

SOFTWARE REQUIREMENTS

Guidance and Control Software
Development Specification

Version 2.2 with formal mods 1-26

June 7, 1993

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681

i

Preface

The NASA Langley Research Center has been conducting a series of software error studies in an effort

to better understand the software failure process and improve development and reliability estimation

techniques for avionics software. The Guidance and Control Software (GCS) project is the latest study in the

series. This project involves production of guidance and control software for the purpose of gathering failure

data from a credible software development environment. To increase the credibility and relevance of this

study, guidelines used in the development of commercial aircraft were adopted. The use of the Radio

Technical Commission for Aeronautics RTCA/DO-178A guidelines, "Software Considerations in Airborne

Systems and Equipment Certification," is required by the Federal Aviation Administration (FAA) for

developing software to be certified for use in commercial aircraft equipment [1].

This is document #2 in the series of documents required to fulfill the RTCA/DO-178A guidelines. The

documents in the series are numbered as specified in the DO-178A guidelines and are used to demonstrate

compliance with the guidelines by describing the application of the procedures and techniques used during

the development of flight software. For the GCS project, the series consists of the following documents:

- GCS Configuration Index Document no. 1

- GCS Development Specification Document no. 2

- GCS Design Description Document no. 3

- GCS Programmer's Manual Document no. 4 (this document includes Software Design

Standards Document no. 12)

- GCS Configuration Management Plan Document no. 5A

- Software Quality Assurance Plan for GCS Document no. 5B

- GCS Source Listing Document no. 6

- GCS Source Code Document no. 7

- GCS Executable Object Code Document no. 8 (not available in hardcopy)

- GCS Support/Development System Configuration Description Document no. 9

ii

- GCS Accomplishment Summary Document no. 10

- Software Verification Plan for GCS Document no. 11

- GCS Development Specification Review Description Document no. 11A

- GCS Simulator (GCS_SIM) System Description Document no. 13

- GCS Simulator (GCS_SIM) Certification Plan Document no. 13A

- GCS Plan for Software Aspects of Certification Document no. 14

A GCS implementation (code which fulfills the requirements outlined in the Guidance and Control

Software Development Specification) runs in conjunction with a software simulator that provides input based

on an expected usage distribution in the operational environment, provides response modeling, and receives

data from the implementation. For the purposes of the project, a number of GCS implementations are being

developed by different programmers according to the structured approach found in the DO-178A guidelines.

The GCS simulator is designed to allow an experimenter to run one or more implementations in a

multitasking environment and collect data on the comparison of the results from multiple implementations.

Certain constraints have been incorporated in the software requirements due to the nature of the GCS

project. Further information on goals of the GCS project are available in the GCS Plan for Software Aspects

of Certification.

iii

FOREWORD

This specification defines a guidance and control system for a planetary landing vehicle during its terminal

phase of descent. The guidance and control system is specified using an extension to the popular method of

structured analysis. This specification is written for an experienced programmer with two or more years of full-time

industrial programming experience using a scientific programming language. The programmer should have an

adequate background, either through college courses or job training in mathematics, physics, differential equations,

and numerical integration. The specification was written with the assumption that the implementation would

be coded in FORTRAN; however, other languages can be used.

Version 2.2 of this specification contains a number of modifications to version 2.1 of the specification.

The text that has been modified from version 2.1 is bolded in version 2.2. Some existing text has been moved

to another place in the document, and some text has been deleted. There is no demarcation to indicate where

text has been moved or deleted. The modifications that are significant (may impact the coding of an

implementation) are marked with a footnote number (note that there is only a footnote number and not a

traditional footnote containing an explanation of the change). If there are a number of significant

modifications within a processing step (in Chapter 5 of the specification), a footnote number has been placed

just at the top of the processing step (as opposed to marking each individual change within the processing

step). Note that there is a significant new addition to the specification: requirements for exception handling.

New additions to the text are also bolded.

v

Contents

PREFACE.. i

FOREWORD ... iii

1. INTRODUCTION .. 1

INTRODUCTION ... 3

PURPOSE OF THE GUIDANCE AND CONTROL SOFTWARE.. 3

VEHICLE CONFIGURATION... 3

TERMINAL DESCENT.. 6

VEHICLE DYNAMICS .. 6

Frames of Reference.. 6

Linear Velocity.. 7

Vehicle Position .. 7

Angular Velocity ... 8

Vehicle Attitude... 8

Acceleration... 8

Further Reading ... 8

VEHICLE GUIDANCE... 10

ENGINES .. 10

Axial Engine (Thrust) Control... 10

Roll Engine Control... 10

GENERAL INFORMATION.. 11

NOTATION... 11

Matrices and Arrays... 11

Operators ... 11

DEFINITIONS .. 12

CONVENTIONS... 14

FORTRAN Convention... 14

REQUIREMENTS .. 14

Order of Processing ... 14

Calls to GCS_SIM_RENDEZVOUS... 14

Control Signals .. 14

Number Representations.. 14

Conversion of Units... 14

Global Data Store Organization .. 14

Use of Variables That Are Not in the Global Data Stores ... 15

vi

Use of Tables... 15

Rotation of History Variables.. 15

EXCEPTION HANDLING ... 15

Exception Conditions .. 16

Action to be Taken for Each Specified Exception Condition.. 16

Output to be Generated for Each Exception Condition ... 16

2. LEVELS 0 AND 1 SPECIFICATION.. 19

LEVEL 0 SPECIFICATION ... 21

LEVEL 1 SPECIFICATION ... 26

3. LEVEL 2 SPECIFICATION... 29

PROCESS SPECIFICATION (P-Spec) 1: INIT_GCS.. 31

4. LEVEL 3 FLOW DIAGRAMS AND C-SPECS... 35

SCHEDULING.. 43

5. P-SPECS FOR LEVELS 3 AND 4 ... 45

AECLP -- Axial Engine Control Law Processing (P-Spec 2.3.1) .. 47

ARSP -- Altimeter Radar Sensor Processing (P-Spec 2.1.2) ... 53

ASP -- Accelerometer Sensor Processing (P-Spec 2.1.1) .. 55

CP -- Communications Processing (P-Spec 2.4).. 59

CRCP -- Chute Release Control Processing (P-Spec 2.3.3)... 63

GP -- Guidance Processing (P-Spec 2.2) ... 65

GSP -- Gyroscope Sensor Processing (P-Spec 2.1.4) .. 73

RECLP -- Roll Engine Control Law Processing (P-Spec 2.3.2) .. 75

TDLRSP -- Touch Down Landing Radar Sensor Processing (P-Spec 2.1.3)... 77

TDSP -- Touch Down Sensor Processing (P-Spec 2.1.6) .. 83

TSP -- Temperature Sensor Processing (P-Spec 2.1.5).. 85

6. DATA REQUIREMENTS DICTIONARY .. 89

PART I. DATA ELEMENT DESCRIPTIONS ... 91

PART II. CONTENTS OF DATA STORES... 107

PART III. CONTROL SIGNALS, DATA CONDITIONS, AND GROUP FLOWS 111

A. NOTATION FOR LEVELS 0, 1, 2, AND 3 SPECIFICATION.. 115

B. IMPLEMENTATION NOTES .. 119

INTERFACE ... 121

Background ... 121

Simulator Support Utility .. 121

Input/Output .. 121

Process... 123

vii

GCS Initialization.. 123

C. NUMERICAL INTEGRATION INSTRUCTIONS... 125

BIBLIOGRAPHY.. 129

ix

List of Figures

1.1 THE LANDING VEHICLE DURING DESCENT .. 4

1.2 A TYPICAL TERMINAL DESCENT TRAJECTORY... 5

1.3 ENGINEERING ILLUSTRATION OF VEHICLE.. 9

2.1 STRUCTURE OF THE GCS SPECIFICATION ... 23

2.2 DATA CONTEXT DIAGRAM: LANDER... 24

2.3 CONTROL CONTEXT DIAGRAM: LANDER... 25

2.4 DATA FLOW DIAGRAM (DFD) 0: GCS... 26

2.5 CONTROL FLOW DIAGRAM (CFD) 0: GCS ... 27

3.1 DFD 2: RUN_GCS ... 32

3.2 CFD 2: RUN_GCS ... 33

4.1 DFD 2.1: SP -- SENSOR PROCESSING.. 37

4.2 CFD 2.1: SP -- SENSOR PROCESSING.. 38

4.3 DFD 2.3: CLP -- CONTROL LAW PROCESSING ... 40

4.4 CFD 2.3: CLP -- CONTROL LAW PROCESSING.. 41

5.1 VELOCITY-ALTITUDE CONTOUR ... 69

5.2 GRAPH FOR DERIVING ROLL ENGINE COMMANDS... 76

5.3 DOPPLER RADAR BEAM LOCATIONS.. 78

5.4 CALIBRATION OF THERMOCOUPLE PAIR .. 86

A.1 GRAPHICAL SYMBOLS USED IN FLOW DIAGRAMS .. 118

B.1 DIAGRAM OF STORAGE AS SEEN BY GCS IMPLEMENTATIONS .. 122

xi

List of Tables

1.1 ROTATION OF VARIABLES... 15

2.1 CONTROL SPECIFICATION (C-SPEC) 0: GCS ... 28

3.1 C-Spec 2: RUN_GCS ... 34

4.1 C-Spec 2.1: SP -- Sensor Processing ... 39

4.2 C-Spec 2.3: CLP -- Control Law Processing ... 42

4.3 FUNCTIONAL UNIT SCHEDULING .. 43

5.1 DETERMINATION OF AXIAL ENGINE TEMPERATURE .. 48

5.2 DETERMINATION OF ERROR TERMS... 50

5.3 DETERMINATION OF AXIAL ENGINE COMMANDS.. 50

5.4 DETERMINATION OF ALTITUDE STATUS... 54

5.5 PACKET VARIABLES.. 61

5.6 SAMPLE MASK .. 61

5.7 EXAMPLE OF PACKET... 62

5.8 DIFFERENTIAL EQUATIONS .. 66

5.9 DETERMINATION OF AXIAL AND ROLL ENGINE ON/OFF SWITCHES................................ 67

5.10 DETERMINATION OF GUIDANCE PHASE.. 70

5.11 DETERMINATION OF RADAR BEAM STATES .. 79

5.12 PROCESSING OF DOPPLER RADAR BEAMS IN LOCK... 81

5.13 DETERMINATION OF TOUCH DOWN SENSOR AND STATUS ... 83

6.1 DATA STORE: GUIDANCE_STATE ... 107

6.2 DATA STORE: EXTERNAL.. 108

6.3 DATA STORE: SENSOR_OUTPUT.. 108

6.4 DATA STORE: RUN_PARAMETERS.. 109

6.5 CONTROL VARIABLES .. 111

6.6 DATA CONDITIONS.. 111

6.7 INITIALIZATION DATA.. 112

6.8 TEMP_DATA .. 114

6.9 SENSOR_DATA.. 114

6.10 OUTPUT_DATA ... 114

6.11 OUTPUT_CONTROL.. 114

6.12 FRAME_DATA.. 114

C.1 INITIAL VALUES PROVIDED FOR USE IN INTEGRATION ... 128

1

1. INTRODUCTION

3

INTRODUCTION

PURPOSE OF THE GUIDANCE AND CONTROL SOFTWARE

The Guidance and Control Software (GCS) represents the Viking lander on-board navigational

software. The purpose of this software is to:

1. provide guidance and engine control of the vehicle (shown in Figure 1.1) during its terminal phase of

descent onto a surface and

2. communicate sensory information about the vehicle and its descent to some other receiving device.

A typical descent trajectory is shown in Figure 1.2.

The initialization of the GCS starts the sensing of vehicle altitude. When a predefined engine ignition altitude

is sensed by the altimeter radar, the GCS begins guidance and control of the vehicle. The axial and roll engines are

ignited; while the axial engines are warming up, the parachute remains connected to the vehicle. During this engine

warm-up phase, the aerodynamics of the parachute dictate the trajectory followed by the vehicle. Vehicle attitude is

maintained by firing the engines in a throttled-down condition. Once the main engines become hot, the parachute is

released and the GCS performs an attitude correction maneuver and then follows a controlled acceleration

descent until a predetermined velocity-altitude contour is crossed (see Figure 5.1). The GCS then attempts to

maintain the descent of the vehicle along this predetermined velocity-altitude contour. The vehicle descends along

this contour until a predefined engine shut off altitude is reached or touchdown is sensed. After all engines are shut

off, the vehicle free-falls to the surface.

VEHICLE CONFIGURATION

The vehicle to be controlled is a guidance package containing sensors which obtain information about the

vehicle state, a guidance and control computer, and actuators providing the thrust necessary for maintaining a safe

descent. The vehicle has three accelerometers (one for each body axis), one doppler radar with four beams, one

altimeter radar, two temperature sensors, three strapped-down gyroscopes, three opposed pairs of roll engines, three

axial thrust engines, one parachute release actuator, and a touch down sensor. The vehicle has a hexagonal, box-like

shape with three legs and a surface sensing rod protruding from its undersurface.

4

Figure 1.1: THE LANDING VEHICLE DURING DESCENT1

Xv

xp

p

yp

Z

yv

zv

5

Figure 1.2: A TYPICAL TERMINAL DESCENT TRAJECTORY3

Parachute
Descent

Engines Begin
Warmup

Chute Released

Phase 1

Phase 2

Phase 3

zv

x v

yv

yv

x v

x v

x v

xv

xv

zv

zv

zv

zv

zv

yv

yv

y
v

y
v

Drop
Height

Touch
Down

Phase 4

x p

y p
zp

(Terminal Descent Begins)

Phase 5

6

TERMINAL DESCENT

Prior to the terminal descent phase, the vehicle falls with a parachute attached. This parachute is released

seconds after the engines ignite, and terminal descent begins. During terminal descent, the vehicle follows a

modified gravity-turn guidance law until a predetermined altitude is reached. The atmosphere introduces drag

forces, including the random effects of wind. Independently throttled engines slow the vehicle down. These

engines can control the vehicle's orientation, and roll engines control the vehicle's roll rate. Roll control is necessary

to keep the doppler radars in lock and insure that the desired touch down attitude (land on two legs prior to the third)

is maintained.

