A File System

A programming interface

We will model the programming interface to a file system. This
is a list of operations upon the file system, complete with a
description of their intended effects.

We will divide the operations into two groups: those that affect
the data within a single file, and those that affect the file
system as a whole.

Using Z

File operations

« read: used to read a piece of data from a file
e write: used to write a piece of data to a file
« add: used to add a new piece of data to a file

o delete: used to delete a piece of data from a file

Using Z 15-4

File system operations

o create: used to create a new file

destroy: used to destroy an existing file

open: used to make a file available for the reading and
writing of data

close: used to make a file unavailable for reading and

writing
5-5 Using Z 15-6
Files (first half of the operations) o
Initialisation
[Key, Data] Filelnit
File’
File

ﬁne:%:a : Key - Data

contents'={}

read

k? € dom contents
d! = contents k?

write

Writeg
AFile
k? : Key
d? : Data

k? € dom contents
contents’ = contents & {k? — d?}

Using Z 15-9 Using Z 15-10
add
delete
Addy
Delete,
AFile 0
k? : Key
d? : Data
Using Z 15-11 Using Z 15-12
KeyNotInUse

Key errors

Report ::= keyInUse | keyNotInUse | okay

KeyError
EFile

k? : Key
r!: Report

A failed operation upon the file state will always
produce a report as output.

KeyError

k? ¢ dom contents
r! = keyNotInUse

Error because the specified key is not in use.

KeyInUse
KeyError

k? € dom contents
r! = keylnUse

Error because the specified key is in use.

Success

Success
r!: Report

r! = okay

Successful operation will always produce a report
of the same value.

A collection of total operations: schemas in which
the state before may be any valid file.

Read = (Ready A Success) v KeyNotInUse

Write = (Writey A Success) vV KeyNotInUse
Add = (Addy A Success) v KeyInUse
(

Delete = (Deletey A Success) v KeyNotInUse

Otherwise (could prove to be an overwhelming task if not
partitioned into smaller pieces)

contents, contents’ : Key -~ Data
k? : Key

d!: Data

r!: Report

(k? € dom contents A
d! = contents k? A
contents’ = contents A
r! = okay)

v

(k? ¢ dom contents A
contents’ = contents A
r! = keyNotIinUse)

Using Z

File system (second half of the operations)

[Name] It's important that the system should not associate the
same name with two different files: file must always be
functional.

System

file : Name — File

open : P Name

open < dom file

open is a set of names of those files currently open

Initialisation

SystemlInit
System’

file' = @

When the file system is initialized, there are no files.
The partial function ‘file' is empty, as is the set 'open.’

As the state invariant insists that every open file is also
recorded in file, it is enough to insist that file = .

Since the state of the file system includes indexed
: copies of File, we may promote the operations defined
Promotion above. The local state is described by File, the global
state is described by System...

__ Promote
ASystem
AFile
n? : Name

n? € open
filen? = OFile
file' = file ® {n? — OFile'}
open’ = open

15-18

File operations

Based on the promotion, we may define the following
four opeations...

KeyRead, = 3 AFile « Read A Promote

KeyWritey = 3 AFile « Write A Promote

KeyAddy = 3 AFile « Add A Promote

KeyDeletey = 3 AFile » Delete A Promote

Although each local operation is total, the file in question may
not be open. The resulting global operations are partial.

File access

_ FileAccess Open and close change the availability of
a file for reading and writing. The
ASystem FileAccess operation leaves the file
n? : Name Function unchanged. The input

—_— component n? describes a file that is
n? € dom file known to the system.

file' = file
A successful open operation adds a name to
the list of open files (strictly partial, and fails if
__Openg the name supplied denotes a file that is
. already open
FileAccess y open)
n? ¢ open

open’ = open U {n?}

Closing a file

Close
FileAccess

n? € open
open’ = open\ {n?}

A successful close operation removes a name from the list
of open files, is strictly partial and will fail if the name
supplied does not denote an open file.

File management

FileManage
ASystem
n? : Name

FileManage is used to describe the
information that is common to both
operations (create, destroy).

open’ = open

Createg
FileManage

Successful create operation adds a
new name to the list of files know to
the system.

