = (a div b) � b + a mod b

b 6= 0 ^ c 6= 0) (a � c) div (b � c) = a div b
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Name

1 { Strictly positive integers
succ { Successor function
: : { Number range

De�nition

1 ==  n f0g

succ : "
: : : �� �"��

8 n :  � succ(n) = n + 1

8 a; b : � �
a : : b = f k : � j a � k � b g

Description

1 is the set of strictly positive integers; it contains every natural number
except 0. If n is a natural number, succ(n) is the next one, namely n + 1.
If we take succ as primitive, it is possible to describe all the operations on
numbers in terms of it.

If a and b are integers and a � b, then a : : b is the set of integers between a
and b inclusive. If a > b then a : : b is empty.

Laws

succ 2 �1

a > b ) a : : b = �

a : : a = fag

a � b ^ c � d ) b : : c � a : : d
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Name

Rk { Iteration

De�nition

[X ]
iter : �" (X #X )" (X #X )

8R : X #X �
iter 0R = idX ^
(8 k :  � iter (k + 1)R = R � (iter k R)) ^
(8 k :  � iter (�k)R = iter k (R�))

Notation

iter k R is usually written Rk .

Description

Two objects x and y are related by Rk , where k � 0, if there are k+1 objects
x0, x1, : : : , xk with x = x0, xi R xi+1 for each i such that 0 � i < k , and
xk = y . R�k is de�ned to be (R�)k .

Laws

R0 = idX

R1 = R

R2 = R � R

R�1 = R�

k � 0) Rk+1 = R � Rk = Rk � R

(R�)a = (Ra)�

a � 0 ^ b � 0) Ra+b = Ra � Rb

Ra�b = (Ra)b

R+ =
S
f k : 1 � R

k g

R� =
S
f k :  � Rk g

R � S = S � R ) (R � S )a = Ra � Sa
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Name

� { Finite sets
�
1

{ Non-empty �nite sets
# { Number of members of a set

De�nition

�X == f S : �X j 9 n :  � 9 f : 1 : : n " S � ran f = S g

�
1
X == �X n f�g

[X ]
# : �X "

8 S : �X �
#S = (� n :  j (9 f : 1 : : n � S � ran f = S ))

Description

A subset S of X is �nite (S 2 �X ) if and only if the members of S can be
counted with some natural number. In this case, there is a unique natural
number which counts the members of S without repetition, and this is the
size #S of S . The sets in �

1
X are the non-empty members of �X : those

�nite sets S with #S > 0.

Laws

S 2 �X , (8 f : S � S � ran f = S )

� 2 �X

8 S : �X ; x : X � S [ fxg 2 �X

#(S [ T ) = #S +#T �#(S \ T )

�
1
X = f S : �X j #S > 0 g
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Name

� { Finite partial functions
� { Finite partial injections

De�nition

X �Y == f f : X �Y j dom f 2 �X g

X �Y == (X �Y ) \ (X �Y )

Description

If X and Y are sets, X � Y is the set of �nite partial functions from X to
Y . These are partial functions from X to Y whose domain is a �nite subset
of X . The set of �nite partial injections X �Y contains those �nite partial
functions which are also injections.

Laws

X �Y = (X �Y ) \ �(X �Y )
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Name

min;max { Minimum and maximum of a set of numbers

De�nition

min : �
1
���

max : �
1
���

min = f S : �
1
�; m : � j

m 2 S ^ (8 n : S � m � n) � S 7! m g

max = f S : �
1
�; m : � j

m 2 S ^ (8 n : S � m � n) � S 7! m g

Description

The minimum of a set S of integers is that element of S which is smaller than
any other, if any. The maximum of S is that element which is larger than
any other, if any.

Laws

�
1
� � dommin

�
1
� � dommax

(�) \ (dommin) = �
1


(�) \ (dommax ) = �
1


min(S [ T ) = minfmin S ;min Tg

max (S [ T ) = maxfmax S ;max Tg

min(S \ T ) � min S

max (S \ T ) � max S

a � b ) min(a : : b) = a ^ max (a : : b) = b

(a : : b) \ (c : : d) = maxfa; cg : :minfb; dg
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Proof by induction

Mathematical induction provides a method of proving universal properties of
natural numbers. To show that a property P(n) holds of all natural numbers n,
it is enough to show that

(a1) P(0) holds.

(a2) If P(n) holds for some n : , so does P(n + 1):

8 n :  � P(n)) P(n + 1):

A similar proof method may be used to prove that P(S ) holds for all �nite sets
S : �X . It is enough to show that

(b1) P(�) holds.

(b2) If P(S ) holds then P(S [ fxg) holds also:

8 S : �X ; x : X � P(S )) P(S [ fxg):

A more powerful proof method for the natural numbers is to assume as hypothesis
not just that the immediately preceding number has the property P , but that all
smaller numbers do. To establish the theorem 8 n :  � P(n) by this method, it
is enough to show the single fact

(c1) If for all k < n;P(k) holds, so does P(n):

8 n :  � (8 k :  j k < n � P(k))) P(n):

There is no need for a separate case for n = 0, because proving (c1) entails
proving P(0) under no assumptions, for there is no natural number k satisfying
k < 0.

Analogously, a more powerful proof method for sets requires that a property
P be proved to hold of a �nite set under the hypothesis that it holds of all proper
subsets. To establish 8 S : �X � P(S ), it is enough to show:

(d1) 8 S : �X � (8T : �X j T � S � P(T ))) P(S ):

Again, since the empty set has no proper subsets, there is no need for a separate
case for S = �.
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4.5 Sequences

Name

seq { Finite sequences
seq1 { Non-empty �nite sequences
iseq { Injective sequences

De�nition

seqX == f f : �X j dom f = 1 : :#f g

seq1X == f f : seqX j #f > 0 g

iseqX == seqX \ (�X )

Notation

We write ha1; : : : ; ani as a shorthand for the set

f1 7! a1; : : : ; n 7! ang:

The empty sequence hi is an alternative notation for the empty function �
from  to X .

Description

seqX is the set of �nite sequences over X . These are �nite functions from 
to X whose domain is a segment 1 : : n for some natural number n. seq1X is
the set of all �nite sequences over X except the empty sequence hi.

iseqX is the set of injective �nite sequences over X : these are precisely the
�nite sequences over X which contain no repetitions.

Laws

seq1X = seqX n fhig
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Name

� { Concatenation
rev { Reverse

De�nition

[X ]
� : seqX � seqX " seqX

rev : seqX " seqX

8 s; t : seqX �
s � t = s [ f n : dom t � n +#s 7! t(n) g

8 s : seqX �
rev s = (� n : dom s � s(#s � n + 1))

Description

For sequences s and t , s � t is the concatenation of s and t . It contains the
elements of s followed by the elements of t .

If s is a sequence, rev s is the sequence containing the same elements as s,
but in reverse order.

Laws

(s � t) � u = s � (t � u)

hi � s = s

s � hi = s

#(s � t) = #s +#t

rev hi = hi

rev hx i = hx i

rev(s � t) = (rev t) � (rev s)

rev(rev s) = s
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Name

head ; last ; tail ; front { Sequence decomposition

De�nition

[X ]
head ; last : seq1X "X
tail ; front : seq1X " seqX

8 s : seq1X �
head s = s(1) ^
last s = s(#s) ^
tail s = (� n : 1 : :#s � 1 � s(n + 1)) ^
front s = (1 : :#s � 1)� s

Description

For a non-empty sequence s, head s and last s are the �rst and last elements
of s respectively. The sequences tail s and front s contain all the elements of
s except for the �rst and except for the last respectively.

