
CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 1

Model-Based Specification

Learning Objective

... Formal specification of software by
developing a mathematical model of the system.

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 2

Objectives

⊗ To introduce an approach to formal specification
based on mathematical system models

⊗ To present some features of the Z specification
language

⊗ To illustrate the usefulness of Z by describing
small examples

⊗ To show how Z schemas may be used to develop

incremental specifications

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 3

Topics covered

⊗ Z schemas

⊗ The Z specification process

⊗ Specifying ordered collections

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 4

Model-based specification
⊗ Defines a model of a system using well-

understood mathematical entities such as sets
and functions.

⊗ The state of the system is not hidden (unlike
algebraic specification).

⊗ State changes are straightforward to define.

⊗ VDM and Z are the most widely used
model-based specification languages.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 5

Z as a specification language

⊗ Based on typed set theory

⊗ Probably now the most widely-used
specification language

⊗ Includes schemas, an effective low-level
structuring facility

⊗ Schemas are specification building blocks
⊕ Graphical presentation of schemas make Z

specifications easier to understand

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 6

Z schemas

⊗ Introduce specification entities and defines
invariant predicates over these entities

⊗ A schema includes
⊕ A name identifying the schema
⊕ A signature introducing entities and their types

⊕ A predicate part defining invariants over these entities

⊗ Schemas can be included in other schemas and
may act as type definitions

⊗ Names are local to schemas

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 7

Z schema highlighting

contents ≤ capacity

Container
contents:
capacity:

Schema name Schema signature Schema predicate

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 8

An indicator specification

light = on ⇔ reading ≤ danger_level

Indicator

light: {off, on}
reading:
danger_level:

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 9

Storage tank specification

reading = contents
capacity = 5000
danger_level = 50

Storage_tank

Container
Indicator

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 10

Full specification of a
storage tank

contents ≤ capacity
light = on ⇔ reading ≤ danger_level
reading = contents
capacity = 5000
danger_level = 50

Storage_tank

contents:
capacity:
reading:
danger_level:
light: {off, on}

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 11

Z conventions

⊗ A variable name decorated with a quote mark
(N‘) represents the value of the state variable
N after an operation

⊗ A schema name decorated with a quote mark
introduces the dashed values of all names
defined in the schema

⊗ A variable name decorated with a ! represents
an output

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 12

Z conventions

⊗ A variable name decorated with a ? represents
an input

⊗ A schema name prefixed by the Greek letter
Xi () means that the defined operation does
not change the values of state variables

⊗ A schema name prefixed by the Greek letter
Delta () means that the operation changes
some or all of the state variables introduced in
that schema

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 13

Operation specification

⊗ Operations may be specified incrementally as
separate schema then the schema combined to
produce the complete specification

⊗ Define the ‘normal’ operation as a schema

⊗ Define schemas for exceptional situations

⊗ Combine all schemas using the disjunction
(or) operator

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 14

A partial specification of
a fill operation

contents + amount? ≤ capacity
contents’ = contents + amount?

Fill-OK

∆ Storage_tank
amount?:

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 15

Storage tank fill operation

capacity < contents + amount?
r! = “Insufficient tank capacity – Fill cancelled”

OverFill

Ξ Storage-tank
amount?:
r!: seq CHAR

Fill

Fill-OK OverFill

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 16

The Z specification process

Define given
sets and types

Define state
variables

Define initial
state

Define
‘correct’
operations

Define
exceptional
operations

Combine
operation
schemas

Write informal
specification

Decompose
system

Specify system
components

Compose
component

specifications

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 17

Data dictionary specification

⊗ Data dictionary, introduced in Chapter 6, will
be used as an example. This is part of a CASE
system and is used to keep track of system
names

⊗ Data dictionary structure
⊕ Item name
⊕ Description

⊕ Type. Assume in these examples that the allowed types
are those used in semantic data models

⊕ Creation date

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 18

Given sets

⊗ Z does not require everything to be defined at
specification time

⊗ Some entities may be ‘given’ and defined later

⊗ The first stage in the specification process is to
introduce these given sets
⊕ [NAME, DATE]
⊕ We don’t care about these representations at this stage

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 19

Type definitions
⊗ There are a number of built-in types

(such as INTEGER) in Z

⊗ Other types may be defined by enumeration
⊕ Sem_model_types = { relation, entity, attribute}

»

⊗ Schemas may also be used for type definition

⊗ The predicates serve as constraints on the type

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 20

Specification using functions

⊗ A function is a mapping from an input value to
an output value
⊕ SmallSquare = {1 → 1, 2 → 4, 3 → 9, 4 → 16, 5 → 2 25, 6

→ 2 36, 7 → 49}

⊗ The domain of a function is the set of inputs over
which the function has a defined result
⊕ dom SmallSquare = {1, 2, 3, 4, 5, 6, 7 }

⊗ The range of a function is the set of results which
the function can produce
⊕ rng SmallSquare = {1, 4, 9, 16, 25, 36, 49 }

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 21

The function SmallSquare

one
two
three
four
five
six

seven

1
4
9
16
25
36
49

Domain (SmallSquare) Range (SmallSquare)

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 22

Data dictionary modeling

⊗ A data dictionary may be thought of as a mapping
from a name (the key) to a value (the description
in the dictionary)

⊗ Operations are
⊕ Add. Makes a new entry in the dictionary or

replaces an existing entry
⊕ Lookup. Given a name, returns the description.

