
CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 1

Formal SpecificationFormal Specification

Learning Objective

... Techniques for the unambiguous
specification of software.

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 2

Objectives
⊗ Explain the place of formal software

specification in the software process.
⊗ Explain when formal specification is cost-

effective.

⊗ Describe a process model based on the
transformation of formal specifications to an
executable system.

⊗ Introduce a simple approach to formal
specification based on pre and post conditions

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 3

Topics covered

⊗ Formal specification on trial

⊗ Transformational development

⊗ Specifying functional abstractions

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 4

Specification in the software
process
⊗ Specification and design are inextricably

intermingled.
⊗ Architectural design is essential to

structure a specification.
⊗ Formal specifications are expressed in a

mathematical notation with precisely
defined vocabulary, syntax and
semantics.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 5

Specification and design

Architectural
design

Requirements
specification

Requirements
definition

Software
specification

High-level
design

Increasing contractor involvement

Decreasing client involvement

Specification

Design

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 6

Specification in the software
process

Requirements
specification

Formal
specification

System
modelling

Architectural
design

Requirements
definition

High-level
design

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 7

Formal specification on trial

⊗ Formal techniques are not widely used
in industrial software development

⊗ Given the relevance of mathematics in
other engineering disciplines, why is
this the case?

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 8

Why aren't formal methods
used?
⊗ Inherent management conservatism.

⊕ It is hard to demonstrate the advantages of formal
specification in an objective way

⊗ Many software engineers lack the training in
discrete math necessary for formal specification

⊗ System customers may be unwilling to fund
specification activities

⊗ Some classes of software (particularly
interactive systems and concurrent systems) are
difficult to specify using current techniques

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 9

Why aren't formal methods
used?

⊗ There is widespread ignorance of the
applicability of formal specifications

⊗ There is little tool support available for
formal notations

⊗ Some computer scientists who are familiar with
formal methods lack knowledge of the real-
world problems to which these may be applied
and therefore oversell the technique

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 10

Advantages
of formal specification
⊗ Provide insights into the software requirements

and the design

⊗ Formal specifications may be analyzed
mathematically to demonstrate consistency and
completeness of the specification (in addition to
other things)

⊗ It may be possible to prove that the
implementation corresponds to the specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 11

Advantages of formal
specifications

⊗ Formal specifications may be used to
guide the tester of the component in
identifying appropriate test cases

⊗ Formal specifications may be “processed”
using software tools.

⊗ It may be possible to animate the
specification to provide a software
prototype

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 12

Seven myths of formal methods
⊗ Perfect software results from formal methods

⊕ Nonsense – the formal specification is a model of the real-
world and may incorporate misunderstandings, errors and
omissions.

⊗ Formal methods means program proving
⊕ Formally specifying a system is valuable without formal

program verification as it forces a detailed analysis early in
the development process.

⊗ Formal methods can only be justified for
safety-critical systems.

⊕ Industrial experience suggests that the development costs for
all classes of system are reduced by using formal
specification.

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 13

Seven myths of formal methods
⊗ Formal methods are for mathematicians

⊕ Nonsense – only simple math is needed

⊗ Formal methods increase development costs
⊕ Not proven – however, formal methods definitely push

development costs towards the front-end of the life cycle

⊗ Clients cannot understand formal specifications
⊕ They can – if paraphrased in natural language

⊗ Formal methods have only been used for trivial
systems

⊕ Now – many published examples of experience with formal
methods for non-trivial software systems exist

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 14

The verdict!
⊗ The reasons put forward for not using

formal specifications and methods are
weak

⊗ However, there are good reasons why
these methods are not used:

⊕ The move to interactive systems. Formal specification
techniques cannot cope effectively with graphical user
interface specification

⊕ Successful software engineering – Investing in other
software engineering techniques may be more cost-effective

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 15

Use of formal methods
⊗ These methods are unlikely to be widely

used in the foreseeable future – Nor are
they likely to be cost-effective for most
classes of system

⊗ They will become the normal approach
to the development of safety critical
systems and standards

⊗ This changes the expenditure profile
through the software process ...