Laws

head hx i = last hx i = x

tail hx i = front hx i = hi

s 6= hi )
head(s � t) = head s ^
tail(s � t) = (tail s) � t

t 6= hi )
last(s � t) = last t ^
front(s � t) = s � (front t)

s 6= hi ) hhead si � (tail s) = s

s 6= hi ) (front s) � hlast si = s

s 6= hi ) head(rev s) = last s ^ tail(rev s) = rev(front s)

s 6= hi ) last(rev s) = head s ^ front(rev s) = rev(tail s)
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Name

 { Extraction
� { Filtering
squash { Compaction

De�nition

[X ]
 : �1 � seqX " seqX
� : seqX � �X " seqX

squash : (1 �X )" seqX

8U : �1; s : seqX �
U  s = squash (U � s)

8 s : seqX ; V : �X �
s �V = squash (s � V )

8 f : 1 �X �
squash f = f � (� p : 1 : :# f � dom f j p � succ � p� � ( < ))

Description

If U is a set of indices and s is a sequence, then U  s is a sequence that
contains exactly those elements of s that appear at an index in U , in the
same order as in s. If s is a sequence over X and V is a subset of X , then
s �V is a sequence which contains just those elements of s which are members
of V , in the same order as in s. Both are de�ned using a function squash that
takes a �nite function de�ned on the strictly positive integers and compacts
it into a sequence.

Laws

hi �V = U  hi = hi

(s � t) �V = (s �V ) � (t �V )

ran s � V , s �V = s

s � � = �  s = hi

#(s �V ) � #s

(s �V ) �W = s � (V \W )
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Name

pre�x { Pre�x relation
su�x { Su�x relation
in { Segment relation

De�nition

[X ]
pre�x ; su�x ; in : seqX # seqX

8 s; t : seqX �
s pre�x t , (9 v : seqX � s � v = t) ^
s su�x t , (9 u : seqX � u � s = t) ^
s in t , (9 u; v : seqX � u � s � v = t)

Description

These relations hold when one sequence is a contiguous part of another, taken
either from the front (pre�x), from the back (su�x) or from anywhere (in).
They are all partial orders on sequences: cf. page 94.

Laws

s pre�x t , s = (1 : :#s)  t

s su�x t , s = (#t �#s + 1 : :#t)  t

s in t , (9 n : 1 : :#t � s = (n : : n +#s-1)  t)

s in t , (9 u : seqX � s su�x u ^ u pre�x t)

s in t , (9 v : seqX � s pre�x v ^ v su�x t)
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Relational operations on sequences

Sequences are a special kind of function { the ones with domain 1 : : k for some
k { and functions are a special kind of relation, so operations de�ned on relations
may be used on sequences.

If s : seqX and f : X "Y , then f � s 2 seqY { it is the sequence with the
same length as s whose elements are the images of corresponding elements of s
under f :

#(f � s) = #s

8 i : 1 : :#s � (f � s)(i) = f (s(i))

f � hi = hi

f � hx i = hf (x )i

f � (s � t) = (f � s) � (f � t):

Another useful relational operation for sequences is `ran'. The range ran s of a
sequence s is just the set of objects which are elements of the sequence:

ran s = f i : 1 : :#s � s(i) g

ran hi = �

ran hx i = fxg

ran(s � t) = (ran s) [ (ran t):

These operations interact with sequence operations such as rev and � in the
expected way:

rev(f � s) = f � (rev s)

ran(rev s) = ran s

(f � s) �V = f � (s � f ��V �)

ran(s �V ) = (ran s) \V :



4.5 Sequences 121

Name

�= { Distributed concatenation

De�nition

[X ]
�= : seq(seqX )" seqX

�=hi = hi
8 s : seqX � �=hsi = s
8 q ; r : seq(seqX ) �

�=(q � r) = (�= q) � (�= r)

Description

If q is a sequence of sequences, �= q is the result of concatenating all the
elements of q , one after another.

Laws

�=hs; ti = s � t :

The following four laws show the interaction of �= with rev , �, � and `ran':

rev(�= q) = �=(rev(rev � q)):

The expression on the right of this law can be evaluated by reversing each se-
quence in q , reversing the resulting sequence of sequences, then concatenating
the result with �=.

(�= q) �V = �=((� s : seqX � s �V ) � q):

On the right-hand side, each sequence in q is �ltered by V , and the results
are concatenated.

f � (�= q) = �=((� s : seqX � f � s) � q):

On the right-hand side of this law, f is composed with each sequence in q ,
and the results are concatenated.

ran(�= q) =
S
f i : 1 : :#q � ran(q(i)) g =

S
(ran(ran �q)):

The middle expression is the union of the ranges of the individual elements
of q . The right-hand expression is a shorter way of saying the same thing.
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Name

disjoint { Disjointness
partition { Partitions

De�nition

[I ;X ]
disjoint : �(I ��X )
partition : (I ��X )#�X

8 S : I ��X ; T : �X �
(disjoint S ,

(8 i ; j : dom S j i 6= j � S (i) \ S (j ) = �)) ^
(S partition T ,

disjoint S ^
S
f i : dom S � S (i) g = T )

Description

An indexed family of sets S is disjoint if and only if each pair of sets S (i)
and S (j ) for i 6= j have empty intersection. The family S partitions a set T
if, in addition, the union of all the sets S (i) is T . A particularly common
example of an indexed family of sets is a sequence of sets, which is at base
only a function de�ned on a subset of .

Laws

disjoint �

disjoint hAi

disjoint hA;Bi , A \ B = �

hA;Bi partition C , A \ B = � ^ A [ B = C
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Induction for sequences

Proof by induction is valid for natural numbers and for �nite sets because every
natural number can be reached from zero by repeatedly adding one, and every
�nite set can be reached from the empty set by repeatedly inserting new members.
There are two `generation principles' like this for sequences, and they correspond
to two slightly di�erent styles of proof by induction. First, any sequence can be
reached from the empty sequence by repeatedly extending it with new elements.
So to prove that a property P(s) holds of all �nite sequences s : seqX , it is
enough to show that

(a1) P(hi) holds.

(a2) If P(s) holds for some sequence s, then P(s � hx i) holds also:

8 s : seqX ; x : X � P(s)) P(s � hx i):

A variant of this style of induction builds up sequences from the back instead of
from the front: (a2) may be replaced by

(a20) If P(s) holds for some sequence s, then P(hx i � s) holds also:

8 x : X ; s : seqX � P(s)) P(hx i � s):

A third way of building up sequences is to start with the empty sequence hi
and singleton sequences hx i, and to obtain longer sequences by concatenating
shorter ones. So to prove 8 s : seqX � P(s), it is enough to prove that

(b1) P(hi) holds.

(b2) P(hx i) holds for all x : X .

(b3) If P(s) and P(t) hold, so does P(s � t):

8 s; t : seqX � P(s) ^ P(t)) P(s � t):

Although, on the face of it, proofs in this style are more long-winded because
there are three cases instead of two, in practice it often leads to more elegant
proofs than the �rst one. The sequence operations rev , �, and �= obey laws that
relate their value on s � t to their values on s and t , as do the actions of ran,
and � on sequences, so proofs about them �t naturally into this style, and there
is no need to break the symmetry in favour of the �rst element or the last, as the
other style would require.
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4.6 Bags

Name

bag { Bags
count ; ] { Multiplicity

 { Bag scaling

De�nition

bagX == X �1

[X ]
count : bagX � (X ")
] : bagX � X "

 : � bagX " bagX

8B : bagX �
count B = (� x : X � 0)� B

8 x : X ; B : bagX �
B ] x = count B x

8 n : ; B : bagX ; x : X �
(n 
 B) ] x = n � (B ] x )

Notation

We write �a1; : : : ; an� for the bag fa1 7! k1; : : : ; an 7! kng, where for each i ,
the element ai appears ki times in the list a1, : : : , an . The empty bag �� is a
notation for the empty function � from X to .

Description

bagX is the set of bags or multisets of elements of X . These are collections of
elements of X in which the number of times an element occurs is signi�cant.
The number of times x appears in the bag B is count B x or B ] x . If n is
a natural number, n 
 B is the bag B scaled by a factor of n: any element
appears in it n times as often as it appears in B .

Laws

dom �a1; : : : ; an� = fa1; : : : ; ang

n 
 � � = 0
 B = � �

1
 B = B

(n �m)
 B = n 
 (m 
 B)
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Name

� { Bag membership
v { Sub-bag relation

De�nition

[X ]
� : X # bagX
v : bagX # bagX

8 x : X ; B : bagX �
(x � B , x 2 domB)

8B ;C : bagX �
B v C , (8 x : X � B ] x � C ] x )

Description

The relationship x � B holds exactly if x appears in B a non-zero number
of times. A bag B is a sub-bag of another bag C (B v C ) if each element
occurs in B no more often than it occurs in C .

