
1–1

Introduction



1–2

abstract adj. to do with or existing in thought rather than matter.

v. take out of, extract, remove; summarize.

abstraction n. the act or an instance of abstracting or taking

away; an abstract or visionary idea.



1–3

Example

When the first map of the London Underground was published in

1908, it was faithful to the geography of the lines: all the twists

and turns of the tracks and the relative distances between

stations were recorded faithfully and to scale.

However, the purpose of the map was to show travellers the order

of stations on each line, and the various interchanges between

lines; the fidelity of the map made it difficult to extract this

information.



1–4



1–5

In 1933, the map was replaced by a more abstract representation,

called the Diagram, which showed only the connectivity of

stations.

Abstracted were:

• surface detail

• distances between stations

• orientation of lines



1–6



1–7

The Diagram gives people a good conceptual model; it is how we

see the London Underground network. It is a specification that

allows people to make sense of a complex implementation.

Furthermore, although revised regularly to reflect changes in the

network, it is still the same diagram proposed in 1931 by

engineering draughtsman Harry Beck.



1–8

The success of the diagram is due to

• an appropriate choice of abstraction

• an elegant presentation



1–9

Qualities

A good specification should be

• abstract and complete

• clear and unambiguous

• concise and comprehensible

• easy to maintain and cost-effective

Above all, it should be useful.



1–10

Software

Existing specifications are extensive, but

• relevant information is hard to find

• different developers may have different interpretations

• there is no objective test of contract fulfilment

• design flaws are difficult to detect



1–11

Formal methods

Techniques based upon mathematics can be used at every stage

of software development.

Examples include: probability theory; relational calculus;

context-free grammars.



1–12

Why mathematics?

• abstraction vs confusion

• precision vs ambiguity

• reason vs doubt



1–13

Why not mathematics?

• mathematics is seen as difficult

• abstraction is rarely taught



1–14

Example

The following problem, originally formulated by two

psychologists—Daniel Kahneman and Amos Tversky—was quoted

by Keith Devlin in the Guardian, 29th May 1997.



1–15

There has been a hit-and-run involving a taxi. There are two taxi

companies in town: Blue Cabs, with 15 cars, and Black Cabs, with

85. All the taxis were on the streets; we have no other

information about their whereabouts at the time of the accident.

It was dark, and there was a single witness, who believes that the

taxi in question was blue. In tests, the witness correctly identified

the colour of four out of every five taxis; on the other occasions,

they mistakenly thought that a blue taxi was black, or vice versa.

What is the probability that a blue taxi was involved?



1–16

Hint

The answer is not ‘80%’.



1–17

There are two possibilities to consider, given that the witness

believes that the taxi was blue:

• the taxi at the location was blue, and the witness correctly

identified its colour (0.15∗ 0.8 = 0.12)

• the taxi at the location was black, and the witness incorrectly

identified its colour (0.85∗ 0.2 = 0.17)

The probability that the taxi was blue is 0.12/0.29. There is only a

41% chance of this, all other things being equal.



1–18

Aside

In conditional probability,

P(car is blue | witness says blue)

= P(car is blue∩witness says blue)

P(witness says blue)

= 0.12

0.29

= 0.41



1–19

Response

The following letter was published in the Guardian, 5th June,

1997, under the heading

Maths sucks



1–20

“MATHEMATICS tells us that even in the highly simplified

circumstances of artificial examples, people are notoriously

fallible”, writes Keith Devlin. Fortunately, most of us don’t live in

the world of simplified circumstances and, in this world, evolution

has given us a more reliable way of reasoning, which I’d trust over

maths any day.

Barry Brown

barry@soc.surrey.ac.uk



1–21

Lesson

Abstract representations can form the basis of excellent

specifications.

Some people are afraid of abstraction. Some people can’t see the

wood for the trees.



1–22

Expectations

Formal methods may be abstract, universal tools, but they are still

only tools. They must be used properly if they are to be effective.

Furthermore, some knowledge and intuition about the system will

be required.



1–23

Description

Formal specifications cannot replace knowledge. However, we can

use an abstract representation as a basis for discussion. The lack

of ambiguity makes consensus harder to achieve, but more

valuable.



1–24

Reasoning

Logical argument cannot replace intuition. However, we can use

logic to break a problem down—to factorise it—so that it can be

solved in several small steps, rather than one giant leap.



1–25

The Z Notation

• a mathematical language of logic, sets, and relations;

• a schema language of patterns and objects;

• a theory of refinement between abstract data types.



1–26

Courses

• Software Engineering Mathematics

• Specification and Design

• Advanced Software Development



1–27

Description

We can use Z to:

• describe data structures;

• model system state;

• formalise properties.



1–28

Reasoning

We can use Z to:

• explain design intentions;

• verify development steps;

• compare descriptions at different levels of abstraction.



1–29

Case study

• collaboration between IBM UK Laboratories and the

Programming Research Group, Oxford

• applying mathematical techniques to the development and

design of new CICS modules

• providing education and consultancy—technology transfer

from academia to industry

• providing an opportunity to evaluate methods in an

industrial context



1–30

Subjective results

• initial cost in education

• more time spent on earlier stages; less time spent on coding

• increased precision in the use of natural language

• quality of work improved

• increased confidence in code



1–31

Qualitative results



1–32

Essential ingredients

• appropriate education

• employee motivation

• management support



1–33

Benefits

The production of a formal specification helps us to:

• understand requirements

• clarify intentions

The construction of a proof helps us to:

• identify assumptions

• explain correctness



1–34

A choice of methods

The Z notation is used to model systems in terms of state: we

describe the state of the system, and explain the relationship

between this and the state of various components.

Other notations, such as CSP, are used to model systems in terms

of their communicating behaviour. The two notations can be used

together in a description of the same system.



1–35

Formal description techniques

The formal description techniques—SDL, LOTOS, and

ESTELLE—are more concrete than either Z or CSP. As such, they

are more useful for description than for reasoning; nevertheless,

they can prove extremely valuable in an industrial context.

All of the lessons learnt in Z or CSP can be applied in SDL, LOTOS,

or ESTELLE.



1–36

Summary

• abstraction

• mathematics

• expectations

• the Z notation

• benefits