⊕ Delete. Deletes an entry from the dictionary
⊕ Replace. Replaces the information associated with an

entry

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 23

Data dictionary entry

#description ≤ 2000

DataDictionaryEntry

entry: NAME
desc: seq char
type: Sem_model_types
creation_date: DATE

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 24

Data dictionary as a function

DataDictionary

DataDictionaryEntry
ddict: NAME→ {DataDictionaryEntry}

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 25

Data dictionary - initial state

ddict’ = Ø

Init-DataDictionary

DataDictionary’

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 26

Add and lookup operations

name? ∉ dom ddict
ddict’ = ddict ∪ {name? → entry?}

Add_OK

∆ DataDictionary
name?: NAME
entry?: DataDictionaryEntry

name? ∈ dom ddict
entry! = ddict (name?)

Lookup_OK

Ξ DataDictionary
name?: NAME
entry!: DataDictionaryEntry

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 27

Add and lookup operations

name? ∈ dom ddict
error! = “Name already in dictionary”

Add_Error

Ξ DataDictionary
name?: NAME
error!: seq char

name? ∉ dom ddict
error! = “Name not in dictionary”

Lookup_Error

Ξ DataDictionary
name?: NAME
error!: seq char

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 28

Function over-riding operator

⊗ ReplaceEntry uses the function overriding
operator (written). This adds a new entry or
replaces an existing entry.
⊕ phone = { Ian → 3390, Ray → 3392, Steve → 3427}

⊕ The domain of phone is {Ian, Ray, Steve} and the range is

{3390, 3392, 3427}.

⊕ newphone = {Steve → 3386, Ron → 3427}

⊕ phone ⊕ newphone = { Ian → 3390, Ray → 3392, Steve

 → 3386, Ron → 3427}

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 29

Replace operation

name? ∈ dom ddict
ddict’ ⊕ {name? → entry?}

Replace_OK

∆ DataDictionary
name?: NAME
entry?: DataDictionaryEntry

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 30

Deleting an entry

⊗ Uses the domain subtraction operator (written
) which, given a name, removes that name

from the domain of the function

⊕ phone = { Ian 3390, Ray 3392, Steve 3427}

⊕ {Ian} phone
⊕ {Ray 3392, Steve 3427}

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 31

Delete entry

name? ∈ dom ddict
ddict’ = {name?} ddict

Delete_OK

∆ DataDictionary
name?: NAME

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 32

Specifying ordered collections

⊗ Specification using functions does not allow
ordering to be specified

⊗ Sequences are used for specifying ordered
collections

⊗ A sequence is a mapping from consecutive
integers to associated values

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 33

A Z sequence

1
2
3
4
5
6
7

1
4
9
16
25
36
49

Domain (SqSeq) Range (SqSeq)

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 34

Data dictionary extract
operation

⊗ The Extract operation extracts from the data
dictionary all those entries whose type is the
same as the type input to the operation

⊗ The extracted list is presented in alphabetical
order

⊗ A sequence is used to specify the ordered output
of Extract

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 35

The Extract operation

∀n : dom ddict • ddict(n). type = in_type? ⇒ ddict (n) ∈ rng rep!
∀i : 1 ≤ i ≤ #rep! • rep! (i).type = in_type?
∀i : 1 ≤ i ≤ #rep! • rep! (i) ∈ rng ddict
∀i , j: dom rep! • (i < j) ⇒ rep. name(i) < NAME rep.name (j)

Extract

DataDictionary
rep!: seq {DataDictionaryEntry}
in_type?: Sem_model_types

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 36

Extract predicate

⊗ For all entries in the data dictionary whose
type is in_type?, there is an entry in the output
sequence

⊗ The type of all members of the output
sequence is in_type?

⊗ All members of the output sequence are
members of the range of ddict

⊗ The output sequence is ordered

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 37

Data dictionary specification

The_Data_Dictionary

DataDictionary
Init-DataDictionary
Add
Lookup
Delete
Replace
Extract

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 38

Key points

⊗ Model-based specification relies on building a
system model using well-understood
mathematical entities

⊗ Z specifications are made up of mathematical
model of the system state and a definition of
operations on that state

⊗ A Z specification is presented as a number of
schemas

⊗ Schemas may be combined to make new schemas

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 39

Key points
⊗ Operations are specified by defining their

effect on the system state.
⊕ Operations may be specified incrementally then

different schemas combined to complete the
specification

⊗ Z functions are a set of pairs where the domain
of the function is the set of valid inputs.

⊗ The range is the set of associated outputs.

⊗ A sequence is a special type of function whose
domain is the consecutive integers