Laws

x � B , B ] x > 0

B v C ) domB � domC

� � v B

B v B

B v C ^ C v B ) B = C

B v C ^ C v D ) B v D
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Name

] { Bag union
! { Bag di�erence

De�nition

[X ]
] ; ! : bagX � bagX " bagX

8B ;C : bagX ; x : X �
(B ] C ) ] x = B ] x + C ] x ^
(B ! C ) ] x = max fB ] x � C ] x ; 0g

Description

B ]C is the bag union of B and C : the number of times any object appears
in B ]C is the sum of the number of times it appears in B and in C . B !C is
the bag di�erence of B and C : the number of times any object appears in it
is the number of times it appears in B minus the number of times it appears
in C , or zero if that would be negative.

Laws

dom(B ] C ) = domB [ domC

� � ] B = B ] � � = B

B ] C = C ] B

(B ] C ) ]D = B ] (C ]D)

B ! � � = B

� � ! B = � �

(B ] C ) ! C = B

(n +m)
 B = n 
 B ]m 
 B

n � m ) (n �m)
 B = n 
 B !m 
 B

n 
 (B ] C ) = n 
 B ] n 
 C

n 
 (B ! C ) = n 
 B ! n 
 C
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Name

items { Bag of elements of a sequence

De�nition

[X ]
items : seqX " bagX

8 s : seqX ; x : X �
(items s) ] x = #f i : dom s j s(i) = x g

Description

If s is a sequence, items s is the bag in which each element x appears exactly
as often as x appears in s.

Laws

dom(items s) = ran s

items ha1; : : : ; ani = �a1; : : : ; an�

items(s � t) = items s ] items t

items s = items t ,
(9 f : dom s � dom t � s = t � f )



CHAPTER 5

Sequential Systems

The Z language described in Chapter 3 is a system of notation for building
structured mathematical theories, and the library of de�nitions in Chapter 4
provides a vocabulary for that language; but neither has any necessary connection
with computer programming. Even the most complex Z speci�cation is, from
one point of view, nothing more than a mathematical theory with a certain
structure. This chapter explains the conventions which allow us to use these
structured mathematical theories to describe computer programs. It concentrates
on sequential, imperative programming, explaining how schemas describe the
state space and operations of abstract data types. It also explains rules for
proving that one abstract data type is implemented by another.

5.1 States and operations

An abstract data type consists of a set of states, called the state space, a non-
empty set of initial states, and a number of operations. Each operation has
certain input and output variables, and is speci�ed by a relationship between the
input and output variables and a pair of states, one representing the state before
execution of the operation, and the other representing the state afterwards.

In Z, the set of states of an abstract data type is speci�ed by a schema,
usually with the same name as the data type itself. By convention, none of the
components of the state space schema has any decoration. As an example, the
following schema de�nes the state space of a simple counter with a current value
and a limit:

Counter
value; limit : 

value � limit

128
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Here the state space is the set fCounter � �Counter g of bindings having two
components value and limit with 0 � value � limit . All states of the system obey
this invariant relationship documented by the declaration of value and limit and
by the predicate part of the schema.

The set of initial states of an abstract data type is speci�ed by another schema
with the same signature as the state space schema. The abstract data type may
start in any one of the initial states; often there is only one of them. Here is a
schema describing an initial state for the counter:

InitCounter
Counter

value = 0
limit = 100

For a speci�cation to describe a genuine abstract data type, there must be at
least one possible initial state. In the example, this is expressed by the theorem

9Counter � InitCounter :

The operations of an abstract data type are speci�ed by schemas which have
all the components of both State and State 0, where State is the schema describing
the state space. The state of the abstract data type before the operation is
modelled by the undashed components of its schema, and the state afterwards is
modelled by the components decorated with a dash. As an example, here is an
operation which increments the value of the counter by one:

Inc
Counter
Counter 0

value 0 = value + 1
limit 0 = limit

Because of the meaning of schema inclusion (see Section 3.4), the properties of
Counter and Counter 0 are implicitly part of the property of this schema: it is
implicitly part of the speci�cation of the operation that the invariant relationship
holds before and after it.

The property of this schema is a relationship between the state before the
operation and the state after it: this relationship holds when the invariant is
satis�ed by both these states, and they are related by the two predicates in
the body of Inc. Here is how this relationship can be understood as specifying
a program. Think of a state before the operation is executed; if the state is
related to at least one possible state after the operation, then the operation
must terminate successfully, and the state after the operation must be one of
those related to the state before it. If the predicate relates the state before
the operation to no possible state afterwards, then nothing is guaranteed: the
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operation may fail to terminate, may terminate abnormally, or may terminate
successfully in any state at all.

The pre-condition of an operation holds of exactly those states before the
operation that are related to at least one possible state after it. If Op is a
schema describing an operation on a state space State, then pre Op is a schema
describing its pre-condition: if Op has no inputs or outputs, pre Op is equivalent
to the schema

9 State 0 � Op:

This has the same signature as State, but its property is the pre-condition of the
operation Op. The pre-condition schema pre Inc of the operation Inc is

Counter

9Counter 0 �
value 0 = value + 1 ^
limit 0 = limit

The state after the operation is implicitly required to satisfy the invariant, and
the predicate in this schema is logically equivalent to

9 value 0; limit 0 :  j value 0 � limit 0 �
value 0 = value + 1 ^ limit 0 = limit ;

or to value + 1 � limit . This means that value must be strictly less than limit
for the success of Inc to be guaranteed. It is a useful check on the accuracy of a
speci�cation to make such implicit pre-conditions explicit and check them against
the expected pre-condition. Also, the state before the operation is required to
satisfy the invariant: the speci�cation of Inc implicitly includes the fact that Inc
need not behave properly if started in an invalid state.

As well as states before and after execution, operations can have inputs and
outputs. The inputs are modelled by components of the schema decorated with ?,
and the outputs by components decorated with !. Here is an operation which
adds its input to the value of the counter, and outputs the new value:

Add
Counter
Counter 0

jump? : 
new value! : 

value 0 = value + jump?
limit 0 = limit
new value! = value 0

This operation is guaranteed to terminate successfully, provided the state before
execution and the input satisfy the implicit pre-condition that value + jump? �
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limit . If this pre-condition is satis�ed, then the state after execution and the
output will satisfy the relationship speci�ed in the body of the schema.

The schema operator `pre' is also de�ned for operations with inputs and out-
puts. If Op has the input x? : X and the output y ! : Y , then pre Op is the
schema

9 State 0; y ! : Y � Op

whose components are the state variables from State, together with the input x?.
The pre-condition pre Add schema for Add is the schema

Counter
jump? : 

9Counter 0; new value! :  �
value 0 = value + jump?
limit 0 = limit
new value! = value 0

The predicate part of this schema is logically equivalent to value+jump? � limit .
Both the operations Inc and Add have the property that the state after

the operation and the output are completely determined by the state before
the operation and the input, but this need not be the case. It is possible to
specify non-deterministic operations, in which the state before the operation
and the input determine a range of possible outputs and states after the opera-
tion. Non-deterministic operations are important because they sometimes allow
speci�cations to be made simpler and more abstract.

5.2 The � and � conventions

Operations on data types are speci�ed by schemas which have two copies of the
state variables among their components: an undecorated set corresponding to the
state of the data type before the operation, and a dashed set corresponding to the
state after the operation. To make it more convenient to declare these variables,
there is a convention that whenever a schema State is introduced as the state
space of an abstract data type, the schema �State is implicitly de�ned as the
combination of State and State 0, unless a di�erent de�nition is made explicitly:

�State
State
State 0

With this de�nition, each operation on the data type can be speci�ed by ex-
tending �State with declarations of the inputs and outputs of the operation and
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predicates giving the pre-condition and post-condition.
The character � is just a letter in the name of this schema, and the implicit

de�nition of �State is no more than a convention. In many speci�cations, a
di�erent de�nition is given to �State: for example, the state of the data type
may contain a count of the number of operations performed so far, and the fact
that it is incremented at each operation could be made part of �State, rather
than repeating it for each operation speci�ed.

