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Relations

We use sets of pairs called relations to model relationships

between objects.

The presence of a pair of objects in the set indicates that the first

is related to the second.
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Notation

If X and Y are sets, then X ↔ Y denotes the set of all relations

between X and Y :

X ↔ Y == P(X × Y )

The pair (p,q) can also be written as p , q.
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Example

{a,b}↔ {0,1} = {∅,
{(a,0)}, {(a,1)}, {(b,0)}, {(b,1)},
{(a,0), (a,1)}, {(a,0), (b,0)},
{(a,0), (b,1)}, {(a,1), (b,0)},
{(a,1), (b,1)}, {(b,0), (b,1)},
{(a,0), (a,1), (b,0)},
{(a,0), (a,1), (b,1)},
{(a,0), (b,0), (b,1)},
{(a,1), (b,0), (b,1)},
{(a,0), (a,1), (b,0), (b,1)}}
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Example

Drivers == {helen, indra, jim,kate}
Cars == {alfa,beetle, cortina,delorean}

drives == {helen , beetle, indra , alfa,

jim , beetle,kate , cortina}



7–6



7–7

Domain and range

domain:

dom R = { x : X ; y : Y | x , y ∈ R • x }

range:

ran R = { x : X ; y : Y | x , y ∈ R • y }
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Example

dom drives = {helen, indra, jim,kate}

ran drives = {alfa,beetle, cortina}
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Restrictions

domain restriction:

A/ R = { x : X ; y : Y | x , y ∈ R ∧ x ∈ A • x , y }

range restriction:

R. B = { x : X ; y : Y | x , y ∈ R ∧ y ∈ B • x , y }
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Subtraction

domain subtraction:

A−/ R = { x : X ; y : Y | x , y ∈ R ∧ x 6∈ A • x , y }

range subtraction:

R−. B = { x : X ; y : Y | x , y ∈ R ∧ y 6∈ B • x , y }
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Inverse

∀ x : X ; y : Y • x , y ∈ R∼ ⇒ y , x ∈ R
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Relational image

R(| A |) = ran(A/ R)
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Example

drives(| {indra, jim} |) = {alfa,beetle}
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Question

What do the following sets look like in extension?

• {jim,kate}/ drives

• drives . {beetle}
• dom(drives∼)

• drives∼(| {beetle,delorean} |)
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Relational composition

If the target of one relation matches the source of another, it may

be useful to consider their relational composition.

The composition of two relations relates objects in the source of

the first to objects in the target of the second, provided that some

intermediate point exists.
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Definition

x , z ∈ R o
9 S a ∃y : Y • x , y ∈ R ∧ y , z ∈ S
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Question

Which of the following statements are true?

• jim , unleaded ∈ (drives o
9 uses)

• electricity ∈ ran(drives o
9 uses)

• indra , unleaded ∈ (drives o
9 uses)
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Properties

• reflexivity

• symmetry (and …)

• transitivity
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Reflexivity and symmetry

Reflexive[X ] == {R : X ↔ X |
∀ x : X •

x , x ∈ R }

Symmetric[X ] == {R : X ↔ X |
∀ x,y : X •

x , y ∈ R ⇒ y , x ∈ R }
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Transitivity

Transitive[X ] == {R : X ↔ X |
∀ x,y , z : X •

x , y ∈ R ∧ y , z ∈ R ⇒
x , z ∈ R }

Equivalence[X ] == Reflexive[X ]∩
Symmetric[X ]∩

Transitive[X ]
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Closure

If a relation does not have a specified property, then we may add

maplets until it does.

If we add precisely those maplets that are lacking, then the

resulting relation is called a closure.
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Reflexive closure

To obtain the reflexive closure Rr of a relation R, we have only to

add the maplets of the identity relation:

id X == { x : X • x , x }
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Question

What should we add in order to obtain the symmetric closure of a

relation S?
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Iteration

R1 = R

R2 = R o
9 R

R3 = R o
9 R o

9 R
...
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Transitive closures

R+ =
⋃
{n : N | n ≥ 1 • Rn }

R∗ = R+ ∪ id X



7–30

Example

direct = {singapore , london, london , singapore,

singapore , perth, london , san francisco,

san francisco , london}
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Proof strategy

If � is transitive, then the following rule is valid:

a � b b � c
a � c

[� is transitive]
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Presentation

We write

a � b
[reason 1]

b � c
[reason 2]

a � c c � d
[reason 3]

a � d

as

a

� b [reason 1]

� c [reason 2]

� d [reason 3]
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Summary

• relationships between objects

• ↔, ,

• dom, ran, /, ., −/, −., (| |)
• o

9, ∼

• reflexivity, symmetry, transitivity

• Rr, S s, T+, T∗

• transitive relations