3 FileInit
n? ¢ dom file A
file' = file u {n? — OFile'}

Immediately after this operation, the state of the file associated with

name n? is described by the binding to Theta-Filelnit (instead of File').

l.e., n? is associated with a binding of schema type File in which
contents is bound to empty set.

sing Z 15-22

Destroying a file

Destroyy

We may also want to insist that n? is not an element of open, thus
preventing the destruction of open files. However, this condition is
already enforced by the predicate part of FileMange (which insists
that this operation should not affect the list of open files). Acting
in combination with our state invariant ‘open is a subset of dom
file'" Thus, if we cannot remove n? from open, then we cannot
remove n? from the domain of file.

More reports

Report ::= keylnUse | keyNotInUse | okay |
fileExists | fileDoesNoOtEXist |

filelsOpen | filelsNotOpen

Free type of report messages is extended to
take account of the errors that may ocur in file
access ad file management operations.

15-23

15-24

File errors

FileError
ESystem
n? : Name

Information common to each of the error cases.

r!: Report

FileExists
FileError

If we attempt to create a file using a name that
is arelady in use we will receive a report

. complaining that a file with that name exists.
n? € dom file P 9 that at name exists

r! = fileExists

Jsing Z 15-25 Jsing Z 15-26
i . The complete set of definitions for the access and
File system operations management operations using a similar combination of
There are four operations error cases:
involving the contents of R)
files: KeyRead, KeyWrite, Open = (Openy A Success) V FileIsOpen v
A - KeyAdd, and KeyDelete. . .
KeyRead = KeyRead, v [FilelsNotOpen|v wmo: case if :«m file FileDoesNotExist
; ; exists and is open, then N .
ileDoesNotEXxist the effect of %m operation Close = (Closey A Success) v FileIsNotOpen v
KeyWrite = KeyWritey v FilelsNotOpen|v 1S describedbya FileDoesNotExist
promoted file operation.
FileDoesNotEXist Create = (Createg A Success) V
KeyAdd = KeyAdd, v |FileIsNotOpen|Vv FileEXxists
ileDoesNotEXist Destroy = (Destroyy A Success) Vv FileDoesNotExist v
KeyDelete = KeyDeletey V |FileIsNotOpen|v FileIsOpen
FileDoesNotEXxist
Jsing Z 15-27 Jsing Z 15-28

Formal analysis

» consistency of requirements

» operation preconditions

Initialisation theorem

3 System’ o Systemlnit
Lets check that our state invariant contains no
contradictions. We establish this by proving that
initialization theorem. I.e., that there exists a binding of
file and open which satisfies the constraint part of

Svsteminit.
Jsing Z 15-29 Jsing Z
Since Key and Data are basic types they cannot be empty.
Skip Hence the empy relation (PartialFunction: key --> data) and
the initial state exists. The second part of the investigation
Proof involves calculating the precondition of each operation.

@ € PName @& < dom@

[d—intro]
Jopen’ : P Name o

@ € Name -~ File open’ < dom @

[one-point]
3 file’ : Name — File; open’ : P Name |

open’ < dom file' e file' = @

3 Systen’ = Systeminit [definition]

Precondition
The second part of the investigation involves calculating
the precondition of each operation.

KeyRead = KeyRead, Vv FileDoesNotEXxist v FileIsNotOpen

The 'pre' operator distributes through disjunction:
pre KeyRead =

pre KeyRead, Vv pre FileDoesNotExist v pre FileIsNotOpen

Jsing Z

pre FileIsNotOpen

System
n? : Name

dr!: Report
n? ¢ open A
n? € dom file A
r! = filelIsNotOpen

Precondition/constraint

Jsing Z 15-32

pre KeyRead

A

KeyReady = 3 AFile « Read N Promote
pre KeyReady = 3 Local « pre Read A pre Promote

pre KeyRead < true

Jsing Z
Result
Operation Precondition
KeyRead KeyReady n? € open

FileIsNotOpen n? € (dom file) \ open
FileDoesNotExist | n? ¢ dom file
KeyRead true