Generic schemas may be used with � too; if the schema State has, say, two
generic parameters, then so does �State, and it is implicitly de�ned as follows:

�State[X ;Y ]
State[X ;Y ]
State 0[X ;Y ]

As before, the speci�er is free to de�ne �State in any other way, and even with
a di�erent number of generic parameters. In the default de�nition shown here,
the formal parameters X and Y have been used, but they may clash with other
names used in the speci�cation; if this happens, the de�nition of �State uses
other identi�ers that do not appear elsewhere.

Many data types have operations which access information in the state with-
out changing the state at all. This fact can be recorded by including the equation
�State = �State 0 in the post-condition of the operation, but it is convenient to
have a special schema �State on which these access operations can be built.
Like �State, the schema �State is implicitly de�ned whenever a schema State is
introduced as the state space of a data type:

�State
State
State 0

�State = �State 0

Again, this de�nition may be overridden by an explicit de�nition of �State: if,
for example, a record were being kept of the number of operations performed on
the system, �State might say that no part of the state changed except the count.

Like �, the � symbol may also be used with generic schemas; if State has
two parameters, then the implicit de�nition of �State is as follows:

�State[X ;Y ]
State[X ;Y ]
State 0[X ;Y ]

�State = �State 0
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5.3 Loose speci�cations

The schemas which de�ne the state space and operations of an abstract data
type may refer to global variables of the speci�cation, and (as discussed in Sec-
tion 2.3.2) there may be more than one binding of these variables that satis�es
the global property of the speci�cation. In other words, the predicates which
constrain the global variables may not completely �x their values. We call speci-
�cations in which this happens loose speci�cations. The same kind of thing occurs
with speci�cations which introduce new basic types by the mechanism described
in Section 3.2.1, because the speci�cation does not �x what objects are members
of the basic types.

There are several circumstances where loose speci�cations and new basic types
are useful:

� The speci�cation may describe in detail only some aspects of a system, but
need to mention other things not speci�ed in detail. For example, a text
editor needs to deal with characters, and it might treat blanks specially; but
the speci�cation need not say precisely what characters there are, except that
one of them is the blank character.

� There may be constants of a system which must be chosen by the implementor.
For example, a �ling system may encode its directory information in data
blocks, and this encoding must be constant, but it can be chosen by the
implementor of the �ling system.

� There may be parameters of a system chosen when the system is con�gured.
For example, an operating system may run on machine con�gurations with
any number of disk drives, and the implementor must allow the number to
be chosen when the operating system is con�gured.

Whatever use is made of loose speci�cations, they provide a way to describe
a family of abstract data types. Each binding of global variables that satis�es
the global property of the speci�cation identi�es one member of the family. In
some cases it is up to the implementor to choose a member of the family and
implement it; in other cases, the choice is forced by information outside the formal
speci�cation; and sometimes all the members of the family must be implemented,
so that one of them can be chosen later. In all these cases, the formal speci�cation
describes the range of members in the family, but the way the choice is made is
outside its scope.
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5.4 Sequential composition and piping

If Op1 and Op2 are schemas describing two operations, then Op1 � Op2 is a
schema which describes their sequential composition. For it to be de�ned, each
dashed component of Op1 must match in type any undashed component of Op2
that matches it in name, and any other components, including inputs, outputs,
and unmatched state variables, shared by Op1 and Op2 must have the same types
in both of them. The components of Op1 � Op2 are the merged components of
Op1 and Op2, with the matching state variables hidden. The formal de�nition
of Op1 � Op2 is given on page 78.

Some care is needed in the case of non-deterministic operations, for the mean-
ing of Op1 � Op2 then di�ers from the meaning that would be natural in a pro-
gramming language, in that its pre-condition is more liberal. In Op1 � Op2, the
state in which Op1 �nishes is chosen, if possible, to satisfy the pre-condition of
Op2, so the pre-condition of Op1 � Op2 requires only the existence of a possible
intermediate state. In programming, the pre-condition would require that every
possible state after Op1 should satisfy the pre-condition of Op2. The speci�-
cation Op1 � Op2 is correctly implemented by the program `Op1; Op2' if the
following su�cient condition holds:

8 State 00 �
(9Op1 � �State 0 = �State 00)
) (9Op2 � �State = �State 00):

This condition says that any state in which Op1 may �nish satis�es the pre-
condition of Op2.

If Op1 and Op2 share any outputs, Op1 � Op2 speci�es that the same values
should be produced as output by both operations; there is no direct way of
achieving this in a program.

Returning to the example of the counter, Inc � Inc describes an operation
which adds 2 to the value of the counter. The operation Inc � Add adds to the
counter one more than its input, producing the new value as output. It is the
schema

�Counter
jump? : 
new value! : 

value 0 = value + jump? + 1
limit 0 = limit
new value! = value 0

In contrast, Add � Inc has the same e�ect, but its output is one less than the
�nal value of the counter:



5.5 Operation re�nement 135

�Counter
jump? : 
new value! : 

value 0 = value + jump? + 1
limit 0 = limit
new value! = value + jump?

This is because the output now comes from the �rst of the two operations, and
is produced before the �nal increment.

The piping operator >> is useful for describing operations that have an almost
independent e�ect on two disjoint sets of state variables. In Op1 >> Op2, the
outputs of Op1 (i.e. the components decorated with !) are matched with the
inputs of Op2 (decorated with ?) and hidden, but the other components are
merged as they would be in Op1 ^ Op2.

An example is the operation AddSquare which inputs a number and adds its
square to the value of the counter, producing the new value as output. Here is
an operation with no state variables that squares its input:

Square
x?; y ! : 

y ! = x? � x?

The whole operation AddSquare is de�ned by

AddSquare b= Square >> Add [y?=jump?]:

Renaming has been used to make the output of Square match the input of Add .
The schema AddSquare is equivalent to

�Counter
x? : 
new value! : 

value 0 = value + x? � x?
limit 0 = limit
new value! = value 0

5.5 Operation re�nement

When a program is developed from a speci�cation, two sorts of design decision
usually need to be taken: the operations described by predicates in the speci�ca-
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tion must be implemented by algorithms expressed in a programming language,
and the data described by mathematical data types in the speci�cation must be
implemented by data structures of the programming language.

This section contains the rules for simple operation re�nement. This allows
us to show that one operation is a correct implementation of another operation
with the same state space, when both operations are speci�ed by schemas. This
is the simplest kind of re�nement of one operation by another, and it needs to be
extended in two directions to make it generally useful in program development.
One of these directions, the introduction of programming language constructs, is
outside the scope of this book. The other direction, data re�nement, by which
computer-oriented data structures can be introduced, is the subject of Section 5.6.

If a concrete operation Cop is an operation re�nement of an abstract operation
Aop, there are two ways they can di�er. The pre-condition of Cop may be more
liberal than the pre-condition of Aop, so that Cop is guaranteed to terminate for
more states than is Aop. Also, Cop may be more deterministic than Aop, in that
for some states before the operation, the range of possible states afterwards may
be smaller. But Cop must be guaranteed to terminate whenever Aop is, and if
Aop is guaranteed to terminate, then every state which Cop might produce must
be one of those which Aop might produce.

