A Save Area

Using Z
Woodcock & Davies

A save area

A save area is a module with two operations: save and restore.

Packets of information are stored in a last-in first-out manner:
in this respect, the module behaves as a stack.

Information

The structure of packets of information does not concern us at
this level of abstraction:

[Record]

State

SaveArea
save area : seq Record

InitSaveArea
SaveArea’

save area’ = ()

Save
ASaveArea
record? : Record
Status! : Status

save area’ = save area ~ {(record?)
status! = ok

Question

Should this be a total operation?

SaveFullErr
HSaveArea
status! : Status

status! = full

Save = Savey v SaveFullErr

Restore
ASaveArea
r!: Record
status! : Status

save area + ()
save area = save area ~— (r!)
status! = ok

RestoreEmptyErr
sSaveArea
status! : Status

save area = ()
status! = empty

Restore = Restorey vV RestoreEmptyErr

Operation Precondition
Save Save true
SaveFullErr true
Save true
Restore Restoreg save area *+ ()

RestoreEmptyErr save area = ()

Restore true

Preconditions for the save area

Design

Introduce two levels of memory: main and secondary.

Let n be the number of records that we can save in main
memory:

Question

Save was defined nondeterministically; n has been defined
loosely.

What is the difference?

[X]
bseq : P(seq X)
fseq : P(seq X)

bseqg ={s:seqX |#s<n}
fseq={s:seqX |#s=n}

CSaveArea
main : bseq[Record]
secondary : seq(fseq[Record])

Retrieve
SaveArea
CSaveArea

save area = (~ | secondary) = main

Question

In the first specification, save area is initialised to the empty
sequence. Can you calculate a suitable initialisation for our
new level of design?

CSaveArea’

Question

In the first specification, the Save operation appended a record
to the sequence save area. What should the effect be now, in
terms of main and secondary?

ACSaveArea
record? : Record
status! : Status

Question

Can you use the information from the state invariant to
simplify your answer?

Further design

The main memory storage will be implemented using an array
and a counter:

CSaveAreal

array : Array|[Record |

count :0..n

secondary : seq(fseql|Record])

where

[X]
Array : P(N - X)

Array = (1..n) - X

Retrievel
CSaveArea
CSaveAreal

main = (1 .. count) < array

Question
What should Savey do now?

ACSaveAreal
record? : Record
status! : Status

CCSaveFullErr
2CSaveAreal
status! : Status

status! = full

CCSave = CCSavey v CCSaveFullErr

Refinement to code

We break the CCSavey operation into two disjuncts:

o CCUpdateMM: an operation that updates the main
memory

o CCUpdateSM: an operation that updates the secondary
memory

CCUpdateMM
ACSaveAreal
record? : Record
status! : Status

count < n

count’ = count + 1

arrvay’' = array ® {count + 1 — record?}
secondary’ = secondary

status! = ok

CCUpdateSM
ACSaveAreal
record? : Record
status! : Status

count = n

count’ =1

array’' 1 = record?

secondary’ = secondary ~ (array)
status! = ok

The save operation

A

save = (CSaveAreal, status!: [true, CCSave |

Refinement
| CCUpdateMM]
v
save = (CSaveAreal, status! : CCUpdateSM
v
true , CCSaveFullErr

if count < n —
CSaveAreal, status! : [count < n, CCUpdateMM | [<]
O count = n —
CCUpdateSM

CSaveAreal, status! : v [t]

count = n , CCSaveFullEr

fi

count’ =
count + 1
array’ =
count, array, status! :
array ® {count + 1 — record?}

status! =

count < n , ok

count, array, status! := count + 1, array & {count + 1 — record?}, ok

count, array,

secondary, status! .

| count =n ,

count’ =1 A
array’ 1 = record? A
secondary’ =

secondary ~ (array) A

status! = ok

Y

count’ = count A
arrvay’ = array A
secondary’ = secondary A

status! = full)

if count < n —

count, array, status! := count + 1, array ® {count + 1 — record?}, ok

O count =n —

fi

status! = ok A

secondary’ = secondary ~ (array’)
status!,
v
secondary

| true , status! = full A secondary’ = secondary |
if status! = ok —
count,array := 1,array ® {1 — record?}
O status! = full —
skip
fi