The velocity during descent follows the predetermined velocity-altitude contour. At a specific altitude above

the planet surface, the vehicle is maintained at a constant descent velocity. Once the surface is sensed, all engines

are shut down and the vehicle free falls to the surface.

VEHICLE DYNAMICS

Frames of Reference

Terminal descent is described in terms of two coordinate systems:

1. the surface-oriented coordinate system, and

2. the vehicle-oriented coordinate system.

In the surface coordinate system, the

�
z p axis is viewed as normal to the surface and points down as shown in

Figure 1.2. The

�
x p axis points north, and the

�
y p points east.

By defining a unit vector as a vector of length equal to one unit along each axis in both the planetary and

vehicular frames of reference, a relation between these two frames of reference may be established. Any vector can

then be defined as a multiple of the unit vector along each of the axes defined in the frame of reference. Thus, the
velocity of the vehicle

�
V may be defined in the vehicle's frame of reference as: Vx v

ˆ i v + Vyv
ˆ j v + Vz v

ˆ k v , where ˆ i v , ˆ j v ,

and ˆ k v are the unit vectors in the x, y, and z directions of the vehicles coordinate system (unit vectors are usually
represented by lower case i, j, or k with a hat to show that they are unit vectors). Vx v

, Vy v
, and Vzv

 represent the

components of the vehicle velocity in the given direction. At the same time, the velocity of the vehicle may be
described in the planetary coordinate system as: Vx p

ˆ i p +Vy p
ˆ j p +Vzp

ˆ k p , where the subscript p represents planetary

rather than vehicle coordinates. Note, since the two coordinate systems are not oriented in the same direction, the
values of Vx v

 will not be equal to Vx p
, but the magnitude of the total vector

�
V will be the same in both systems.

Also the difference in the magnitudes of individual components represents the difference in relative orientation

between the two coordinate systems.
The dot product

�
a ⋅
�
b () is defined as the magnitude of

�
a multiplied by the magnitude of

�
b and then by the

cosine of the angle between the vectors,

7

�
a ⋅
�
b = a b cos∠

�
a
�
b

The dot product is used to project
�
a onto

�
b and can be used to project a vector in one frame of reference

onto another one. Rather than calculate the needed cosines each time a vector must be transformed from one frame

of reference into another, the cosines of the angles between each unit vector of the vehicular and planetary

coordinate systems are computed and placed into a direction cosine matrix. This matrix is then used along with the

vector's magnitude in each dimension of the original frame of reference to compute a dot product. This product

gives the vector's magnitude in each dimension of the new frame of reference.

The transformation between the vehicle and the surface coordinate systems at time t is specified by a matrix

of direction cosines,

l1 l2 l3

m1 m2 m3

n1 n2 n3

t

=

cos θ ˆ i v , ˆ i p() cosθ ˆ i v , ˆ j p() cos θ ˆ i v , ˆ k p()
cos θ ˆ j v , ˆ i p() cosθ ˆ j v , ˆ j p() cos θ ˆ j v , ˆ k p()
cosθ ˆ k v , ˆ i p() cosθ ˆ k v , ˆ j p() cos θ ˆ k v , ˆ k p()

t

where θ ˆ i , ˆ j () denotes the angle between vectors ˆ i and ˆ j , etc.

The change in orientation of the vehicle during descent makes the update of the direction cosine matrix

necessary at each time step. This update is specified in the following equation:

d / dt
l1 l2 l3

m1 m2 m3

n1 n2 n3

t

=
0 rv −qv

−rv 0 pv

qv −pv 0

t

l1 l2 l3
m1 m2 m3

n1 n2 n3

t

where the matrix containing the pv , qv , and rv terms is the rate of rotation about the axes of the vehicle which may

be obtained from sensor values.

Linear Velocity

The linear components of velocity for the vehicle during terminal descent are denoted by Ý x v , Ý y v , and Ý z v in the

vehicle coordinate system and by Ý x p , Ý y p , and Ý z p in the surface coordinate system, where the dot Ý () notation

indicates derivatives with respect to time.

Vehicle Position

Vehicle position is expressed in terms of the surface coordinate system by transforming change in position

(velocity) in the vehicle coordinate system into change in position in the surface frame and integrating as follows:

8

Ý x p
Ý y p
Ý z p

t

=
l1 m1 n1

l2 m2 n2

l3 m3 n3

t

Ý x v
Ý y v
Ý z v

t

and
xp

yp

z p

t

=
Ý x p
Ý y p
Ý z p

dτ∫
t

Angular Velocity
Roll, pitch, and yaw angular velocities are represented by the quantities pv , qv , and rv in the vehicle frame

of reference only. Roll is about the

�
x v axis, pitch is about the

�
y v axis, and yaw is about the

�
z v axis, as shown in

Figure 1.3. A more in-depth explanation of angular velocity naming conventions and other related material may be

found in section II, part B of Reference [3].

Vehicle Attitude

The vehicle attitude at time t is a function of the vehicle attitude (known by reference to celestial objects) at
the start of descent at time t0 and the cumulative changes in attitude from time t0 to time t .

Acceleration

The linear components of acceleration for the vehicle in the vehicle frame of reference during terminal

descent are denoted by Ý Ý x v , Ý Ý y v , and Ý Ý z v , respectively.

Further Reading

The subjects of vector mathematics, transformations between frames of references, vector calculus, and

rotating coordinate systems may not be sufficiently covered here for the user; however, such depth is not intended for

this document. Chapter 4 of Classical Mechanics [4] contains a detailed explanation of rigid body motion and

transformation of vectors into multiple frames of reference or coordinate systems. Chapters 15 and 16 of

Engineering Mechanics [5] contains a more basic approach to the same ideas of multiple frames of reference and

vector mechanics. Chapter 14 of [6] and Chapter 5 of [7] also discuss rotational motion and multiple frames of

reference, as well as vector mechanics and calculus. Two other books of possible interest are [8] and [9]. Both

cover the mechanics of particles and dynamics, with strong references to particle trajectories and rocket dynamics.

Also, these texts are basic in nature and require only a rudimentary knowledge of physics, math, or engineering.

9

Figure 1.3: ENGINEERING ILLUSTRATION OF VEHICLE5

Axial Engine (3)

Foot Pad (3)

Roll Engine (3)

Bottom View
(x out of page)

positive
roll
thrust zv

yv

+p
(roll)

Side View

x
v

(z into page)

y
v

+r
(yaw)

positive
axial thrust

Side View

xv

(y into page)

zv

+q
(pitch)

10

VEHICLE GUIDANCE

Vehicle guidance is accomplished by varying the engine thrust so that the vehicle follows a single

predetermined velocity-altitude contour. This contour is made available during GCS initialization. Applying too

great a deceleration early in the descent brings the vehicle velocity to its terminal value too high above the surface,

resulting in insufficient propellant for final descent. Applying too small a thrust lets the vehicle impact the surface

with too great a velocity. Either condition could be disastrous. As soon as the touch down sensor touches the

surface, the engines are shut off. Approximately ninety percent of propellant or thrust is used to minimize gravity

losses; the remaining ten percent is used for steering.

A gravity-turn steering law is mechanized by rotating the vehicle in pitch and yaw until the body's lateral axis

velocities are zero (causing the thrust axis to point along the total velocity vector). The action of gravity causes the

thrust axis to rotate toward the vertical as the total velocity is reduced. An arbitrary roll orientation is maintained

with an attitude hold mode during the descent.

ENGINES

The vehicle has three axial engines that supply the force necessary to slow the vehicle and allow it to safely

land. Roll is controlled by three pairs of roll engines on the lander supplying rotational thrust. Figure 1.3 shows the

axial and roll engines and the resulting thrust forces they impart to the vehicle.

Axial Engine (Thrust) Control

Three thrust engines first orient the vehicle so that their combined thrust vector opposes the vehicle's velocity

vector. Thrust (axial direction) engine control is a function of pitch error, yaw error, thrust error, and deviation from

the velocity-altitude contour. A combination of proportional and integral control (PI) logic is applied to pitch and

yaw control. The integral portion helps to reduce the steady-state pitch and yaw error.

If no thrust error or velocity-altitude contour deviation occurs, then axial engine response provides only pitch

and yaw control via the PI control law. Use of this control law implies that the overshoot problem for pitch-yaw

control is probably small.

Thrust control is implemented by a proportional-integral-derivative (PID) control law. The derivative control

added here damps out overshoot.

Roll Engine Control

Roll control is attained by pulsing the three pairs of roll engines and is a function of roll angle deviation and

roll rate (pV) about the x axis. Roll engine specific impulse and thrust per unit time are constant with the integrated

thrust controlled by pulse rate. Angle deviations are controlled within a very small range of 0.25 to 0.35 degrees.

11

GENERAL INFORMATION

NOTATION

Matrices and Arrays

It should be noted that throughout this specification, the words matrix and array are often interchanged. No

significance should be placed upon the use of one word as opposed to use of the other.

All matrices are referenced with the row index first and the column index second. In the cases where there is a

time history (see definition of history variable below), the last index is the time index.

When the name of an array which contains a time history is given without any indices being specified, the

most recent value is implied.

Operators

Throughout this specification, matrix operations (particularly multiplication) are required, and on some

occasions, non-standard operations are used upon matrices. The following symbols are used to denote the types of

multiplication to be applied.

Dots ⋅() Small dots are used to denote scalar multiplication. For example:

3 ⋅ 4 =12

Multiplication sign ×() This symbol is used to denote standard matrix multiplication. This does

NOT imply a cross product, nor strictly a dot product. The definition of this type of

operation is given below:

A × B = C

 where

Cij = Aik ⋅ Bkj
k =1

n

∑

Asterisks (*) Asterisks are used in conjunction with index markers to show that the operations are

to be conducted on individual elements of arrays or vectors as if they were scalars. This is

often the case when calculating sensor values or other similar functions when multiple

scalars are grouped together for convenience. For example, the following equation is listed in

ASP:

 The equation for measured acceleration is:

A_ ACCELERATION_ M(i) = A_ BIAS(i) + A_ GAIN(i)* A_ COUNTER(i)

12

 where i ranges from 1 to 3 and represents the three directions x, y, and z. In this case, the

first element of A_ACCELERATION_M would be calculated as follows:

A_ ACCELERATION_ M(1) = A_ BIAS(1) + A_ GAIN(1)⋅ A_ COUNTER(1)

No Operator In those cases where variables, matrices, or scalars are located directly beside each

other with no operator between, standard multiplication is implied. Thus two matrices

collocated would be multiplied as if they had the × operator between them, while two scalars

would be multiplied as if they had the ⋅ operator between them. Also, if a scalar and a matrix

(of one or more dimensions) were collocated, then the scalar would be multiplied by each

element of the matrix and a new matrix of equal dimensions would be generated.

DEFINITIONS

Implementation

Computer code which fulfills all of the requirements outlined in the GCS Development Specification.

Functional Unit

Chapter 5 is divided into eleven subsections, each of which describes the requirements for a particular

function to be performed by the GCS software. Throughout this specification, the term "functional unit" will

be used to refer to one of these eleven functions. Note that there is not necessarily a one-to-one

correspondence between a "functional unit" and a distinct unit or module of software code in an

implementation.

Frame

A frame is the length of time necessary to execute all scheduled functional units. Each frame has two

different time values associated with it. The first is the actual c.p.u. time that it takes to execute the GCS

software on the simulation host computer, while the second is the allotted time for a frame on the actual

lander. The global variable DELTA_T represents the time for one frame on the actual lander and is needed

in the GCS code for the integration of the dynamic equations for the lander.

Subframe

A subframe is one of the three individual units of time which together make up a frame. The three

subframes are named the Sensor Processing subframe (subframe 1), the Guidance Processing subframe

(subframe 2), and the Control Law Processing subframe (subframe 3). In each frame, subframe 1 is executed

first, subframe 2 is executed second, and subframe 3 is the last subframe executed.

13

Data Store

The definition for a data or control store given in Hatley [13] is "A data or control store is simply a data or

control flow frozen in time. The data or control information it contains may be used any time after that information

is stored and in any order." In this specification, all stores contain data, while some also contain data conditions.

For the purposes of this specification, the term "data store" will be used to refer to any store which contains some

combination of data and data conditions. Thus, all four stores listed in the Data Requirements Dictionary part II will

be referred to as "data stores".

Global Data Store Variable

 A global data store variable is any variable listed in any of the four global data stores in Chapter 6,

namely GUIDANCE_STATE data store (Table 6.1), EXTERNAL data store (Table 6.2), SENSOR_OUTPUT

data store (Table 6.3), or RUN_PARAMETERS data store (Table 6.4).

History Variable

Within this specification, a particular array, hereafter referred to as a "history variable" is one which

contains a time history dimension; that is, it contains values for the current frame as well as for previous

frames. The history variables are the following:

A_ACCELERATION (1:3,0:4)
A_STATUS (1:3,0:3)
AR_ALTITUDE (0:4)
AR_STATUS (0:4)
G_ROTATION (1:3,0:4)
GP_ALTITUDE (0:4)
GP_ATTITUDE (1:3,1:3,0:4)
GP_VELOCITY (1:3,0:4)
K_ALT (0:4)
K_MATRIX (1:3,1:3,0:4)
TDLR_VELOCITY (1:3,0:4)

In each case, the last dimension is the time dimension. The first subscript in a time history dimension is

always declared to be zero. The time dimension contains a set of scalars, vectors, or arrays, depending on

whether the total number of dimensions is one, two, or three, respectively. Let the term "object" denote a

scalar, vector, or array, as appropriate for the particular variable. Each of these variables contains either

four or five objects, depending on whether the last dimension is declared to be 0:3 or 0:4 respectively. The

variable A_STATUS contains four objects, while each of the other time history variables contains five objects.