Here is the �rst of these conditions expressed as a predicate. The schema State
is the state space of the abstract data type, and Aop and Cop are operations with
an input x? : X and an output y ! : Y :

8 State; x? : X � pre Aop ) pre Cop:

This predicate uses the pre-condition operator `pre', but it can also be expressed
directly in terms of the existential quanti�er 9:

8 State; x? : X �
(9State 0; y ! : Y � Aop)) (9 State 0; y ! : Y � Cop):

If the pre-condition of Aop is satis�ed, then every result which Cop might produce
must be a possible result of Aop. This is expressed by the following predicate:

8 State; State 0; x? : X ; y ! : Y �
pre Aop ^ Cop ) Aop:

Again this can be expressed without using `pre':

8 State; x? : X �
(9State 0; y ! : Y � Aop)
) (8 State 0; y ! : Y � Cop ) Aop):

If these two conditions are satis�ed, then the concrete operation is suitable for all
purposes for which the abstract operation was suitable. If the abstract operation
could be relied upon to terminate, then so can the concrete operation. This is the
content of the �rst condition. Also, if the abstract operation could be relied on
to produce a state after execution which had a certain property, then so can the
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concrete operation, because the second condition guarantees that all the states
which might be reached by the concrete operation can also be reached by the
abstract operation.

5.6 Data re�nement

Data re�nement extends operation re�nement by allowing the state space of the
concrete operations to be di�erent from the state space of the abstract operations.
It allows the mathematical data types of a speci�cation to be replaced by more
computer-oriented data types in a design.

A step of data re�nement relates an abstract data type, the speci�cation, to a
concrete data type, the design. In fact, the concrete data type is another abstract
data type, in the sense that it consists of a state space and some operations
described by schemas. In this section, we shall call the state space of the abstract
data type Astate, and the state space of the concrete data type Cstate. These
state space schemas must not have any components in common. We shall use the
names Aop and Cop to refer to an operation on the abstract state space, and the
corresponding operation which implements it on the concrete data space. These
operations have input x? : X and output y ! : Y .

In order to prove that the concrete data type correctly implements the ab-
stract data type, we must explain which concrete states represent which ab-
stract states. This is done with an abstraction schema, which we shall call Abs.
This schema relates abstract and concrete states: it has the same signature as
Astate ^ Cstate, and its property holds if the concrete state is one of those which
represent the abstract state. It is quite usual for one abstract state to be repre-
sented by many concrete states. As an example, �nite sets can be represented by
sequences in which the order of elements does not matter; in this representation,
a set of size n can be represented by any one of n factorial di�erent sequences
with the elements in di�erent orders.

It is also possible for several abstract states to be represented by the same
concrete state; this can happen if the abstract state contains information which
cannot be extracted by any of the operations on the abstract data type. However,
a simpler set of rules applies to the case where each concrete state represents a
unique abstract state: this simpler set is listed in the last part of this section.
It is not necessary for every abstract state to be represented, but only enough
of them that one possible result of each execution of an operation on the type is
represented. This means that abstract states which can never be reached using
the operations need not be represented.

For each operation of an abstract data type, there are two conditions which
must be satis�ed for a data re�nement to be correct, and they are analogues of
the two conditions of operation re�nement. The �rst condition ensures that the
concrete operation terminates whenever the abstract operation is guaranteed to
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terminate. If an abstract state and a concrete state are related by the abstraction
schema Abs, and the abstract state satis�es the pre-condition of the abstract
operation, then the concrete state must satisfy the pre-condition of the concrete
operation. In symbols:

8Astate; Cstate; x? : X �
pre Aop ^ Abs ) pre Cop:

The second condition ensures that the state after the concrete operation repre-
sents one of those abstract states in which the abstract operation could terminate.
If an abstract state and a concrete state are related by Abs, and both the abstract
and concrete operations are guaranteed to terminate, then every possible state
after the concrete operation must be related by Abs 0 to a possible state after the
abstract operation. In symbols:

8Astate; Cstate; Cstate 0; x? : X ; y ! : Y �
pre Aop ^ Abs ^ Cop ) (9Astate 0 � Abs 0 ^ Aop):

These two conditions should be proved for each operation on the data types.
Another condition relates the initial states of the abstract and concrete types.

Each possible initial state of the concrete type must represent a possible initial
state of the abstract type. In symbols:

8Cstate �
Cinit ) (9Astate � Ainit ^ Abs):

Example

Chapter 1 contains an example of data re�nement in which the birthday-book
speci�cation is implemented using an array of names and an array of dates. The
abstraction schema relates the abstract state space BirthdayBook to the concrete
state space BirthdayBook1, and is de�ned like this:

Abs
BirthdayBook
BirthdayBook1

known = f i : 1 : : hwm � names(i) g

8 i : 1 : : hwm �
birthday(names(i)) = dates(i)

To show that AddBirthday1 correctly implements the AddBirthday operation,
we need to prove that its pre-condition is liberal enough, and that it produces
the right answer. For the pre-condition, we need to show

8BirthdayBook ; BirthdayBook1; name? : NAME ; date? : DATE �
pre AddBirthday ^ Abs ) pre AddBirthday1:
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This formula can be simpli�ed by substituting the actual pre-conditions

name? =2 known

for pre AddBirthday and

8 i : 1 : : hwm � name? 6= names(i)

for pre AddBirthday1, and replacing Abs by the weaker condition

known = f i : 1 : : hwm � names(i) g:

This gives

8BirthdayBook ; BirthdayBook1; name? : NAME ; date? : DATE �
name? =2 known ^
known = f i : 1 : : hwm � names(i) g
) (8 i : 1 : : hwm � name? 6= names(i));

exactly the fact that is proved by the calculation in Chapter 1. To show that the
result of AddBirthday1 is right, we must prove

8BirthdayBook ; BirthdayBook1;
BirthdayBook10; name? : NAME ; date? : DATE �

pre AddBirthday ^ Abs ^ AddBirthday1
) (9BirthdayBook 0 � Abs 0 ^ AddBirthday):

This formula contains an inconvenient existential quanti�er, but it can be elimi-
nated using the `one-point rule', that the predicate

(9 x : X � x = E ^ : : : x : : :)

is logically equivalent to the predicate obtained by deleting the quanti�er and
the de�ning equation for x , and substituting E for x in what remains. This rule
applies to both the variables known 0 and birthday 0 of BirthdayBook 0, because
AddBirthday contains the equation

birthday 0 = birthday [ fname? 7! date?g;

and BirthdayBook 0 itself contains the equation

known 0 = dom birthday 0:

After expanding Abs and AddBirthday , applying the one-point rule and making
the substitutions for birthday 0 and known 0, the last line of the correctness formula
becomes

dom(birthday [ fname? 7! date?g) = f i : 1 : : hwm 0 � names 0(i) g ^
(8 i : 1 : : hwm 0 � birthday 0(names 0(i)) = dates 0(i)) ^
name? =2 known:

The three conjuncts in this formula can be proved using facts from the hypotheses
pre AddBirthday , Abs, and AddBirthday1; but it is easier to exploit the fact that
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Abs de�nes a total function from concrete to abstract states, and use the rules
in the next section.

5.7 Functional data re�nement

A simpler set of conditions can be used if the abstraction schema, when viewed
as a relation between concrete states and abstract states, is a total function. This
property of Abs is expressed by the predicate

8Cstate � 9
1
Astate � Abs:

The �rst condition on each operation is the same as before:

8Astate; Cstate; x? : X �
pre Aop ^ Abs ) pre Cop:

The existential quanti�er in the second condition can be avoided; the condition
simpli�es to

8Astate; Astate 0; Cstate; Cstate 0; x? : X ; y ! : Y �
pre Aop ^ Abs ^ Cop ^ Abs 0 ) Aop:

The condition on initial states can also be simpli�ed to avoid the existential
quanti�er:

8Astate; Cstate � Cinit ^ Abs ) Ainit :

These simpli�ed conditions are equivalent to the general ones if the abstraction
schema is a total function. Their advantage is that the proof that Abs is func-
tional need be done only once for the whole data type, and this work does not
have to be repeated for each operation.