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 16

Development costs with formal
specification

Specification

Design and
Implementation

Validation

Specification

Design and
Implementation

Validation

Cost

Without formal
specification

With formal
specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 17

Transformational development

R2R1Formal
specification R3 Executable

program

P1 P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 18

Specifying functional abstractions
⊗ The simplest specification is function

specification.
⊕ There is no need to be concerned with global state (assuming

no side-effects)

⊗ The formal specification is expressed as input
and output predicates (pre and post conditions)

⊗ Predicates are logical expressions which are
always either true or false

⊗ Predicate operators include the usual logical
operators and quantifiers such as for-all ()
and exists ()

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 19

Examples of predicates
All variables referenced are of type INTEGER

1. Value of variable A is greater than the value of B and the value of variable
 C is greater than D

A > B and C > D

2. This predicate illustrates the use of the exists quantifier. The predicate is true if there are
 values of i, j and k between M and N such that i2 = j2 + k2. Thus, if M is 1 and N is 5, the
 predicate is true as 32 + 42 = 52. If M is 6 and N is 9, the predicate is false. There are no
 values of i, j and k between 6 and 9 which satisfy the condition:

exists i, j, k in M..N: i2 = j2 + k2

3. This predicate illustrates the use of the universal quantifier for_all. It concerns the values
 of an array called Squares. It is true if the first ten values in the array take a value which
 is the square of an integer between 1 and 10:

for_all i in 1..10, exists j in 1..10: Squares (i) = j2

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 20

Specification with pre & post
conditions
⊗ Set out the pre-conditions

⊕ A statement about the function parameters stating what is
invariably true before the function is executed

⊗ Set out the post-conditions
⊕ A statement about the function parameters stating what is

invariably true after the function has executed

⊗ The difference between the pre & post conditions is
due to the application of the function to its
parameters

⊗ Together the pre and post conditions are a function
specification

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 21

Specification development
⊗ Establish the bounds of the input parameters.

⊕ Specify this as a predicate
⊗ Specify a predicate defining the condition

which must hold on the result of the function
if it computes correctly

⊗ Establish what changes are made to the input
parameters by the function

⊕ Specify this as a predicate
⊗ Combine the predicates into pre and post

conditions

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 22

The specification of a search

function SearchSearch (X: in INTEGER_ARRAY ; Key: INTEGER)
 return INTEGER ;

Pre: exists i in X'FIRST..X'LAST: X(i) = Key
Post: X” (SearchSearch (X, Key)) = Key and X = X”

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 23

Search pre-conditions
⊗ One of the array elements must match

the key

⊗ Use the exists quantifier to specify that an
element must exist which matches the key

⊕ exists i in X’FIRST..X’LAST: X (i) = Key

⊗ Assume FIRST and LAST refer to the
upper and lower bounds of the array

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 24

Search post-conditions
⊗ The result of Search should be the value of the

array index (i.e., the element containing the
key)
⊕ X”(Search (X, Key)) = Key

⊗ The array after the operation is referenced by
'priming' the array name

⊗ The array should not be changed by the Search
function:
⊕ X = X”

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 25

Specifying an error predicate

function SearchSearch (X: in INTEGER_ARRAY;
Key: INTEGER)

 return INTEGER ;

Pre: exists i in X'FIRST..X'LAST: X (i) = Key

Post: X” (SearchSearch (X, Key)) = Key and X = X”

Error: SearchSearch (X, Key) = X'LAST + 1

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 26

Formal specification approaches
⊗ Algebraic approach

⊕ The system is described in terms of interface operations
and their relationships

⊗ Model-based approach
⊕ A model of the system acts as a specification.

» This model is constructed using well-understood
mathematical entities such as sets and sequences

⊗ These are covered in the following two
chapters

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 27

Formal specification languages

Sequential Concurrent
Algebraic Larch (Guttag et al., 1985),

OBJ (Futatsugi et al., 1985)
Lotos (Bolognesi and
Brinksma, 1987),

Model-based Z (Spivey, 1989)
VDM (Jones, 1980)

CSP (Hoare, 1985)
Petri Nets (Peterson, 1981)

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 28

Key pointsKey points
⊗ Formal system specification complements

informal specification techniques
⊗ Formal specifications are precise and

unambiguous
⊕ They remove areas of doubt in a specification

⊗ Formal specification forces an analysis of
the system requirements at an early stage.
⊕ Correcting errors at this stage is cheaper

than modifying a delivered system

CS 580.1/483.1 Software Specification and Analysis
Instructor: F.T. Sheldon Slide 29

Key pointsKey points
⊗ Formal specification techniques are not

cost-effective for the development of
interactive systems
⊕ They are most applicable in the development

of safety-critical systems and standards.

⊗ Functions can be specified by setting out
pre and post conditions for the function.
⊕ However, this approach does not scale up to

large or medium-sized systems.