Each of the variables listed contains a most recent object and either three or four previous objects. The

object with a time subscript of zero is the most recent object; the object with a time subscript of one is the

object which is one frame older; the object with a time subscript of two is the object which is two frames

older, etc.; the object with the largest time subscript (three or four) is the oldest object.7

14

CONVENTIONS

FORTRAN Convention

This specification was written with the assumption that the implementation would be coded in

FORTRAN. If the development language used is something other than FORTRAN, the programmer must

investigate the possibility of differences between FORTRAN and the development language chosen.

REQUIREMENTS

Order of Processing

Within each functional unit in Chapter 5, the processing steps are given in a particular order. If the

implementation uses the same order as that given in the specification, then correct results should be obtained;

however, the programmer is free to use a different order as long as the change in order does not affect the

outputs.8

Calls to GCS_SIM_RENDEZVOUS

There must be a call to GCS_SIM_RENDEZVOUS prior to the execution of each subframe.9

Control Signals

The control signals listed in Table 6.5 in Part III of the Data Requirements Dictionary may be

implemented by the programmer in any form desired, or they may be completely ignored and the control of

the program may be conducted through other means.

Number Representations

When variables are given in sign-magnitude or other unusual formats, conversion or manipulation may

be necessary.10

Conversion of Units

It is the responsibility of the programmer to be sure that any implied conversion of units is

performed.11

Global Data Store Organization

Part II of the Data Requirements Dictionary contains descriptions of four required data stores. Each

of these data stores is to be located in a separate, globally accessible data region. The division of the global

data stores into four separate regions illustrates the fact these regions have a direct mapping to a specific

implementation of GCS on hardware components of an actual lander.(See Figure B.1).

If the implementation is being written in FORTRAN, four labeled common blocks should be declared

with the labels GUIDANCE_STATE, EXTERNAL, SENSOR_OUTPUT, and RUN_PARAMETERS,

15

respectively (See Tables 6.1, 6.2, 6.3, and 6.4). The variables declared in each labeled common block must be

in the same order as those in the corresponding table.12
Use of Variables That Are Not in the Global Data Stores

A programmer may use variables in addition to the global data store variables; however, if the value of

such a variable is dependent upon the values of any global data store variable(s), then the programmer should

only use the value of such a variable in the same subframe of the same frame in which it was calculated.

Use of Tables

Some tables have the heading "CURRENT STATE" and "ACTIONS". If the actual state of the

variables appears under the "CURRENT STATE" section in the table, then the actions listed in the same line

are to be performed. If the actual current state is not represented in any line under the "CURRENT

STATE" section of the table, then no action is to be taken.

Rotation of History Variables

In Chapter 5, in certain functional units, an instruction is given to "rotate" specific variables. Table

1.1 illustrates what is meant by rotation. The table is given for a variable with a time dimension of 0:4. For a

variable with a time dimension of 0:3, the last line of the table should be ignored. Note that after the variable

has been rotated, the new or current object is calculated and placed into the zeroth time history position.13

Table 1.1: ROTATION OF VARIABLES14

TIME HISTORY
SUBSCRIPT

Values BEFORE
ROTATION

VALUES AFTER
ROTATION

VALUE AFTER
CALCULATIONS
FOR CURRENT

FRAME
0 On-1 X On
1 On-2 On-1 On-1
2 On-3 On-2 On-2
3 On-4 On-3 On-3
4 On-5 On-4 On-4

Note: Oi denotes object that was calculated in frame i

 n = current frame number

 X = denotes that any value is acceptable

EXCEPTION HANDLING15

16

 During the execution of a computer program, exception conditions may sometimes occur. The

implementation should anticipate or detect certain types of exception conditions and take specific actions.

The relevant exception conditions and the actions to be taken are listed below.

17

Exception Conditions

 DIVIDE BY ZERO

A division is performed, but the divisor is equal to zero.

 NEGATIVE SQUARE ROOT

A square root is taken, but the argument for the square root is negative.

 UPPER OR LOWER LIMIT EXCEEDED

The current value for a data element in the GUIDANCE_STATE or SENSOR_OUTPUT

data store exceeds its upper or lower limit as specified in the range section in the Data

Requirements Dictionary Part I. The data elements in the RUN_PARAMETERS and

EXTERNAL data stores need not be checked for limit exceeded. In addition, it is not necessary

for the functional unit CP to check any data elements for limit exceeded.

Action to be Taken for Each Specified Exception Condition

Write the appropriate output as specified below to the FORTRAN Logical Unit Number 6 and then

continue. In the case of UPPER/LOWER LIMIT EXCEEDED, do not modify the data element. Note that to

"continue" implies that the divide will be executed, or the square root will be taken, or the data element with

exceeded limit will be used.

Output to be Generated for Each Exception Condition

The first line of the exception message should appear as follows:

 " %EXCEPTIONAL-CONDITION-GCS-"<insert specific condition here>

 where the specific condition is one of the following:

 "DIVIDE_BY_ZERO"

 "NEGATIVE_SQUARE_ROOT"

 "LOWER_LIMIT_EXCEEDED"

 "UPPER _LIMIT_EXCEEDED"

The second line of the exception message should contain the name of the functional unit where the

exception condition occurred (i.e. AECLP, ASP, etc.), the name of the actual subroutine where the exception

condition occurred, and the current value of the frame counter. Implementations that are coded in

FORTRAN should use the following FORTRAN format statement:

 FORMAT (x, a6, x, a32, x, i4)

18

A third line of the exception message containing information that is specific to the individual error type

may be required as specified below.

 Divide By Zero

 No additional output necessary.

 Negative Square Root

 Display the value of the argument to the square root operation.

 Use FORTRAN format statement FORMAT (x, e23.14).

 Lower Limit Exceeded

 Display the name of the data element in question and the value of the data element.

 Use FORTRAN format statement FORMAT (x, a32, e23.14) for type real elements, and use

 FORMAT (x, a32, i12) for integer or logical data elements.

 Upper Limit Exceeded

 Display the name of the data element in question and the value of the data element.

 Use FORTRAN format statement FORMAT (x, a32, e23.14) for type real elements, and use

 FORMAT (x, a32, i12) for integer or logical data elements.

19

2. LEVELS 0 AND 1 SPECIFICATION

21

LEVEL 0 SPECIFICATION

The GCS will provide an interface between the sensors (rate of descent, attitude, etc.) and the engines (roll

and axial). The purpose of the GCS is to keep the vehicle descending along the predetermined velocity-altitude

contour which has been chosen to conserve enough fuel to effect a safe attitude and touch down.

The GCS effects this control by:

• processing the following sensor information:

- acceleration data from the three accelerometers -- one for each vehicle axis,

- range rate data from four splayed doppler radar beams,

- altitude data from one altimeter radar,

- temperature data from a solid-state temperature sensor and a thermocouple pair temperature

sensor,

- rates of rotation from three strapped-down gyroscopes -- one for each vehicle axis, and

- sensing of touch down by the touch down sensor.

• determining the appropriate commands for the axial and roll engines and the chute release mechanism

and issuing them to keep the vehicle on a predetermined velocity-altitude contour.

The GCS also transmits telemetry data and synchronizes through a rendezvous routine

(GCS_SIM_RENDEZVOUS) with GCS_SIM [10], the simulator and controller.

Note that implementations of the GCS developed from this specification may be executed singly or in

parallel. Consequently, only specific system services can be used in an implementation. In particular, a rendezvous

routine will be provided and should be invoked, as specified in the implementation notes in Appendix B. In

addition, FORTRAN Intrinsic Functions may be used. Other system services and library routines are explicitly

excluded from use by the programmer.

Figures 2.2 through 2.5, 3.1, 3.2, and 4.1 through 4.4, and Tables 2.1, 3.1, 4.1, and 4.2 follow Hatley's

extension to Structured Analysis (see Appendix A), with the following exceptions and assumptions.

Exceptions:

1. Any data store may appear at more than one level because the processes specified do not communicate

directly but only through data stores.

2. Any unlabeled flow between a process and a data store may not necessarily carry all the information in

the data store (the actual flow content is defined by the process specification and the Data

Requirements Dictionary Part II).

22

Assumptions:

1. The initial value for control signals is assumed to be "FALSE".

2. In a process activation table (PAT), an empty process cell indicates the process is deactivated.

3. In a PAT, an empty output cell indicates the control signal value remains unchanged.

4. In a PAT, output control signals receive values before any processes are activated and therefore may

delay the activation of processes by deactivating their parent process.

An example of assumption 4 is Table 3.1 where setting RENDEZVOUS to "TRUE" delays the activation of

the processes of which RUN_GCS is composed until GCS_SIM sets RENDEZVOUS to "FALSE".

23

Figure 2.1: STRUCTURE OF THE GCS SPECIFICATION

GCS
 0

RUN_GCS
 2

INIT_GCS
 1

P-Spec SP
2.1

GP
2.2

CLP
 2.3

CP
2.4

ASP
2.1.1

ARSP
 2.1.2

TDLRSP
 2.1.3

GSP
2.1.4

TSP
2.1.5

TDSP
 2.1.6 P-SpecP-Spec

P-SpecP-SpecP-SpecP-SpecP-SpecP-SpecP-SpecP-Spec

AECLP
 2.3.1

RECLP
 2.3.2

CRCP
 2.3.3

Level 0

Level 1

Level 2

Level 3

Level 4 P-Spec

24

Figure 2.2: DATA CONTEXT DIAGRAM: LANDER

Altimeter_
Radar

Doppler_
Radar Gyroscopes

Temperature_
Sensors

Touch_Down_
Sensor

GCS_SIM GCS

0

Axial_Engine
s

Roll_Engines
Telemetry_
Hardware Parachute

AE_CMD

INITIALIZATION_DATA
FRAME_DATA

PACKETRE_CMD

A_COUNTER AR_COUNTER TDLR_COUNTER G_COUNTER TEMP_DATA TD_COUNTER

Accelerometers

25

Figure 2.3: CONTROL CONTEXT DIAGRAM: LANDER

Accelerometers Altimeter_
Radar

Doppler_
Radar Gyroscopes

Temperature_
Sensors

Touch_Down_
Sensor

GCS_SIM GCS

0

Axial_Engine
s

Roll_Engines
Telemetry_
Hardware Parachute

RENDEZVOUS

AE_SWITCH RE_SWITCH CHUTE_RELEASED

26

LEVEL 1 SPECIFICATION

Figure 2.4: DATA FLOW DIAGRAM (DFD) 0: GCS

INIT_GCS

1

RUN_PARAMETERS SENSOR_OUTPUT GUIDANCE_STATE EXTERNAL

FRAME_DATA SENSOR_DATA

OUTPUT_DATA

RUN_GCS

2

INITIALIZATION_DATA

27

Figure 2.5: CONTROL FLOW DIAGRAM (CFD) 0: GCS

EXTERNAL

INIT_GCS

1

RUN_PARAMETERS SENSOR_OUTPUT GUIDANCE_STATE

RUN_GCS

2

INIT_DONE

RENDEZVOUS

RENDEZVOUS

RUN_DONE

OUTPUT_CONTROL

RENDEZVOUS is only set to "TRUE" by RUN_GCS and it is only set to "FALSE" by GCS_SIM.

28

Table 2.1: CONTROL SPECIFICATION (C-SPEC) 0: GCS

 "INIT_GCS" "RUN_GCS"

~RENDEZVOUS & ~RUN_DONE 1

RENDEZVOUS & ~INIT_DONE & ~RUN_DONE 1

(RENDEZVOUS & INIT_DONE) | RUN_DONE

29

3. LEVEL 2 SPECIFICATION

31

LEVEL 2 SPECIFICATION

PROCESS SPECIFICATION (P-Spec) 1: INIT_GCS16

PURPOSE INIT_GCS initializes the guidance and control software.

INPUT

INITIALIZATION_DATA

OUTPUT

INITIALIZATION_DATA

PROCESS INIT_GCS is actually a part of GCS_SIM_RENDEZVOUS, which will be supplied to the

programmer; thus the functions performed by INIT_GCS are listed here for information only, but are not the

responsibility of the programmer. There should be a call to GCS_SIM_RENDEZVOUS, prior to executing each

subframe. The first call to GCS_SIM_RENDEZVOUS will cause INIT_GCS to automatically be executed.

INIT_GCS will initialize all variables in the group flow INITIALIZATION_DATA, which is defined in Table 6.7 in

the Data Requirements Dictionary Part III. Since the variables FRAME_COUNTER and SUBFRAME_COUNTER

are part of INITIALIZATION_DATA, they will be initialized at this time. FRAME_COUNTER will be initialized

to a value representing the next frame to be executed, while SUBFRAME_COUNTER will always be initialized to

the value one, which implies that the first subframe of the first frame to be executed will always be the sensor

processing subframe. Although a terminal descent trajectory begins with FRAME_COUNTER initialized to the

value one, the option exists for starting execution at some point other than at the beginning of the trajectory, i.e.,

FRAME_COUNTER may be initialized to a value greater than one.