Example

In the birthday book example, the abstraction schema is in fact functional, be-
cause it directly de�nes known, the domain of the birthday function, and also
gives the value of birthday at each point of its domain. So instead of proving
the second condition for the correctness of AddBirthday given in Section 5.6, it
is enough to prove the simpler condition

8BirthdayBook ; BirthdayBook 0; BirthdayBook1;
BirthdayBook10; name? : NAME ; date? : DATE �

pre AddBirthday ^ Abs ^ AddBirthday1 ^ Abs 0

) AddBirthday :
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Expanding the schemas, substituting pre-conditions and simplifying slightly
gives the formula

8BirthdayBook ; BirthdayBook 0; BirthdayBook1;
BirthdayBook10; name? : NAME ; date? : DATE �

name? =2 known ^
known = f i : 1 : : hwm � names(i) g ^
(8 i : 1 : : hwm � birthday(names(i)) = dates(i)) ^
hwm 0 = hwm + 1 ^
names 0 = names � fhwm 0 7! name?g ^
dates 0 = dates � fhwm 0 7! date?g ^
known 0 = f i : 1 : : hwm 0 � names 0(i) g ^
(8 i : 1 : : hwm � birthday 0(names 0(i)) = dates 0(i))
) birthday 0 = birthday [ fname? 7! date?g:

This is, in all its detail, exactly the result proved by the calculation in Chapter 1.



CHAPTER 6

Syntax Summary

This syntax summary supplements the syntax rules in Chapter 3 by making
precise the binding powers of various constructs and collecting all the rules in
one place.

The same conventions about repeated and optional phrases are used here as
in Chapter 3; S; : : : ; S stands for a list of one or more instances of the class
S separated by commas, and S; : : : ; S stands for one or more instances of S

separated by semicolons. The notation S : : : S stands for one or more adjacent
instances of S with no separators. Phrases enclosed in slanted square brackets
are optional.

The possibility of eliding semicolons which separate items both above and
below the line in the three kinds of boxes has been made explicit here; these
items are separated by instances of the class Sep, which may be either semicolons
or newlines (NL). The rule given in Section 3.1.3 which allows extra newlines to
be inserted before or after certain symbols is not made explicit in the grammar,
however.

Certain collections of symbols have a range of binding powers: they are
the logical connectives, used in predicates and schema expressions, the special-
purpose schema operators, and in�x function symbols, used in expressions. The
relative binding powers of the logical connectives are indicated by listing them in
decreasing order of binding power; the binding powers of in�x function symbols
are given in Section 3.1.2. Each production for which a binding power is rele-
vant has been marked with an upper case letter at the right margin; `L' marks a
symbol which associates to the left { so A ^ B ^ C means (A ^ B) ^ C { and
`R' marks a symbol which associates to the right. Unary symbols are marked
with `U'.

142
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Speci�cation ::= Paragraph NL : : : NL Paragraph

Paragraph ::= [Ident; : : : ; Ident]
j Axiomatic-Box

j Schema-Box

j Generic-Box

j Schema-Name [Gen-Formals] b= Schema-Exp

j Def-Lhs == Expression

j Ident ::= Branch j : : : j Branch
j Predicate

Axiomatic-Box ::=
Decl-Part

[
Axiom-Part ]

Schema-Box ::=

Schema-Name [Gen-Formals]
Decl-Part

[
Axiom-Part ]

Generic-Box ::=

[Gen-Formals]
Decl-Part

[
Axiom-Part ]

Decl-Part ::= Basic-Decl Sep : : : Sep Basic-Decl

Axiom-Part ::= Predicate Sep : : : Sep Predicate

Sep ::= ; j NL

Def-Lhs ::= Var-Name [Gen-Formals]
j Pre-Gen Decoration Ident

j Ident In-Gen Decoration Ident

Branch ::= Ident

j Var-Name�Expression�

Schema-Exp ::= 8 Schema-Text � Schema-Exp

j 9 Schema-Text � Schema-Exp

j 9
1
Schema-Text � Schema-Exp

j Schema-Exp-1
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Schema-Exp-1 ::= [Schema-Text]
j Schema-Ref

j : Schema-Exp-1 U
j pre Schema-Exp-1 U
j Schema-Exp-1 ^ Schema-Exp-1 L
j Schema-Exp-1 _ Schema-Exp-1 L
j Schema-Exp-1 ) Schema-Exp-1 R
j Schema-Exp-1 , Schema-Exp-1 L
j Schema-Exp-1 � Schema-Exp-1 L
j Schema-Exp-1 n (Decl-Name; : : : ;Decl-Name) L
j Schema-Exp-1 � Schema-Exp-1 L
j Schema-Exp-1 >> Schema-Exp-1 L
j (Schema-Exp)

Schema-Text ::= Declaration [ j Predicate]

Schema-Ref ::= Schema-Name Decoration [Gen-Actuals] [Renaming]

Renaming ::= [Decl-Name=Decl-Name; : : : ;Decl-Name=Decl-Name]

Declaration ::= Basic-Decl; : : : ; Basic-Decl

Basic-Decl ::= Decl-Name; : : : ;Decl-Name : Expression
j Schema-Ref

Predicate ::= 8 Schema-Text � Predicate
j 9 Schema-Text � Predicate
j 9

1
Schema-Text � Predicate

j let Let-Def; : : : ; Let-Def � Predicate
j Predicate-1

Predicate-1 ::= Expression Rel Expression Rel : : : Rel Expression
j Pre-Rel Decoration Expression

j Schema-Ref

j pre Schema-Ref

j true
j false
j : Predicate-1 U
j Predicate-1 ^ Predicate-1 L
j Predicate-1 _ Predicate-1 L
j Predicate-1) Predicate-1 R
j Predicate-1, Predicate-1 L
j (Predicate)

Rel ::= = j 2 j In-Rel Decoration

Let-Def ::= Var-Name == Expression
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Expression-0 ::= �Schema-Text � Expression
j �Schema-Text [ � Expression]
j let Let-Def; : : : ; Let-Def � Expression
j Expression

Expression ::= if Predicate then Expression else Expression

j Expression-1

Expression-1 ::= Expression-1 In-Gen Decoration Expression-1 R
j Expression-2 � Expression-2 � : : :� Expression-2

j Expression-2

Expression-2 ::= Expression-2 In-Fun Decoration Expression-2 L
j �Expression-4
j Pre-Gen Decoration Expression-4

j � Decoration Expression-4

j Expression-4 � Expression-0 � Decoration
j Expression-3

Expression-3 ::= Expression-3 Expression-4

j Expression-4

Expression-4 ::= Var-Name [Gen-Actuals]
j Number

j Schema-Ref

j Set-Exp

j h [ Expression; : : : ;Expression] i
j � [ Expression; : : : ;Expression] �
j (Expression;Expression; : : : ;Expression)
j � Schema-Name Decoration [Renaming]
j Expression-4 : Var-Name

j Expression-4 Post-Fun Decoration

j Expression-4Expression

j (Expression-0)

Note: The syntax of set expressions (Set-Exp) is ambiguous: if S is a schema,
the expression f S g may be either a (singleton) set display or a set comprehen-
sion, equivalent to f S � �S g. The expression should be interpreted as a set
comprehension; the set display can be written f(S )g.

Set-Exp ::= f [ Expression; : : : ;Expression] g
j f Schema-Text [ � Expression] g

Ident ::= Word Decoration

Decl-Name ::= Ident j Op-Name

Var-Name ::= Ident j (Op-Name)
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Op-Name ::= In-Sym Decoration

j Pre-Sym Decoration

j Post-Sym Decoration

j � � Decoration
j � Decoration

In-Sym ::= In-Fun j In-Gen j In-Rel

Pre-Sym ::= Pre-Gen j Pre-Rel

Post-Sym ::= Post-Fun

Decoration ::= [ Stroke : : : Stroke]

Gen-Formals ::= [Ident; : : : ; Ident]

Gen-Actuals ::= [Expression; : : : ;Expression]

Here is a list of the classes of terminal symbols used in the grammar:

Word { Undecorated name or special symbol
Stroke { Single decoration: 0, ?, ! or a subscript digit
Schema-Name { Same as Word, but used to name a schema
In-Fun { In�x function symbol
In-Rel { In�x relation symbol (or underlined identi�er)
In-Gen { In�x generic symbol
Pre-Rel { Pre�x relation symbol
Pre-Gen { Pre�x generic symbol
Post-Fun { Post�x function symbol
Number { Unsigned decimal integer

The brilliant, articulate, white-eyelashed Mr. Zed turns his eyes to his wife and
sees nothing but Tx1=4 p3=4 = 1=2� prx1=4 (inverted).

Mervyn Peake, Titus Alone



Changes from the �rst edition

The following are the substantive di�erences between the Z notation and math-
ematical tool-kit described in the �rst and second editions:

1. Renaming of schema components has been added (Section 2.2.2).

2. An ordinary identi�er may now be used as an in�x relation symbol by under-
lining it (Section 3.1.2).

3. Decorations can be empty, so the decoration after � is no longer optional
(Section 3.6).

4. The `quanti�er' let for both expressions (Section 3.6) and predicates (Sec-
tion 3.7) has been added.

5. Conditional expressions if P then E1 else E2 have been added (Section 3.6).

6. The piping operator >> on schemas has been added. The de�nition of sequen-
tial composition now allows state variables that do not match (Section 3.8).

7. The overriding operator � has been extended to apply to relations, not just
functions (Section 4.2).

8. The extraction operator  and the squash function on sequences have been
added. Also the subsequence relations pre�x, su�x and in (Section 4.5).

9. A new in�x operator ] is a synonym for count on bags. The membership
relation for bags is now �. Other new bag operators are v, 
 and !
(Section 4.6).

10. � and � may now be used with generic schemas, and the de�nition of
�State no longer uses �State, in case �State is rede�ned but �State isn't
(Section 5.2).

11. The syntax has been extended to allow decorations after in�x operators, etc.
(Chapter 6).
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12. The forms Expression-4 Post-Fun and Expression-4Expression are now alternatives
for Expression-4 rather than Expression-1 (Chapter 6).

The following major changes in exposition will a�ect the use of the manual as a
text:

1. `Situations' have been eliminated in favour of `bindings' as the structures
with respect to which the values of expressions and the truth of predicates
are de�ned (Chapter 2).

2. The term `�nitary construction' in the description of free types now has
something more like its usual meaning (Section 3.10).

3. Chapter 5 now explains the rules for data re�nement in terms of the examples
from Chapter 1.



Glossary

abstract data type A state space, together with an initial state and a number
of operations. In Z, these are all described using schemas. (p. 128)

abstraction schema In data re�nement, a schema which documents the rela-
tionship between the abstract and concrete state spaces. (p. 137)

basic type A named type denoting a set of objects regarded as atomic in a
speci�cation. (p. 25)

binding An object with one or more components named by identi�ers. Bindings
are the elements of schema types. (p. 26)

carrier The carrier of a type is the set of all the values that can be taken by
expressions with that type. (p. 24)

Cartesian product type A type t1 � t2 � � � � � tn containing ordered n-tuples
(x1; x2; : : : ; xn) of objects drawn from n other types. (p. 25)

characteristic tuple The pattern, derived from the declaration D , for elements
of a set comprehension fD j P g that contains no explicit expression. Charac-
teristic tuples are also used in the de�nition of lambda- and mu-expressions.
(p. 52)

component The components of a schema are the variables that are declared in
its signature. (p. 29)

constraint A declaration may require that the values of the variables it intro-
duces should satisfy a certain property. This property is the constraint of the
declaration. (p. 29)

data re�nement The process of showing that one set of operations is imple-
mented by another set operating on a di�erent state space. Data re�nement
allows the mathematical data types of a speci�cation to be replaced in a
design by more computer-oriented data types. (p. 136)
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de�nition before use The principle that the �rst occurrence of a name in a
speci�cation must be its de�nition. (p. 47)

derived component A component of a schema describing the state space of an
abstract data type whose value can be deduced from the values of the other
components. (p. 3)

extension One binding z is an extension of another binding z1 if and only if z1
is a restriction of z to a smaller signature. (p. 32)

�nitary construction A construction E [T ] such that any element of E [T ] is
also an element of E [V ] for some �nite V � T . Finitary constructions
may be used on the right-hand side of a free type de�nition without danger
of inconsistency. Many constructions which involve only �nite objects are
�nitary. (p. 84)

global signature A signature that contains all the global variables of a speci�-
cation with their types. (p. 37)

graph The set of ordered pairs of objects for which a binary relation holds. In
Z, relations are modelled by their graphs. (p. 27)

implicit pre-condition A pre-condition of an operation which is not explicitly
stated in its speci�cation, but is implicitly part of the post-condition or of
the invariant on the �nal state. (p. 130)

join Two type compatible signatures can be joined to form a signature that has
all the variables of each of the original ones, with the same types. (p. 31)

local variable A variable is local to a certain textual region of a speci�cation
if that region contains the whole scope of some declaration of the variable.
(p. 35)

logically equivalent Two predicates are logically equivalent if they express the
same property; that is, if they are true under exactly the same bindings.
(p. 29)

loose speci�cation A speci�cation in which the values of global variables are
not completely determined by the predicates which constrain them. (p. 133)

monotonic function A function f : �X "�Y with the property that f (S ) �
f (T ) if S � T . (p. 104)

non-deterministic An operation in an abstract data type is non-deterministic
if there may be more than one possible state after execution of the operation
for a single state before it. (p. 131)

operation re�nement The process of showing that one operation is imple-
mented by another with the same state space. In its general form, this al-
lows constructs from a programming language to be introduced into a design.
(p. 136)
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partial function A partial function from a set X to a set Y relates some ele-
ments of X , but not necessarily all of them, each to a unique element of Y .
Compare total functions. (p. 27)

partially-de�ned A partially-de�ned expression is one that does not have a
de�ned value in every binding for its signature. (p. 40)

pre-condition The predicate that is true of those inputs and states before an
operation that are related by its post-condition to at least one output and
state after it. (p. 130)

predicate A formula describing a relationship between the values of the variables
in a signature. (p. 28)

property The mathematical relationship expressed by a predicate. A property
is characterized by the set of bindings under which it is true. (p. 28)

restriction The restriction z1 of a binding z for one signature to another sig-
nature is de�ned if the second signature is a sub-signature of the �rst. Each
variable is given the same value in z1 as it has in z , and variables not in the
smaller signature are ignored. (p. 32)

satisfaction A binding satis�es a property or predicate if the property or predi-
cate is true under the binding. (p. 29)

schema A signature together with a property relating the variables of the sig-
nature. (p. 29)

schema type A type 	 p1 : t1; p2 : t2; : : : ; pn : tn 
 containing bindings with
components named p1, p2, : : : , pn drawn from other types. (p. 26)

scope The region of a speci�cation in which a variable refers to a particular
declaration of it. Throughout this region, we say that the variable is in scope.
(p. 35)

scope rules A set of rules which determine what identi�ers may be used at each
point in a speci�cation and what declaration each of them refers to. (p. 34)

sequential composition The sequential composition Op1 � Op2 of two opera-
tion schemas Op1 and Op2 describes a composite operation in which �rst
Op1 then Op2 occurs. (p. 134)

set type A type � t containing the sets of objects drawn from another type t .
(p. 25)

signature A collection of variables, each with a type. (p. 28)

state space The set of states which an abstract data type can have. In Z, the
state space is speci�ed by a schema with the same name as the abstract
data type. None of the components of this schema should have a decoration.
(p. 128)
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sub-signature One signature is a sub-signature of another one if the second
contains all the variables of the �rst, with the same types. (p. 32)

total function A total function from a set X to a set Y relates each element of
X to a unique element of Y . Compare partial functions. (p. 27)

type A type is an expression of a restricted kind that denotes a set. The type
of an expression determines a set which always contains the value of the
expression. There are four kinds of types: basic types, set types, Cartesian
product types, and schema types. (p. 24)

type compatible Two signatures are type compatible if each variable common
to both signatures has the same type in both of them. Many of the operations
on schemas demand that their arguments have type compatible signatures.
(p. 31)
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Entries set in italic type are the names of constants in the mathematical tool-kit. Spe-
cial symbols are indexed here under a descriptive name; the symbol itself is shown in
parentheses. The one-page `Index of symbols' lists all these symbols for ease of reference.
Entries set in sans-serif type are syntactic categories; they refer to the pages where the
syntax rules for the categories may be found.