32

Figure 3.1: DFD 2: RUN_GCS

EXTERNAL RUN_PARAMETERS

SP

.1

SENSOR_OUTPUT

GP

.2

CP

.4

GUIDANCE_STATE

CLP

.3

33

Figure 3.2: CFD 2: RUN_GCS

EXTERNAL RUN_PARAMETERS

SP

.1

SENSOR_OUTPUT

GP

.2

CP

.4

GUIDANCE_STATE

CLP

.3

SP_DONE

GP_PHASE

GP_DONE

CP_DONE

RENDEZVOUS

RUN_DONE

CLP_DONE

34

Table 3.1: C-Spec 2: RUN_GCS

 "SP" "GP" "CLP" "CP" SP_DONE GP_DONE CLP_DONE CP_DON

E
RENDEZVOUS RUN_DONE

~SP_DONE &
~GP_DONE &
~CLP_DONE &
~CP_DONE

1

2

"TRUE"

SP_DONE &
CP_DONE

 1 2 "FALSE" "FALSE" "TRUE"

GP_DONE &
CP_DONE &
GP_PHASE ~= 5

1

2

"FALSE"

"FALSE"

"TRUE"

CLP_DONE &
CP_DONE

1 2 "FALSE" "FALSE" "TRUE"

GP_DONE &
CP_DONE &
GP_PHASE = 5

"TRUE"

35

4. LEVEL 3 FLOW DIAGRAMS AND C-SPECS

36

37

Figure 4.1: DFD 2.1: SP -- Sensor Processing

RUN_PARAMETERS EXTERNAL

GUIDANCE_STATE SENSOR_OUTPUT

TDLRSP ARSP ASP GSP TSP TDSP
.3 .4.2 .1 .5 .6

38

Figure 4.2: CFD 2.1: SP -- Sensor Processing

EXTERNALRUN_PARAMETERS

GUIDANCE_STATE SENSOR_OUTPUT

TDLRSP

.3

ARSP

.2

ASP

.1

GSP

.4

TSP

.5

TDSP

.6

SP_DONE

ASP_DONE GSP_DONE

TDLRSP_DONE TDSP_DONE

TSP_DONEARSP_DONE

39

Table 4.1: C-Spec 2.1: SP -- Sensor Processing

 "ASP" "ARSP" "TDLRSP" "GSP" "TSP" "TDSP" ASP_

DONE

ARSP_

DONE

TDLRSP_

DONE

GSP_

DONE

TSP_

DONE

TDSP_

DONE

SP_

DONE

~ASP_DONE &

~ARSP_DONE &

~TDLRSP_DONE &

~GSP_DONE &

~TSP_DONE &

~TDSP_DONE &

~SP_DONE

2

2

2

2

1

2

ASP_DONE &

ARSP_DONE &

TDLRSP_DONE &

GSP_DONE &

TSP_DONE &

TDSP_DONE &

~SP_DONE

"FALSE"

"FALSE"

"FALSE"

"FALSE"

"FALSE"

"FALSE"

"TRUE"

40

Figure 4.3: DFD 2.3: CLP -- Control Law Processing

SENSOR_OUTPUT RUN_PARAMETERS GUIDANCE_STATE

AECLP RECLP CRCP

EXTERNAL

.1 .2 .3

41

Figure 4.4: CFD 2.3: CLP -- Control Law Processing

SENSOR_OUTPUT RUN_PARAMETERS GUIDANCE_STATE

EXTERNAL

AECLP RECLP CRCP

.1 .2 .3

CRCP_DONE

CLP_DONE AECLP_DONE

RECLP_DONE

42

Table 4.2: C-Spec 2.3: CLP -- Control Law Processing

 "AECLP" "RECLP" "CRCP" AECLP_DONE RECLP_DON
E

CRCP_DONE CLP_DONE

~AECLP_DONE &
~RECLP_DONE &
~CRCP_DONE &
~CLP_DONE

1

1

AECLP_DONE &
~CRCP_DONE &
~CLP_DONE

1

1

AECLP_DONE &
RECLP_DONE &
CRCP_DONE &
~CLP_DONE

"FALSE"

"FALSE"

"FALSE"

"TRUE"

43

SCHEDULING

Within each frame, the Sensor Processing Subframe is to be executed first, the Guidance Processing

Subframe is to be executed second, and the Control Law Processing Subframe is to be the last subframe

executed. Table 4.3 lists each functional unit in the GCS according to the subframe in which it should be

executed. A number "I" is located along with the functional unit name. This number indicates that the functional

unit should be executed every "Ith" frame. Note that all functional units are executed during frame number 1. Also

note that execution of the GCS may begin at any frame number and should operate as if it had been running from the

beginning of the trajectory (frame number 1). There are minor sequencing constraints to be imposed upon the

functional units in each subframe. During the sensor processing subframe, TSP should be executed before any of

the other functional units, and CP should be executed last. In the guidance and control subframes, CP should be

executed after the other functional units. Lastly, during the control processing subframe, AECLP needs to be

executed before CRCP. All functional units not specified here may be executed in any order within their

subframes. On the first, and subsequent, calls to GCS_SIM_RENDEZVOUS, FRAME_COUNTER and

SUBFRAME_COUNTER will be returned to the implementation containing the correct values for operation. The

value in FRAME_COUNTER should be compared to the numbers listed in Table 4.3 to determine if a functional

unit should be executed. As an example, TSP has a number of 2, which means that it executes every other frame;

while ASP has a number of 1, meaning it executes every frame; and TDSP has a number of 5, so it executes only

every fifth frame.

Table 4.3: FUNCTIONAL UNIT SCHEDULING17

SCHEDULING
Sensor Processing Subframe (Subframe 1) "I"
ARSP 1*
ASP 1
CP 1
GSP 1
TDLRSP 1*
TDSP 5
TSP 2
Guidance Processing Subframe (Subframe 2) "I"
CP 1
GP 1
Control Law Processing Subframe (Subframe 3) "I"
AECLP 1
CP 1
CRCP 5
RECLP 1

* This functional unit has special scheduling considerations. For details, see the

appropriate functional unit description in Chapter 5.

44

The GCS software must meet all the requirements for a particular frame for any specific value of the variable

FRAME_COUNTER. The software must be capable of executing continuously one frame after another until

specified termination conditions are met, at which time it must terminate itself according to specified termination

procedures.

The termination conditions and procedures are: GCS should check whether to terminate itself in each frame

immediately after executing the Guidance Processing functional unit. At that time if the value of the variable

GP_PHASE is equal to 5, then GCS should terminate itself gracefully (without any exception conditions). In this

case, the implementation should terminate at the end of the present subframe, i.e., it should execute the functional

unit Communications Processing and then terminate without calling GCS_SIM_RENDEZVOUS.

45

5. P-SPECS FOR LEVELS 3 and 4

47

AECLP -- Axial Engine Control Law Processing (P-Spec 2.3.1)

PURPOSE The AECLP functional unit computes the valve settings for each of the three main (axial) engines.

Measurements of the vehicle's velocity, acceleration, and roll rates are combined to produce error signals for the

pitch, yaw, and thrust of the vehicle. These error signals are then mixed to produce the axial engine valve settings.

INPUT

AE_SWITCH AE_TEMP
A_ACCELERATION CHUTE_RELEASED
CL CONTOUR_CROSSED
DELTA_T ENGINES_ON_ALTITUDE
FRAME_COUNTER FRAME_ENGINES_IGNITED
FULL_UP_TIME GA
GAX GP1
GP2 GPY
GP_ALTITUDE GP_ATTITUDE
GP_ROTATION GP_VELOCITY
GQ GR
GRAVITY GV
GVE GVEI
GVI GW
GWI OMEGA
PE_INTEGRAL PE_MAX
PE_MIN TE_DROP
TE_INIT TE_INTEGRAL
TE_LIMIT TE_MAX
TE_MIN VELOCITY_ERROR
YE_INTEGRAL YE_MAX
YE_MIN

OUTPUT

AE_CMD AE_STATUS
AE_TEMP INTERNAL_CMD
PE_INTEGRAL TE_INTEGRAL
TE_LIMIT YE_INTEGRAL

PROCESS The reader should refer to Appendix C for notes on integration. Note that once the correct value

of AE_CMD has been determined, it will automatically be transmitted to the engines during the next call to the

GCS_SIM_RENDEZVOUS routine provided in the GCS_SIM rendezvous package. (See Appendix B.

Implementation Notes). Computation of the axial engine valve settings requires the following steps:

✔✔✔✔ PROCESSING WHEN AXIAL ENGINES ARE OFF19

• IF AE_SWITCH is set to OFF, then perform the following steps:

•• Set all elements of AE_CMD to 0

48

•• Proceed directly to the step "SET AXIAL ENGINE STATUS TO HEALTHY."

49

✔✔✔✔ PROCESSING WHEN AXIAL ENGINES ARE ON 20

The variable CL is used here as a subscript. Explanations for the variables CL and

VELOCITY_ERROR are provided in functional unit 2.6 GP. The variables PE_INTEGRAL,

YE_INTEGRAL, and TE_INTEGRAL will be initialized by INIT_GCS.

• If AE_SWITCH is set to ON then perform the following steps:

(Note:
pv

,
qv

, and
rv

 are the current elements of GP_ROTATION;

Ý x v
,

Ý y v
, and

Ý z v
 are the current elements of GP_VELOCITY;

Ý Ýx v
 is the

current x component of A_ACCELERATION.)

DETERMINE ENGINE TEMPERATURE

•• Set AE_TEMP according to Table 5.1

Table 5.1: DETERMINATION OF AXIAL ENGINE TEMPERATURE21

CURRENT STATE ACTION

AE_TEMP GP_ALTITUDE
(FRAME_ COUNTER −−−−

FRAME_ ENGINES_ IGNITED
DELTA_T

AE_TEMP

cold ≤ ENGINES_ON_ALTITUDE

< FULL_UP_TIME warming-up

warming-up ≤ ENGINES_ON_ALTITUDE

≥ FULL_UP_TIME hot

COMPUTE LIMITING ERRORS FOR PITCH

••
PE_ INTEGRAL ==== PE _ INTEGRAL ++++

Ý z v
Ý x vt0

t

∫∫∫∫ dt
 ,

where t0 is the beginning of the time step and t is the end of the time step.

50

••
Pe

L ==== GQ(CL) ⋅⋅⋅⋅ qv ++++GW(CL) ⋅⋅⋅⋅
Ý z v
Ý x v

 ++++ GWI (CL) ⋅⋅⋅⋅ PE_ INTEGRAL

•• If
Pe

L <<<< PE _ MIN (CL)
 then set

Pe
L

 to PE_MIN(CL).

•• If
Pe

L >>>> PE _ MAX(CL)
 then set

Pe
L

 to PE_MAX(CL).

51

COMPUTE LIMITING ERROR FOR YAW

••
YE _ INTEGRAL ==== YE_ INTEGRAL ++++

Ý y v
Ý x vt0

t

∫∫∫∫ dt
,

 where t0 is the beginning of the time step and t is the end of the time step.

••
Ye

L ==== −−−−GR(CL) ⋅⋅⋅⋅ r v ++++ GV(CL) ⋅⋅⋅⋅
Ý y v
Ý x v

 ++++GVI (CL) ⋅⋅⋅⋅ YE_ INTEGRAL

•• If
Ye

L <<<< YE _ MIN (CL)
 then set

Ye
L

 to YE_MIN(CL).

•• If
Ye

L >>>> YE _ MAX(CL)
 then set

Ye
L

 to YE_MAX.CL).

COMPUTE LIMITING ERROR FOR THRUST

•• If CONTOUR_CROSSED is set to "contour not crossed", then proceed directly

to the step "COMPUTE PITCH, YAW, AND THRUST ERRORS."

•• If CONTOUR_CROSSED is set to "contour crossed", then perform the

following steps:

•••
TE _ INTEGRAL = TE _ INTEGRAL + (VELOCITY _ ERROR)dt

t 0

t
∫

••• Solve the following equation analytically in order to calculate the value for

TE_LIMIT:

52

d
dt

(TE_ LIMIT) ++++ OMEGA ⋅⋅⋅⋅ TE_ LIMIT

GA
====

−−−−GAX ⋅⋅⋅⋅ (Ý Ý x v ++++ GRAVITY ⋅⋅⋅⋅ GP _ ATTITUDE(1, 3, 0)) ++++
GVE ⋅⋅⋅⋅ VELOCITY _ ERROR ++++ GVEI (CL) ⋅⋅⋅⋅ TE_ INTEGRAL

••• If
TE _ LIMIT <<<< TE_ MIN (CL)

 then set TE_LIMIT to TE_MIN(CL).

••• If
TE _ LIMIT>>>>TE_ MAX(CL)

 then set TE_LIMIT to TE_MAX(CL).

53

COMPUTE PITCH, YAW, AND THRUST ERRORS

•• Compute pitch error (Pe), Yaw Error (Ye), and Thrust Error (Te), according to

Table 5.2

Table 5.2: DETERMINATION OF ERROR TERMS23

AE_SWITCH CHUTE_

RELEASED

CONTOUR_

CROSSED

Pe Ye Te

1 1 1 Pe
L Ye

L TE_LIMIT

1 1 0 Pe
L Ye

L TE_DROP

1 0 0,1 GQ(CL) ⋅⋅⋅⋅ qv −−−−GR(CL) ⋅⋅⋅⋅ rv TE_INIT

COMPUTE AXIAL ENGINE VALVE SETTINGS
Given pitch, yaw, and thrust errors, (Pe , Ye , Te), the valve settings (AE_CMD) for each of the

three main engines are calculated as:

INTERNAL_ CMD =
GP1 0 1
GP2 −GPY 1
GP2 GPY 1

×
Pe

Ye

Te

which will result in each element of the INTERNAL_CMD vector being a real value. This value

should be converted into an integer value between 0 and 127 and placed into the appropriate

element of the AE_CMD vector. The mapping for the conversion from real to integer values for

each of the three elements should be as follows:

Table 5.3: DETERMINATION OF AXIAL ENGINE COMMANDS

INTERNAL_CMD AE_CMD

I < 0.0 A = 0

0.0 ≤ I ≤ 1.0 0 ≤ A ≤ 127

1.0 < I A = 127

Note: "I" represents the appropriate element of the vector INTERNAL_CMD
 "A" represents the appropriate element of the vector AE_CMD

54

with INTERNAL_CMD between 0 and 1.0 being converted linearly to a value of AE_CMD

between 0 and 127. Each value for AE_CMD is to be rounded to the nearest integer, where

rounding is defined as follows:25

 Let x represent the real value that is to be rounded

 Then, AE_CMD = the integer part of (x+0.5)

✔ SET AXIAL ENGINE STATUS TO HEALTHY

• Set AE_STATUS to healthy.

55

ARSP -- Altimeter Radar Sensor Processing (P-Spec 2.1.2)

PURPOSE The vehicle has one altimeter radar. The ARSP functional unit reads the altimeter counter provided by

this radar and converts the data into a measure of distance to the surface.

INPUT

AR_ALTITUDE AR_COUNTER
AR_FREQUENCY AR_STATUS
FRAME_COUNTER K_ALT

OUTPUT

AR_ALTITUDE AR_STATUS
K_ALT

PROCESS It is only necessary that this functional unit perform its normal calculations every other frame,

namely on the odd-numbered frames; however, one will notice that in the scheduling Table 4.1, it is required

that this functional unit execute every frame. The reason for this is that during its normal processing it must

rotate history variables. This means that during the frames when it does not need to calculate new outputs,

namely the even-numbered frames, it must still rotate its history variables and set its new or current values

equal to the previous values, thus creating double entries for each rotated variable. By doubling the entries,

consistency of time histories will be maintained at the expense of keeping two copies of each value in these

variables, and forcing the functional unit to execute every frame.26

The processing of the altimeter counter data (AR_COUNTER) into the vehicle's altitude above the planet's

terrain depends on whether or not an echo is received by the altimeter radar for the current time step. The distance

covered by the radio pulses emitted from the altimeter radar is directly proportional to the time between transmission

and reception of its echo. A digital counter (AR_COUNTER) is started as the radar pulse is transmitted. The

counter increments AR_FREQUENCY times per second. If an echo is received, the lower order fifteen bits of

AR_COUNTER contain the pulse count, and the sign bit will contain the value zero. If an echo is not

received, AR_COUNTER will contain sixteen one bits.27

✔✔✔✔ ROTATE VARIABLES

• Rotate AR_ALTITUDE, AR_STATUS, AND K_ALT.

✔✔✔✔ PERFORM ALTERNATE PROCESSING IF THIS IS AN EVEN-NUMBERED FRAME

• If FRAME_COUNTER is an even number, then perform the following:

•• Insure that the current values of AR_ALTITUDE, AR_STATUS, and K_ALT are equal

to the previous values of AR_ALTITUDE, AR_STATUS, and K_ALT respectively.

•• Exit from this functional unit.

56

✔ DETERMINE ALTITUDE28

• If an echo is received, perform the following:

•• Convert the AR_COUNTER value to a distance to be returned in the variable

AR_ALTITUDE according to the following equation:

AR_ ALTITUDE =
AR_ COUNTER ⋅3 ×108 m

sec
AR_ FREQUENCY ⋅ 2

• If an echo is not received, compute AR_ALTITUDE as follows:

•• If all four previous values of AR_STATUS are healthy:

••• In order to smooth the estimate of altitude, fit a third-order polynomial to the

previous four values of AR_ALTITUDE.

••• Use this polynomial to extrapolate a value for AR_ALTITUDE for the current

time step.

•• If any of the previous four values of AR_STATUS is failed:

••• Set the current value of AR_ALTITUDE equal to the previous value of

AR_ALTITUDE.

✔✔✔✔ SET ALTIMETER RADAR STATUS

• Set the current values for AR_STATUS and K_ALT according to TABLE 5.4.

Table 5.4: DETERMINATION OF ALTITUDE STATUS29

CURRENT STATE ACTIONS TO BE TAKEN

ECHO RETURNED? All 4 previous
AR_STATUS values

healthy?

AR_STATUS K_ALT

yes d healthy 1

no yes failed 1

no no failed 0

Note: "d" = don't care condition

57

ASP -- Accelerometer Sensor Processing (P-Spec 2.1.1)

PURPOSE Three accelerometers, located at the vehicle's center of gravity, are slightly misaligned along the

vehicle's

�
x v ,

�
y v , and

�
z v axes. Each accelerometer produces a 16-bit binary value (A_COUNTER), represented as

the magnitude portion of a sign magnitude number which is a linear function of the acceleration along its axis. The

sign of the counter will always be positive, but the offset given in A_BIAS will be negative or zero, so if the

magnitude of the product of A_COUNTER and A_GAIN is smaller than that of A_BIAS, the measured

acceleration is negative. The Acceleration Sensor Processing (ASP) functional unit provides measures of the

vehicle accelerations through the conversion and digital filtering of this raw accelerometer data.

INPUT

A_ACCELERATION A_BIAS
A_COUNTER A_GAIN_0
A_SCALE A_STATUS
ALPHA_MATRIX ATMOSPHERIC_TEMP
G1 G2

OUTPUT

A_ACCELERATION A_STATUS

PROCESS The processing of the accelerometer data (A_COUNTER) into vehicle accelerations

(A_ACCELERATION) requires the following steps:

✔✔✔✔ ROTATE VARIABLES30

• Rotate A_ACCELERATION and A_STATUS.

✔✔✔✔ ADJUST GAIN FOR TEMPERATURE

The standard gain (A_GAIN_0) must be adjusted for the effects of temperature prior to the conversion

of the raw accelerometer values. The adjusted gain is a quadratic function of the ambient temperature

(ATMOSPHERIC_TEMP) and the standard gain.

• Adjust the gain for temperature as follows:

A_ GAIN(i) = A_ GAIN_ 0(i) + (G1 ⋅ ATMOSPHERIC_ TEMP)

 + (G2 ⋅ ATMOSPHERIC_ TEMP 2)

where i ranges from 1 to 3 and represents the three directions x, y, and z, and where

A_GAIN_0 is the standard gain.

58

59

✔ REMOVE CHARACTERISTIC BIAS

Each accelerometer has a characteristic DC bias (A_BIAS) which must be removed from the signal

prior to conversion. The acceleration is a linear function of its A_COUNTER value where the gain

specifies the slope and the offset (A_BIAS) specifies the intercept.

• Remove the bias as follows:

A_ACCELERATION_M(i) = A_BIAS(i) + A_GAIN(i) * A_COUNTER(i)

 where i ranges from 1 to 3 and represents the three directions x, y, and z.

✔ CORRECT FOR MISALIGNMENT

Each accelerometer is slightly misaligned from the true vehicle axes. The multiplier matrix

(ALPHA_MATRIX) which is shown below, is based on small angle approximations and corrects

for this misalignment. It is used for transforming the measured acceleration data into the true vehicle

accelerations.

 ALPHA_MATRIX =
1 −α xz α xy

α yz 1 −α yx

−α zy α zx 1

α xy defines the angle of rotation about the vehicle's

�
y v axis between the

�
x v axis and the

misaligned

�
x v axis. The other misalignment angles are defined similarly, based upon a right-

handed coordinate system.

• Compute preliminary current value of A_ACCELERATION as follows:

A_ ACCELERATION = ALPHA_ MATRIX × A_ ACCELERATION_ M

✔ DETERMINE ACCELERATIONS AND ACCELEROMETER STATUS31

The variable A_STATUS is a four-element array in each of the three physical dimensions, and contains

the present and previous three values of status for each accelerometer. The variable

A_ACCELERATION is a five-element array in each of the three dimensions (x, y, and z).

A_ACCELERATION contains the present and previous four values of acceleration.

• The following steps are described for the x axis but should be performed for each axis:

•• If one or more of the previous three values of A_STATUS is unhealthy, leave the current

value of A_ACCELERATION unchanged, set the current value of A_STATUS to healthy

and do no further processing for this axis.

•• If all three of the previous values of A_STATUS are healthy, check for extreme values and

set A_STATUS and A_ACCELERATION according to the method described below. The

60

accelerometer processing includes filtering of the calculated accelerations along each axis (i.e.
filtering of Ý Ý x v , Ý Ý y v , Ý Ý z v()t), and ignoring or eliminating calculated accelerations which are out

of range. To effect this filtering, the means and standard deviations for each component of

acceleration are to be computed using the calculated accelerations from the previous three

time steps. That is, for the current time step t and the measurement of acceleration along the x

axis:

••• Calculate

ˆ µ =
Ý Ý x v (i)

3i = t −3

t −1

∑

which is the current sample mean

••• Calculate

ˆ σ =
Ý Ý x v (i)()2

3
− ˆ µ

2

i= t −3

t −1

∑

which is the current sample standard deviation.

••• If ˆ µ − Ý Ý x v (t) > A_ SCALE ⋅ ˆ σ

 set Ý Ý x v(t) to ˆ µµµµ

 set A_STATUS to unhealthy

where Ý Ý x v(t) is the acceleration along the x axis for the current time step.

Similar equations hold for eliminating outliers in the measures of acceleration

along the y and z axes.

 otherwise

set A_STATUS to healthy

In summary, if the calculated acceleration for the current time step for any component

differs from the mean by more than A_SCALE times the standard deviation, then that

component of acceleration should be replaced by its current mean and A_STATUS

should be set to unhealthy.

If the calculated acceleration for any component is within the specified range of the mean,

then the preliminary value of A_ACCELERATION should remain unchanged and

A_STATUS should be set to healthy.

61

 63

CP -- Communications Processing (P-Spec 2.4)

PURPOSE Data from the vehicle sensors and guidance processor is relayed back to the orbiting platform for later

analysis. The CP functional unit converts the sensed data into a data packet appropriate for radio transmission.

INPUT

AE_CMD AE_STATUS
AE_TEMP AR_ALTITUDE
AR_STATUS ATMOSPHERIC_TEMP
A_ACCELERATION A_STATUS
CHUTE_RELEASED COMM_SYNC_PATTERN
CONTOUR_CROSSED FRAME_COUNTER
GP_ALTITUDE GP_ATTITUDE
GP_PHASE GP_ROTATION
GP_VELOCITY G_ROTATION
G_STATUS K_ALT
K_MATRIX PE_INTEGRAL
RE_CMD RE_STATUS
SUBFRAME_COUNTER TDLR_STATE
TDLR_STATUS TDLR_VELOCITY
TDS_STATUS TD_SENSED
TE_INTEGRAL TS_STATUS
VELOCITY_ERROR YE_INTEGRAL

OUTPUT

C_STATUS PACKET

PROCESS The data packet (PACKET) prepared for transmission is organized to sequentially contain a

synchronization pattern, a sequence number, new sample mask, the data itself, and the checksum information. The

data packet created will automatically be transmitted during the next call to GCS_SIM_RENDEZVOUS.

✔ SET COMMUNICATOR STATUS TO HEALTHY

• Set C_STATUS to healthy.

The construction of the packet requires the following steps:

✔ CONSTRUCT PACKET:

• GET SYNCHRONIZATION PATTERN

The synchronization pattern is provided in the variable COMM_SYNC_PATTERN. It is a 16-bit

pattern dictated by the design of the receiving communications equipment.

 64

• DETERMINE SEQUENCE NUMBER

The sequence number identifies the packet of data that is being sent. It is a byte value in the range

0..255. The sequence number will be 0 during the first subframe of frame number 1. Sequence

numbers increase by one every subframe, except that the values repeat after the 256th packet. The

sequence number can be calculated based on the values of the variables FRAME_COUNTER and

SUBFRAME_COUNTER.

• PREPARE SAMPLE MASK

The sample mask is a boolean vector where "ones" represent variables that have been sampled

since the previous transmission. Any variables listed in Table 5.5 that may have changed during

the present subframe should be marked in the mask and transmitted. The output variables from the

functional units ARSP and TDLRSP, however, should not be transmitted when the variable

FRAME_COUNTER is an even number. Values that have been rotated into subsequent elements

of an array are not considered "new" and thus do not have to be transmitted. This eliminates the

need to maintain previous values on all variables and also eliminates making comparisons to

determine which variables should be sent. Each bit position in the mask represents a particular

variable listed in Table 5.5. The leftmost bit of the mask corresponds to AE_CMD, and moving

across the mask from left to right, the next mask bit corresponds to the next variable in Table 5.5

(in row order).

• PREPARE DATA SECTION

The data section of the packet contains the sixteen bit values for the elements of the variables in

Table 5.5 that may have new samples available. Values that have been rotated into subsequent

elements of an array are not considered "new" and thus do not have to be transmitted. Once it has

been determined which variables should be transmitted for this particular subframe, those variables

should be packed into the data section. Although the length of the variable PACKET is fixed, the

number of bytes of PACKET which contain actual variables to be transmitted will vary depending

on the values of FRAME_COUNTER and SUBFRAME_COUNTER. The variables to be

transmitted should be concatenated so that there are no unused bytes between the data to be

transmitted. There may however be unused bytes following the checksum. The data are

concatenated in the order given by the sample mask, starting with the most significant bit (i.e. left

most bit). Variables should be packed to the nearest byte boundary; thus, a single element of

PACKET could contain a logical*1 and the first byte of the variable that follows it. Arrays should

be sent with the first index changing most rapidly. It should be noted that some arrays have terms

that are constant (e.g. the off-diagonal terms of K_MATRIX and the diagonal terms of

GP_ROTATION) and since these terms can never have "new" values, they should not be

 65

transmitted. The values in Table 5.5 should be sent in row order, starting at the top of the

table. The first value in alphabetical order goes next to the mask in the packet.32

• CALCULATE CHECKSUM

The data checksum is calculated on the entire packet (excluding the checksum) using the standard

CRC-16 polynomial as defined in [11]. The calculation of the checksum should begin with the

COMM_SYNC_PATTERN portion of PACKET, and conclude with the last variable to be sent

during the current subframe. Any unused parts of PACKET should be ignored for the calculation

of the checksum. The checksum should be placed in the two bytes immediately following the last

byte of actual data to be transmitted for this subframe.

Table 5.5: PACKET VARIABLES

AE_CMD AE_STATUS AE_TEMP
AR_ALTITUDE AR_STATUS ATMOSPHERIC_TEMP
A_ACCELERATION A_STATUS CHUTE_RELEASED
CONTOUR_CROSSED C_STATUS GP_ALTITUDE
GP_ATTITUDE GP_PHASE GP_ROTATION
GP_VELOCITY G_ROTATION G_STATUS
K_ALT K_MATRIX PE_INTEGRAL
RE_CMD RE_STATUS TDLR_STATE
TDLR_STATUS TDLR_VELOCITY TDS_STATUS
TD_SENSED TE_INTEGRAL TS_STATUS
VELOCITY_ERROR YE_INTEGRAL

Note: when read by rows, this table represents the alphabetical listing of variables that are to appear in the

data section of the packet.