abbreviation de�nition (==), 50, 80
abstract data type, 128{31
abstraction schema, 137
algebraic laws, ix
anti-restriction (�, �), 99
application, of functions, 60
arithmetic operation, 108
association of in�x symbols, 44
associativity, 43
atomic object, 25
axiomatic description, 48
Axiomatic-Box, 143
Axiom-Part, 143

Backus{Naur Form (BNF), 42
backward composition (�), 97
of functions, 107
on sequences, 120

bag, 124
di�erence (!), 126
display (�: : :�), 66, 124
empty (��), 82, 124
membership (�), 125
scaling (
), 124
union (]), 126

basic type, 25

de�nition, 47
scope rules, 36

Basic-Decl, 51, 144
bijection (�), 105
binding, 26
formation (�), 62

Branch, 82, 143

cardinality (#), 111
Cartesian product (�), 56
as type, 25

characteristic tuple, 52, 58
comparison, numerical, 108
component
of binding, 26
of schema, 29, 36

composition (�), 97 see also backward
composition

concatenation (�), 116
concurrency, 42
conditional expression (if), 64
conjunction (^)
of predicates, 30, 69
of schemas, 32, 75

connective, 69
consistency, of free types, 84{5
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constraint
as paragraph, 48
of declaration, 29, 51

constructor, 82
count , 124

data re�nement, 137{41
Declaration, 51, 144
declaration, 51
contributes to property, 29, 33
scope rules, 52

Decl-Name, 145
Decl-Part, 143
Decoration, 43, 146
decoration, 30{31, 50
standard (0, ?, !), 30

de�nite description (�), 58
de�nition before use, 47, 82, 88
Def-Lhs, 80, 143
Delta convention (�), 4, 131{2
derived component, 3
di�erence (n), 91
disjoint, 122
disjunction (_)
of predicates, 69
of schemas, 33, 75

distributed concatenation (�=), 121
division (div), 108
domain (dom), 96
anti-restriction (�), 99
restriction (�), 98

empty set (�, fg), 81, 82, 90
equality (=), 29, 68, 89
equivalence (,)
of predicates, 69
of schemas, 75

existential quanti�er (9)
for predicates, 30, 70
for schemas, 34, 76

Expression, 54{66, 80, 145
Expression-0, 145
Expression-1, 145
Expression-2, 145
Expression-3, 145
Expression-4, 145
extension, of binding, 32

extraction ( ), 118

false, 29, 67
�ltering (�), 118
�nitary construction, 84
�nite function (�), 112
�nite injection (�), 112
�nite set (�), 111
non-empty (�1), 111

�rst , 93
�xed point, 104
free type
consistency, 84{5
de�nition (::=), 7, 82

front , 117
function, 105
application, 60
as relation, 107, 120
modelled by graph, 27
symbol, 65

Gen-Actuals, 146
generalized intersection (

T
), 92

generalized union (
S
), 92

generic constant, 38, 39, 80
scope rules, 36
uniquely de�ned, 40, 80

generic constructs, 38, 79
generic parameter, 38, 52, 80
implicit, 40, 80

generic schema, 38, 79
Generic-Box, 143
Gen-Formals, 146
given set, 25
global signature, 37
global variable, 36{8
graph, of a function or relation, 27
greatest lower bound, 94, 113

head , 117
hiding operator, 33

Ident, 43, 145
identi�er, 54
identity relation (id), 97
as function, 107

if then else, 64
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implication ())
for predicates, 69
for schemas, 75

in, for sequences, 119
indexed family of sets, 122
induction, proof by, 84, 114, 123
inequality (6=), 89
in�x symbol, 80
In-Fun, 43, 46
In-Gen, 43, 46
injection (�, �), 105
In-Rel, 43, 46
In-Sym, 146
integer (�), 108
as atomic object, 25
strictly positive (1), 109

intersection (\), 91
inversion (R�), 100
items, 127
iteration (Rk , iter), 45, 110

joining signatures, 31
juxtaposition of decorations, 43

lambda-expression (�), 58
last , 117
least upper bound, 94, 113
Let-Def, 144
let-expression (let), 59, 71
local de�nition (let), 59
local variable, 30, 34{8
logical equivalence, 29
loose speci�cation, 38, 133

maplet (7!), 95
maximum (max ), 113
membership (2), 29, 68, 89
minimum (min), 113
minus sign (�), 45
modulo (mod), 108
monotonic function, 104
mu-expression (�), 58

natural number (), 108 see also integer
negation (:)
of predicates, 69
of schemas, 33, 75

newline, 46
non-determinism, 131, 134
non-membership (=2), 89
number range (: :), 109

one-point rule, 139
operation re�nement, 42, 136{7
operator symbol, 43{6, 65
standard, 46

Op-Name, 146
order of paragraphs, 47
ordered pair, 25
overloading, not allowed, viii
overriding (�), 102

Paragraph, 47{50, 79{82, 143
parentheses
required around let, 59
required around � and �, 58
required around operator symbols, 45
used for grouping, 54, 67, 74

partial function (�), 27, 105
partial injection (�), 105
partial order, 94, 119
partial surjection (�), 105
partially-de�ned expression, 40
partition, 122
piping (>>), 78
place-markers for types, 81
Post-Fun, 43, 46
Post-Sym, 146
power set (�), 56
pre-condition, 4, 130
implicit, 130
operator, 72

pre-condition operator (pre), 77
Predicate, 67{73, 144
predicate, 28, 67
as paragraph, 48

Predicate-1, 144
pre�x, for sequences, 119
pre�x symbol, 80
Pre-Gen, 43, 46
Pre-Rel, 43, 46
Pre-Sym, 146
projection function, 93
pronunciation, 146
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property, 28{30

quanti�er, 30, 34, 70

range (ran), 96
anti-restriction (�), 99
on sequences, 120
restriction (�), 98

recursive structure, 82
reexive{transitive closure(R�), 103
Rel, 144
relation (#), 95
modelled by graph, 27
symbol, 73

relation symbol, 44
relational image ( � �), 45, 101
Renaming, 144
renaming, 31
representative, in characteristic tuple, 52
resource management, 38
restriction, 32, 98
reverse (rev), 116

satisfaction, 29
schema, 29{30
de�nition, 49
expression, 49, 74
hiding (n), 76
horizontal (b=), 49
name, 43
projection (�), 76
scope rules, 36, 53
text, 53, 74
type (	: : :
), 26

schema reference, 50
as declaration, 51
as expression, 63
as predicate, 72
as schema expression, 74

Schema-Box, 143
Schema-Exp, 74{8, 143
Schema-Exp-1, 144
Schema-Ref, 50, 79, 144
Schema-Text, 53, 144
scope, nested, 35
scope rules, 34{8
second , 93

segment (in), 119
selection (:), 61
semicolon, elision of, 46, 49
Sep, 143
sequence (seq), 115
as function, 120, 122
display (h: : :i), 66, 115
empty (hi), 82, 115
non-empty (seq1), 115

sequential composition (�), 78, 134
set
comprehension (f j � g), 57, 58
display (f: : :g), 55
subtraction (n), 91
type (�), 25

Set-Exp, 145
signature, 28
size of a set (#), 111
space, not signi�cant, 46
Speci�cation, 143
squash, 118
state space, 128
sub-bag (v), 125
subset (�), 90
non-empty (�1), 90
proper (�), 90, 114

sub-signature, 32
substitution of types, 39, 79
successor function (succ), 109
su�x, for sequences, 119
surjection (�, �), 105
syntactic conventions, 42

tail , 117
Tarski's theorem, 104
total function ("), 27, 105
total injection (�), 105
total surjection (�), 105
training courses, vii
transitive closure (R+), 103
true, 29, 67
tuple ((: : :)), 26, 55
type, 24{7
checking of, 24, 26
compatibility of, 31, 51
constructor, 25
inference, 80, 81
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uni�cation, 81
union ([), 91
unique quanti�er (91)
for predicates, 30, 70
for schemas, 34, 76

universal quanti�er (8)
for predicates, 30, 70

for schemas, 34, 76

Var-Name, 145

Word, 43

Xi convention (�), 5, 132