Table 5.6: SAMPLE MASK

INFORMATION SENT A B C ... Z
EXAMPLE MASK 1 1 0 ... 1

Note: this table gives information only on the order of the packet. The packet should be packed to a byte-

boundary limit into integer*2 elements.

 66

Table 5.7: EXAMPLE OF PACKET

COMM_SYNC_PATTERN

.

.

.
SEQUENCE NUMBER

SAMPLE MASK
.
.
.

DATA SECTION
containing the
variables that

may have changed
since last packet

.

.

.
CHECKSUM

.

.

.

Note: this table is one byte wide, but any section containing three vertical dots represents one that may be

more than one byte long (e.g. DATA SECTION). Also note that the variables inserted into PACKET are inserted in

the VAX standard byte order.

67

CRCP -- Chute Release Control Processing (P-Spec 2.3.3)

PURPOSE The CRCP functional unit implements the release of the parachute which is attached prior to the

beginning of the terminal descent phase.

INPUT

AE_TEMP CHUTE_RELEASED

OUTPUT

CHUTE_RELEASED

PROCESS If the chute has been released, leave CHUTE_RELEASED unchanged and this signal will be

automatically transmitted to the chute release mechanism during the next call to GCS_SIM_RENDEZVOUS. If the

chute has not been released, the engine temperature will determine whether or not to release the chute. If the chute

has not been released and the engines are hot (i.e. AE_TEMP is HOT), then release the chute by setting

CHUTE_RELEASED to "chute released."

69

GP -- Guidance Processing (P-Spec 2.2)

PURPOSE GP uses the information available from ASP, ARSP, CRCP, GSP, TDLRSP, and TDSP and the results

of its previous computations to control the vehicle's state during terminal descent.

INPUT

A_ACCELERATION AE_SWITCH
AE_TEMP AR_ALTITUDE
CHUTE_RELEASED CL33
CONTOUR_ALTITUDE CONTOUR_CROSSED
CONTOUR_VELOCITY DELTA_T
DROP_HEIGHT DROP_SPEED34
ENGINES_ON_ALTITUDE FRAME_COUNTER
GP_ALTITUDE GP_ATTITUDE
GP_PHASE GP_VELOCITY
GRAVITY G_ROTATION
K_ALT K_MATRIX
MAX_NORMAL_VELOCITY35 RE_SWITCH
TD_SENSED TDLR_VELOCITY
TDS_STATUS

OUTPUT

AE_SWITCH CL36
CONTOUR_CROSSED FRAME_ENGINES_IGNITED
GP_ALTITUDE GP_ATTITUDE
GP_PHASE GP_ROTATION
GP_VELOCITY RE_SWITCH
TE_INTEGRAL37 VELOCITY_ERROR

ARRAYS The variables GP_ATTITUDE, GP_ALTITUDE, and GP_VELOCITY are five element arrays in each of

their history dimensions and contain enough previous values to provide the required history for integration in

updating the vehicle and guidance states.

PROCESS The Guidance Processor computes the velocity, altitude, and attitude to be used in controlling the

engines.

✔✔✔✔ ROTATE VARIABLES38

• Rotate GP_ATTITUDE, GP_ALTITUDE, and GP_VELOCITY.

✔ SET UP THE GP_ROTATION MATRIX

G_ROTATION contains three values: p, q, and r, in that order. These values must be placed into a

70

3 x 3 matrix (GP_ROTATION) in the correct positions for later calculations. Note that

GP_ROTATION does not include any time histories; thus it may be convenient to use a temporary

variable during calculation to hold the time histories of GP_ROTATION or to use elements directly

from G_ROTATION; however, GP_ROTATION does describe the correct matrix orientation for

operations and upon exiting from GP should contain the correct values for the present time step.

• Place the values from G_ROTATION into GP_ROTATION as shown:

GP_ ROTATION =
0 rv −−−−qv

−−−−rv 0 pv

qv −−−−pv 0

✔ CALCULATE NEW VALUES OF ATTITUDE, VELOCITY, AND ALTITUDE

The attitude, velocity, and altitude are each calculated by:

1. finding a rate of change from known values, and then
2. integrating this rate of change through one time step by some method of integration providing the

accuracy specified. That is:

Xt = Xt −1 + Ý X dt
t −1

t
∫

where ÝX represents the rate of change of velocity, altitude, or attitude. These are calculated

according to the following formula:

d
dt

var iable() = α × var iable + β + correction term

Table 5.8 shows the values of the variables, α, β, and the correction terms for each of the

variables GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE.

• Solve for the current values of GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE

using the equations given above, Table 5.8, and an appropriate integration method (see

Appendix C Numerical Integration Instructions).39

Table 5.8: DIFFERENTIAL EQUATIONS

Variable α β Correction Term

GP_ATTITUDE GP_ROTATION 0 0
GP_VELOCITY GP_ROTATION GRAVITY * GP_ATTITUDE(i,3) +

A_ACCELERATION
i goes from 1 to 3

K_ MATRIX ×
(TDLR_VELOCITY −
GP_ VELOCITY)

71

GP_ALTITUDE 0 −GP _ ATTITUDE ×
GP_ VELOCITY

K_ ALT ⋅(AR_ ALTITUDE −
GP_ ALTITUDE)

72

In Table 5.8, note that:

1. Gravity is given as a scalar although it is actually a vector quantity. To obtain the correct

quantity, the scalar given should be multiplied by the last column of the GP_ATTITUDE

matrix to produce a column vector appropriate to the equation.

2. The equation for rate of change of altitude uses GP_ATTITUDE and GP_VELOCITY. The

third column of GP_ATTITUDE should be treated as a row for this calculation. Thus element

(1,3) of GP_ATTITUDE becomes the first element in a vector of one row and three columns.

The element (2,3) becomes the second element, and (3,3) is the third element in this vector.

This row-vector is then multiplied by the column-vector GP_VELOCITY to produce a scalar.

The correction terms represent a difference between the guidance processors value and the radar's

value. The correction term is turned on or off by the "K" terms which are determined in the

respective radar processors.

✔ DETERMINE IF ENGINES SHOULD BE ON OR OFF40

Note that RE_SWITCH is initialized to on, while AE_SWITCH is initialized to off, and

FRAME_ENGINES_IGNITED is initialized to zero by INIT_GCS. Use Table 5.9 to determine

whether to turn axial engines on (set AE_SWITCH to on and set

FRAME_ENGINES_IGNITED) or whether to turn axial and roll engines off (set AE_SWITCH

and RE_SWITCH to off).

TABLE 5.9: DETERMINATION OF AXIAL AND ROLL ENGINE ON/OFF SWITCHES41

CURRENT STATE ACTIONS

AE_

SWITCH

GP_

ALTITUDE 2 ⋅⋅⋅⋅GRAVITY ⋅⋅⋅⋅ GP_ ALTITUDE ++++

x component of GP _VELOCITY
 ≤≤≤≤ MAX_ NORMAL_VELOCITY

?

Have engines
been turned
off in a prior

frame?

TD_

SENSED

FRAME_

ENGINES_

IGNITED

AE_

SWITCH

RE_

SWITCH

off ≤
ENGINES_ON_

ALTITUDE

d no not sensed current
FRAME_

COUNTER

on

on ≤ DROP_

HEIGHT

yes d not sensed off off

on d d d sensed off off

Note: A blank box under "ACTIONS" indicates no action is to be taken

 "d" = don't care condition

73

74

✔ DETERMINE VELOCITY ERROR

The velocity error represents the difference between the x component of the velocity of the craft and

the optimal velocity of the craft at the vehicle altitude (Shown in Figure 5.1). This distance is actually

a difference between two velocities and is called VELOCITY_ERROR. The velocity-altitude contour

is contained in two variables: CONTOUR_ALTITUDE and CONTOUR_VELOCITY. These are both

arrays with 100 elements that contain known points along the contour. CONTOUR_VELOCITY and

CONTOUR_ALTITUDE are related such that element i of CONTOUR_VELOCITY is the

optimum velocity at the altitude given by element i of CONTOUR_ALTITUDE. It should be

noted that the point in the first element is the lowest altitude given; and, as the index number increases,

altitude increases. Since not all of these array elements may be needed, all unused elements beyond the

highest given altitude will be filled with zeroes, and that the value of zero is never given for altitude

except as this filler. The value of velocity at any other point may be found by linear interpolation (or

extrapolation if the value is outside the range of the supplied contour) at the given vehicle altitude.

• The optimal velocity should be calculated by finding the present altitude in

CONTOUR_ALTITUDE and then locating the corresponding velocity in

CONTOUR_VELOCITY, using interpolation if necessary. Let "optimal_velocity" represent

the interpolated value calculated from the CONTOUR_VELOCITY table.

• Calculate VELOCITY_ERROR as follows:42

VELOCITY_ ERROR ==== x component of GP_VELOCITY −−−−optimal_velocity

✔ DETERMINE IF CONTOUR HAS BEEN CROSSED

• If GP_ALTITUDE ≤ ENGINES_ON_ALTITUDE, then check whether the contour has been

crossed as follows:

•• If CONTOUR_CROSSED = "contour not crossed" and VELOCITY_ERROR ≥ 0, then set

CONTOUR_CROSSED to "contour crossed". Otherwise CONTOUR_CROSSED should

remain unchanged.43

Figure 5.1 shows two possible trajectories, with the point along each where the contour is first sensed and also

an example of VELOCITY_ERROR. Note: the altitude where the engines are turned on should be the earliest point

to check crossing the contour, even though the trajectory may have crossed the contour at some greater altitude.

75

Figure 5.1: VELOCITY-ALTITUDE CONTOUR44

1 2Trajectory

Velocity
Error Velocity

Error

Contour
Crossed

Altitude

ENGINES_ON_ALTITUDE

Velocity

✔ DETERMINE GUIDANCE PHASE

• The guidance phase (GP_PHASE) is determined according to the events in Table 5.10. These

phases are based upon information that may be provided by processes other than the guidance

processor.

The current phase (GP_PHASE) and the event are to be used where appropriate to reset

GP_PHASE to the next phase. If there is no combination of current phase and event from

the table that is true, then GP_PHASE should not be changed. Note that the two columns

labeled "PRESENT STATE" DESCRIPTION and "NEXT STATE DESCRIPTION " are

for informational purposes only, and are not used in the setting of GP_PHASE.

76

Table 5.10: DETERMINATION OF GUIDANCE PHASE46

CURRENT STATE NEXT STATE

 ACTION
GP_

PHASE
CURRENT STATE

DESCRIPTION
EVENT GP_

PHASE
NEXT STATE

DESCRIPTION
1 Chute attached

Engines off
Touch Down not sensed

Altitude for turning engines on is
sensed

2 Chute attached
Engines on
Touch down not sensed

2 Chute attached
Engines on
Touch down not sensed

Axial Engines become hot and
the chute is released

3 Chute released
Axial Engines Hot
Touch down not sensed

2 Chute attached
Engines on
Touch down not sensed

Touched down is sensed 5 Chute attached
Engines off
Touch down sensed

3 Chute released
Axial Engines Hot
Touch down not sensed

Altitude ≤ DROP_HEIGHT and
TDS_STATUS = healthy and
Touch down not sensed and

(2 ⋅⋅⋅⋅GRAVITY ⋅⋅⋅⋅GP_ ALTITUDE

 ++++ x component of GP_ VELOCITY
 ≤≤≤≤ MAX_ NORMAL_VELOCITY

4 Chute released
Engines off
Touch down not sensed

3 Chute released
Axial Engines Hot
Touch down not sensed

Altitude ≤
DROP_HEIGHT and
TDS_STATUS = failed

5 Chute released
Engines off
Touch down not sensed

3 Chute released
Axial Engines Hot
Touch down not sensed

Touch down is sensed 5 Chute released
Engines off
Touch down sensed

4 Chute released
Engines off
Touch down not sensed

Touch down is sensed 5 Chute released
Engines off
Touch down sensed

4 Chute released
Engines off
Touch down not sensed

TDS_STATUS = failed 5 Chute released
Engines off
Touch down not sensed

• PHASE 1: If the altitude provided by the guidance processor is less than or equal to the

ENGINES_ON_ALTITUDE, set GP_PHASE = 2.47

• PHASE 2: If the axial engines have become hot and the parachute has been released, set

GP_PHASE = 3. If touch down is sensed, set GP_PHASE = 5.48

• PHASE 3: If touch down has not been sensed and DROP_HEIGHT has not been reached, then

control the axial and roll engines to cause the lander to follow a gravity-turn steering descent. If

77

DROP_HEIGHT is reached and touch down is not sensed and

2 ⋅⋅⋅⋅ GRAVITY ⋅⋅⋅⋅ GP_ ALTITUDE ++++ x component of GP _VELOCITY

 ≤≤≤≤ MAX_ NORMAL _VELOCITY

and TDS_STATUS = healthy, then set GP_PHASE = 4. If DROP_HEIGHT is reached, and

TDS_STATUS = failed, then set GP_PHASE = 5. If touch down is sensed, then set GP_PHASE

= 5.49

• PHASE 4 : If touch down has not been sensed and TDS_STATUS is healthy, then take no action.

If TDS_STATUS is failed, then set GP_PHASE to 5. If touch down has been sensed, set

GP_PHASE to 5.50

✔✔✔✔ DETERMINE WHICH SET OF CONTROL LAW PARAMETERS TO USE51

The "Control Law Parameters" are a subset of the variables in the global data store named

"RUN_PARAMETERS." This subset consists of the following variables: GVEI, GV, GVI, GR,

GW, GWI, GQ, PE_MIN, PE_MAX, TE_MIN, TE_MAX, YE_MIN, and YE_MAX. Note that

each one of these variables is an array of two elements. The elements with a subscript of one will

be referred to as the "first" set of Control Law Parameters, while the elements with a subscript

of two will be referred to as the "second" set of Control Law Parameters.

The variable CL is used to control which set of Control Law Parameters is used in the control

laws at any given time by the functional unit AECLP. The functional unit GP must determine

the value of CL for use by AECLP. The variable CL has two valid values, namely "first" which

means that the first set of Control Law Parameters should be used by AECLP, and "second"

which means that the second set of Control Law Parameters should be used by AECLP in the

equations for
Pe

 ,
Ye

,
Pe

L

 ,
Ye

L

, and TE_LIMIT. See the Data

Requirements Dictionary for the actual numeric values for CL which correspond to "first" and

"second." The variable CL is initialized to the value "first" by INIT_GCS, and thus the first set

of parameters will be used by AECLP until CL is changed. The second set of Control Law

Parameters should be used by AECLP at the first point where the lander crosses the

constant-velocity part of the Velocity-Altitude contour. The constant-velocity part of the

contour is the final part of the contour where the optimal velocity for the lander remains

constant (and equal to DROP_SPEED). The GUIDANCE PROCESSOR (GP) must determine

when to begin using the second set of Control Law Parameters, as follows:

78

• If the following conditions are true:

 CL = first, and

 optimal_velocity = DROP_SPEED, and

 x component of GP_VELOCITY < DROP_SPEED

Then

 Set CL = second

 Set TE_INTEGRAL = 0.0

79

GSP -- Gyroscope Sensor Processing (P-Spec 2.1.4)

PURPOSE Three fiber-optic ring gyroscopes are located on the lander, one for each of the x, y, and z axes as

shown. The Gyroscope Sensor Processing (GSP) functional unit provides a measure of the vehicle's rotation rates

through the conversion and filtering of the raw gyroscope data.

INPUT

ATMOSPHERIC_TEMP G3
G4 G_COUNTER
G_GAIN_0 G_OFFSET
G_ROTATION

OUTPUT

G_ROTATION G_STATUS

PROCESS The output from each of the gyroscopes is a 16-bit quantity (G_COUNTER) divided into 2 parts: the

lower 14 bits represent the vehicle's rate of rotation about that axis and the high-order bit represents the direction of

this rotation. This is a sign-magnitude representation of the counter value that only uses the lower 14 bits of the

magnitude portion of the number. Following is a map of G_COUNTER:

16 15 14 13 12 ... 1

D X MAGNITUDE

where D = direction, and X = unused. The high bit set to 1 indicates a negative rotation consistent with a right-

handed coordinate system.

✔ ROTATE VARIABLES52

• Rotate G_ROTATION .

✔ ADJUST GAIN

The standard gain (G_GAIN_0) must be adjusted for the effects of temperature prior to the conversion

of the raw gyroscope values. The adjusted gain is a quadratic function of the ambient temperature

(ATMOSPHERIC_TEMP) and the standard gain.

That is,

G_ GAIN(i) = G_ GAIN_ 0(i) + (G3 ⋅ ATMOSPHERIC_ TEMP)

 + (G4 ⋅ ATMOSPHERIC_ TEMP2)

where i ranges from 1 to 3 and represents the three directions x, y, and z.

80

✔ CONVERT G_COUNTER

The rotation rate is linear with respect to the unprocessed gyroscope values, i.e. the lower 14 bits must

be converted. G_GAIN is the multiplier for this conversion and G_OFFSET is the constant offset. The

equation for converting counter to rotation then becomes:

G_ROTATION(i) = G_OFFSET(i) + G_GAIN(i) * (G_COUNTER(i))

where i ranges from 1 to 3 and represents the three directions x, y, and z.

✔ SET GYROSCOPE STATUS TO HEALTHY.

• Set G_STATUS to healthy.

81

RECLP -- Roll Engine Control Law Processing (P-Spec 2.3.2)

PURPOSE RECLP generates the roll engine command which controls the firing pulse and direction of the roll

engines.

INPUT

DELTA_T G_ROTATION
P1 P2
P3 P4
RE_SWITCH THETA
THETA1 THETA2

OUTPUT

RE_CMD RE_STATUS
THETA

PROCESS Roll control of the lander is achieved by generating the roll commands as functions of the differences

between the actual and desirable values for the roll angle and rate. These differences are limited, and the

control commands are proportional to them. Note that once the roll command (RE_CMD) has been set with the

correct value, it will automatically be sent to the engines during the next call to GCS_SIM_RENDEZVOUS. The

steps to be performed are as follows:53

✔ DETERMINE IF ENGINES ARE ON 54

• If RE_SWITCH is off, then set RE_CMD to 1, and proceed directly to the step "SET ROLL

ENGINE STATUS TO HEALTHY."

✔ DETERMINE PULSE INTENSITY AND DIRECTION
• The pulse intensity and direction are derived from the graph shown in Figure 5.2 using pv()t . For

each region of the graph, the intensity is given, followed by the direction inside parentheses.

Note that the x axis represents the integral of the roll rate. This is really the present angle of roll.

This integral should be calculated by Euler's method (see Appendix C). As an example, THETA

= THETA + (integral of roll rate for this step). The variable THETA will be initialized by

INIT_GCS. Note that when the vehicle status is located on a boundary between two or more roll

command regions, the lowest intensity signal should be used to avoid over-commanding the

engines. One should refer to the Data Requirements Dictionary under RE_CMD for the

actual values for intensity and direction.

82

✔ DETERMINE ROLL ENGINE COMMAND

• The pulse intensity and direction are packed into the lowest three lower-order bits of the actual roll

engine command (RE_CMD) as shown:

X X X � X I I D

16 15 14 � 4 3 2 1

where X = unused, I = intensity, and D = direction. The bits marked "X = unused" in RE_CMD

must be left at 0.

✔ SET ROLL ENGINE STATUS TO HEALTHY

• Set RE_STATUS to healthy.

Figure 5.2: GRAPH FOR DERIVING ROLL ENGINE COMMANDS55

P
4

P
3

P2

P1

Intermediate (CW)

Minimum
(CW)

Minimum
(CCW)

Intermediate (CCW)
-P1

-P2

-P3

-P4

θ1 θ
2

−θ2 −θ1

- +

CW CCW

p

Maximum (CW)
Maximum (CW)

Maximum (CCW) Off (CW)

Maximum (CW)

THETA

Off (CW)

Maximum (CCW)

Maximum (CCW)

CW = Clockwise
CCW = Counterclockwise

Note: Off, Minimum, Intermediate, and Maximum are Intensities
 CW, CCW are Directions

Off (CW)

Off (CW)

 83

TDLRSP -- Touch Down Landing Radar Sensor Processing
 (P-Spec 2.1.3)

PURPOSE A single touch down landing radar (TDLR) gauges the velocity of the vehicle during terminal descent.

This radar is a doppler radar with four radar beams, each of which emanates from the vehicle's center of gravity with
a slight offset from the vehicle's

�x v axis. The radar beams form the edges of the pyramid as shown in Figure 5.3

The Touch Down Landing Radar Sensor Processing (TDLRSP) functional unit converts measurements of the

frequency shift of each beams reflection into vehicle velocities; however, the receivers associated with each beam

may not find a usable reflection. If no usable reflection is found, the receiver returns a status of beam in search mode

(unlocked).

INPUT

DELTA_T FRAME_BEAM_UNLOCKED
FRAME_COUNTER K_MATRIX
TDLR_ANGLES TDLR_COUNTER
TDLR_GAIN TDLR_LOCK_TIME
TDLR_OFFSET TDLR_STATE
TDLR_VELOCITY

OUTPUT

FRAME_BEAM_UNLOCKED K_MATRIX
TDLR_STATE TDLR_STATUS
TDLR_VELOCITY

PROCESS It is only necessary that this functional unit perform its normal calculations every other frame,

namely on the odd-numbered frames; however, one will notice that in the scheduling Table 4.1, it is required

that this functional unit execute every frame. The reason for this is that during its normal processing it must

rotate history variables. This means that during the frames when it does not need to calculate new outputs,

namely the even-numbered frames, it must still rotate its history variables and set its new or current values

equal to the previous values, thus creating double entries for each rotated variable. By doubling the entries,

consistency of time histories will be maintained at the expense of keeping two copies of each value in these

variables, and forcing the functional unit to execute every frame.56

The value returned by each beam (TDLR_COUNTER) is proportional to the beam frequency shift down that

beam, which is, in turn, proportional to the velocity down that beam. The processing of the TDLR_COUNTER data
into the component velocities along the vehicle's

�
x ,
�
y , and

�
z axes requires the following steps:

✔ ROTATE VARIABLES 57

• Rotate TDLR_VELOCITY and K-MATRIX.

 84

✔✔✔✔ PERFORM ALTERNATE PROCESSING IF THIS IS AN EVEN-NUMBERED FRAME58

• If FRAME_COUNTER is an even number, then do the following::

•• Insure that the values for the current TDLR_VELOCITY array are equal to the values

for the previous TDLR_VELOCITY array and also that the values for the current

K_MATRIX array are equal to the values for the previous K_MATRIX array.

•• Exit from this functional unit.

Figure 5.3: DOPPLER RADAR BEAM LOCATIONS

Ζ

B2

B3

x

B
1

B4

y

→

→

→

✔ DETERMINE RADAR BEAM STATES59

The processing of the four radar beams depends on the current state of the radar, i.e. whether or not

each of the four beams is searching or in lock, and also upon the previous states of the beams. Note

that at the beginning of each trajectory, FRAME_BEAM_UNLOCKED will be set to zero, thus

meaning that the beam has never been unlocked. If the receiver for a beam does not sense an echo (i.e.

the beam is in search mode), the corresponding TDLR_COUNTER value will be zero. Note that a

beam which becomes unlocked will be ignored for TDLR_LOCK_TIME seconds.

• Use Table 5.11 to determine the state (TDLR_STATE and FRAME_BEAM_UNLOCKED)

for each of the four beams.

 85

Table 5.11: DETERMINATION OF RADAR BEAM STATES60

CURRENT STATE ACTIONS

TDLR_
STATE

TDLR_
COUNTER DELTA_ T

⋅⋅⋅⋅ (FRAME_ COUNTER −−−− FRAME_ BEAM_ UNLOCKE
 ≥≥≥≥ TDLR _ LOCK _ TIME?

TDLR_
STATE

FRAME_BEAM_
UNLOCKED

locked 0 d unlocked
current

FRAME_COUNTER

unlocked ≠ 0 yes locked

unlocked 0 yes
current

FRAME_COUNTER

Note: A blank box under "ACTIONS" indicates no action is to be taken
 "d" = don't care condition

✔ DETERMINE BEAM VELOCITIES

A beam velocity is a linear function of its TDLR_COUNTER value where the gain (TDLR_GAIN)

specifies the slope and the offset (TDLR_OFFSET) specifies the intercept.

• Calculate the beam velocities as follows:

B(i) = TDLR_OFFSET + TDLR_GAIN * (TDLR_COUNTER(i))

where i ranges from 1 to 4 and represents the four radar beams.

✔✔✔✔ PROCESS THE BEAM VELOCITIES61

• Use Table 5.12 to calculate values for
ˆ B x

,
ˆ B y

, and
ˆ B z

, which are the

processed beam velocities. Note that in Table 5.12, Bi is shorthand for B(i), where i ranges

from 1 to 4. Note also that the knowledge of which beams are in lock is used to determine

which line of the table to use in order to calculate
ˆ B x

,
ˆ B y

, and
ˆ B z

.

✔✔✔✔ CONVERT TO BODY VELOCITIES62

• In order to convert the processed beam velocities to body velocities (TDLR_VELOCITY),

use the following equations, which make use of the angles αααα, ββββ and γγγγ (TDLR_ANGLES)

which are the offsets of the beams from the body axes:

TDLR_VELOCITY(1) ====
ˆ B X

cos αααα

 86

TDLR_VELOCITY(2) ====
ˆ B y

cos ββββ

TDLR_VELOCITY(3) ====
ˆ B z

cos γγγγ

 87

✔✔✔✔ SET VALUES IN K_MATRIX63

When calculating the vehicle velocity, the Guidance Processor must know which components of

the body velocities are usable. A value of one in the diagonal element of the K_MATRIX

indicates that the corresponding velocity should be used, while a value of zero indicates that it

should not.

• Use Table 5.12 to set the values for Kx, Ky, and Kz in K_MATRIX, (again on the basis of

which beams are in lock), as follows:

K_ MATRIX =
Kx 0 0
0 K y 0
0 0 Kz

✔ SET TDLR_STATUS

• Set all elements of TDLR_STATUS to healthy.

 88

Table 5.12: PROCESSING OF DOPPLER RADAR BEAMS IN LOCK64

BEAMS

IN LOCK
ˆ B X Kx

ˆ B y Ky

ˆ B z Kz

none 0 0 0 0 0 0
B1 0 0 0 0 0 0
B2 0 0 0 0 0 0
B3 0 0 0 0 0 0
B4 0 0 0 0 0 0

B1, B2 0 0 B1 − B2() 2 1 0 0
B1, B3 B1 + B3() 2 1 0 0 0 0
B1, B4 0 0 0 0 B1 − B4() 2 1
B2, B3 0 0 0 0 B2 − B3() 2 1
B2, B4 B2 + B4() 2 1 0 0 0 0
B3, B4 0 0 B4 − B3() 2 1 0 0

B1, B2, B3 B1 + B3() 2 1 B1 − B2() 2 1 B2 − B3() 2 1
B1, B2, B4 B2 + B4() 2 1 B1 − B2() 2 1 B1 − B4() 2 1
B1, B3, B4 B1 + B3() 2 1 B4 − B3() 2 1 B1 − B4() 2 1
B2, B3, B4 B2 + B4() 2 1 B4 − B3() 2 1 B2 − B3() 2 1

B1, B2, B3, B4 B1 + B2 + B3 + B4() 4 1 B1 − B2 − B3 + B4() 4 1 B1 + B2 − B3 − B4() 4 1

89

TDSP -- Touch Down Sensor Processing (P-Spec 2.1.6)

PURPOSE The touch down sensor is attached to the end of a rod which is attached to the bottom of the vehicle. Its

purpose is to trigger engine shutdown when the vehicle is at the correct distance from the surface. This shutdown is

necessary to:

• avoid the stirring up of dust and debris and

• avoid scorching immediate area of the experiment site.

INPUT

TD_COUNTER TDS_STATUS

OUTPUT

TD_SENSED TDS_STATUS

PROCESS The touch down sensor is a simple switch at the end of a pole on the underside of the lander. If the

sensor is functioning properly, then TD_COUNTER will contain one of only two 16-bit values, namely sixteen

"ones", which means that touch down has been sensed, or sixteen "zeroes", which means that touch down has

not been sensed. If the sensor has failed due to electrical noise, TD_COUNTER will contain some

combination of "ones" and "zeroes" other than all "ones" or all "zeroes".65

✔✔✔✔ DETERMINE STATUS OF TOUCH DOWN SENSOR AND WHETHER TOUCH DOWN HAS

BEEN SENSED:

• Use Table 5.13 to determine whether the touch down sensor is functioning properly (set

TDS_STATUS), and whether touch down has been sensed (set TD_SENSED). Note that if

the sensor fails, the guidance processor will decide when the vehicle has touched down.66

Table 5.13: DETERMINATION OF TOUCH DOWN SENSOR AND STATUS67

CURRENT STATE ACTIONS

TDS_STATUS TD_COUNTER TD_SENSED TDS_STATUS

healthy all zeroes not sensed
healthy all ones sensed
healthy mixture of ones &

zeroes
not sensed failed

Note: A blank block under "ACTIONS" indicates no action is to be taken

91

TSP -- Temperature Sensor Processing (P-Spec 2.1.5)

PURPOSE A temperature gauge on the vehicle is used to adjust the response of the accelerometers and gyroscopes.

The gauge contains two temperature sensing devices, namely a solid-state sensor and a matched pair of

thermocouples. The Temperature Sensor Processing (TSP) functional unit determines the ambient temperature,

using either the solid-state sensor or the thermocouple pair in a manner maximizing the accuracy of the measurement.

INPUT

M1 M2
M3 M4
SS_TEMP T1
T2 T3
T4 THERMO_TEMP

OUTPUT

ATMOSPHERIC_TEMP TS_STATUS

PROCESS The temperature values from the solid-state sensor are highly quantized. The processing of raw

temperature data from the solid-state sensor and thermocouple pair, SS_TEMP and THERMO_TEMP, is based on

the solid-state sensor being less accurate than the thermocouple pair, but having a greater usable operating range.

The ambient temperature (ATMOSPHERIC_TEMP) is to be calculated using either the solid state

sensor value (SS_TEMP) or the thermocouple sensor value (THERMO_TEMP). Since the thermocouple

sensor is more accurate, it should be used whenever possible; the solid state sensor should be used only if the

temperature does not lie within the usable range of the thermocouple pair. 69

The response of the solid-state temperature sensor is linear with respect to the ambient temperature and is

computed using the two calibration points (M1, T1) and (M2, T2) which characterize the line.

The response of the thermocouple pair is calibrated differently depending on the region (linear or parabolic)

where the measurement lies (see Figure 5.4):

Thermocouple linear region - The linear region is bounded by the calibration points used by the

thermocouple sensor (i.e., [M3, T3] and [M4, T4] inclusive). Temperatures measured within this region

are calibrated accordingly.

92

Figure 5.4: CALIBRATION OF THERMOCOUPLE PAIR70

 Temperature

T
4

T
3

M
3

M
4

L

0.15L 0.15L

Upper Parabolic Region

Lower Parabolic Region

Measurement

Linear Region

93

Thermocouple parabolic regions - The upper and lower parabolic regions extend plus or minus 15 percent

of the difference between the measured calibration points, M4 and M3, respectively. These parabolic

regions each intersect the line at the calibration points. The rate of change in temperature, with respect to

the thermocouple measurements, is continuous at these intersections. The upper (and lower) parabolas

are defined so that the temperature goes up (or down) as the square of the measurement value

(THERMO_TEMP). The parabolas are offset along both the temperature and measurement axes. By

using the values of T3, T4, M3, and M4, and the fact that the function is continuous at the endpoints, the

offsets for the parabolas may be determined, and the equations for the parabolas may be generated. Note

that the line in the linear region in Figure 5.4 is tangent to both parabolas.

The processing of the values SS_TEMP and THERMO_TEMP into an accurate measure of ambient

temperature (ATMOSPHERIC_TEMP) requires several steps, as follows:

✔✔✔✔ CALCULATE THE SOLID STATE TEMPERATURE71

• Use the value of SS_TEMP and the equation appropriate to the solid-state linear region to

compute the temperature.

✔✔✔✔ DETERMINE WHETHER TO USE SOLID STATE OR THERMOCOUPLE

TEMPERATURE72

• If the temperature derived from SS_TEMP in the previous step does not fall within the

accurate temperature response zone of the thermocouple pair (the linear as well as parabolic

regions), then set ATMOSPHERIC_TEMP to the temperature derived from SS_TEMP and

proceed directly to the step labeled "SET STATUS TO HEALTHY"; otherwise, proceed to

the step "CALCULATE THE THERMOCOUPLE TEMPERATURE".

✔✔✔✔ CALCULATE THE THERMOCOUPLE TEMPERATURE73

• Use the value of THERMO_TEMP to determine whether the temperature lies in the

thermocouple linear or the upper parabolic or the lower parabolic region.

• Use the value of THERMO_TEMP and the equation appropriate to the particular

thermocouple region (as determined above) to calculate ATMOSPHERIC_TEMP.

✔ SET STATUS TO HEALTHY

• Set the values of both elements of TS_STATUS to healthy.

95

6. DATA REQUIREMENTS DICTIONARY

97

PART I. DATA ELEMENT DESCRIPTIONS

The following template has been constructed for defining the data elements in the four required global data

stores and the optional variables shown in Table 6.5:

NAME:
DESCRIPTION:
USED IN:
UNITS:
RANGE:
DATA TYPE:
ATTRIBUTE:
DATA STORE LOCATION:
ACCURACY:

NAME This field gives the name of the variable used in the specification. The variable name used during coding

must be the same as specified.

DESCRIPTION This field gives a brief description of the variable.

USED IN This field provides a reference to the functional units using this variable.

UNITS This field indicates the unit of measure for the data contained in the variable being defined.

RANGE This field specifies the acceptable range of data values for the variable.

DATA TYPE The data type field specifies the data type to be used when declaring the variable during coding.

ATTRIBUTE This field indicates whether or not the variable contains data, control information, or a data

condition.

DATA STORE LOCATION This field references the common region where the variable must be stored.

ACCURACY This field dictates the degree of accuracy required for output comparisons to be made between

implementations. In the data dictionary, accuracy is listed as N/A where accuracy is not applicable, or TBD where

accuracy is (T)o (B)e (D)etermined later. A formal modification will be released when the values of the accuracy

requirements have been approved.

99

NAME: A_ACCELERATION74
DESCRIPTION: vehicle accelerations
USED IN: AECLP, ASP, CP, GP

UNITS:
meters
sec2

RANGE: [-20, 5]
DATA TYPE: array (1..3, 0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD

NAME: A_BIAS
DESCRIPTION: characteristic bias in the
accelerometer measurements
USED IN: ASP

UNITS:
meters
sec2

RANGE: [-30, 0]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: A_COUNTER
DESCRIPTION: accelerations along the

�
x ,
�
y , and

�
z axes
USED IN: ASP
UNITS: none
RANGE: [0, 215 -1]
DATA TYPE: array (1..3) of Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: A_GAIN_075
DESCRIPTION: standard gain in the accelerations
USED IN: ASP

UNITS:

meters
sec2

RANGE: [0, 1]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: A_SCALE76
DESCRIPTION: multiplicative constant used to
determine limit on deviation accelerometer values.
USED IN: ASP
UNITS: none
RANGE: [0, 3]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS

ACCURACY: N/A

100

NAME: A_STATUS
DESCRIPTION: Flag indicating whether or not the
accelerometers are working properly.
USED IN: ASP, CP
UNITS: none
RANGE: [0 : healthy, 1: unhealthy]
DATA TYPE: array (1..3, 0..3) of logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: AECLP_DONE
DESCRIPTION: Flag indicating completion of
AECLP task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task AECLP
incomplete, TRUE: running of task AECLP
complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: AE_CMD
DESCRIPTION: Valve settings for the axial engines.
USED IN: AECLP, CP
UNITS: none
RANGE: [0, 127]
DATA TYPE: array (1..3) of Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: TBD

NAME: AE_STATUS
DESCRIPTION: Status of axial engines.
USED IN: AECLP, CP
UNITS: none
RANGE: [0: Healthy, 1: Failed.]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: AE_SWITCH
DESCRIPTION: Flag indicating whether or not axial
engines are turned on.
USED IN: AECLP, GP
UNITS: none
RANGE: [0: axial engines are off, 1: axial engines
are on.]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: AE_TEMP
DESCRIPTION: Temperature of axial engines when
they are turned on.
USED IN: AECLP, CP, CRCP, GP
UNITS: none
RANGE: [0: Cold, 1: Warming-Up, 2: Hot]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: ALPHA_MATRIX
DESCRIPTION: Matrix of misalignment angles
USED IN: ASP
UNITS: none
RANGE: [-π , π]
DATA TYPE: array (1..3, 1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: AR_ALTITUDE
DESCRIPTION: altimeter radar height above terrain
USED IN: ARSP, CP, GP
UNITS: meters
RANGE: [0, 2000]
DATA TYPE: array (0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD

NAME: AR_COUNTER77
DESCRIPTION: counter containing elapsed time
since transmission of radar pulse
USED IN: ARSP
UNITS: Cycles
RANGE: [-1, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: AR_FREQUENCY78
DESCRIPTION: increment frequency of
AR_COUNTER
USED IN: ARSP

UNITS:
cycles

sec

RANGE: [1, 2.45x109]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

101

NAME: AR_STATUS
DESCRIPTION: status of the altimeter radars
USED IN: ARSP, CP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: array (0..4) of logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: ARSP_DONE
DESCRIPTION: Flag indicating completion of
ARSP task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task ARSP
incomplete, TRUE: running of task ARSP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: ASP_DONE
DESCRIPTION: Flag indicating completion of ASP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task ASP incomplete,
TRUE: running of task ASP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

 NAME: ATMOSPHERIC_TEMP79
DESCRIPTION: atmospheric temperature
USED IN: ASP, CP, GSP, TSP
UNITS: degrees C
RANGE: [-200, 25]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT,
ACCURACY: TBD

NAME: C_STATUS
DESCRIPTION: Flag indicating whether or not the
communications processor is working properly.
USED IN: CP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: CHUTE_RELEASED
DESCRIPTION: signal indicating parachute has
been released
USED IN: AECLP, CP, CRCP, GP
UNITS: none
RANGE: [0: Chute Attached, 1: Chute Released]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: CL80
DESCRIPTION: Index which specifies which set
of Control Law Parameters to use
USED IN: AECLP, GP
UNITS: none
RANGE: [1: first, 2: second]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION:
GUIDANCE_STATE
ACCURACY: N/A

NAME: CLP_DONE
DESCRIPTION: Control signal which indicates
whether or not Control Law Processing function has
completed.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of Control Law
Processing function incomplete, TRUE: running of
Control Law Processing function complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: COMM_SYNC_PATTERN
DESCRIPTION: sixteen bit synchronization pattern
USED IN: CP
UNITS: none
RANGE: [1101100110110010]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: CONTOUR_ALTITUDE81
DESCRIPTION: Altitude in velocity-altitude
contour.
USED IN: GP
UNITS: kilometers
RANGE: [-.01, 2]
DATA TYPE: array (1..100) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

102

NAME: CONTOUR_CROSSED82
DESCRIPTION: Indicates if the velocity-altitude
contour has been sensed.
USED IN: AECLP, CP, GP
UNITS: none
RANGE: [0: contour not crossed, 1: contour
crossed]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: CONTOUR_VELOCITY
DESCRIPTION: Velocity in velocity-altitude
contour.
USED IN: GP

UNITS:
kilometers

sec

RANGE: [0, 0.5]
DATA TYPE: array (1..100) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: CP_DONE
DESCRIPTION: Flag indicating completion of CP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task CP incomplete,
TRUE: running of task CP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: CRCP_DONE
DESCRIPTION: Flag indicating completion of
CRCP task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task CRCP
incomplete, TRUE: running of task CRCP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: DELTA_T83
DESCRIPTION: Time step duration.
USED IN: AECLP, GP, RECLP, TDLRSP
UNITS: seconds
RANGE: [0.005, 0.20]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS

ACCURACY: N/A

NAME: DROP_HEIGHT
DESCRIPTION: Height from which vehicle should
free-fall to surface
USED IN: GP
UNITS: meters
RANGE: [0, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: DROP_SPEED84
DESCRIPTION: Optimal speed during constant
velocity descent.
USED IN: GP
UNITS:

meters
sec

RANGE: [0, 4.0]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION:
RUN_PARAMETERS
ACCURACY: N/A

NAME: ENGINES_ON_ALTITUDE
DESCRIPTION: Altitude at which the axial engines
are turned on.
USED IN: AECLP, GP
UNITS: meters
RANGE: [0, 2000]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: FRAME_BEAM_UNLOCKED
DESCRIPTION: Variable containing the number of
the frame during which the radar beam unlocked
USED I N: TDLRSP
UNITS: none
RANGE: [0, 231-1]
DATA TYPE: array (1..4) of Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: FRAME_COUNTER
DESCRIPTION: Counter containing the number of
the present frame
USED IN: AECLP, ARSP, CP, GP, TDLRSP
UNITS: none
RANGE: [1, 231-1]
DATA TYPE: Integer*4
ATTRIBUTE: data

103

DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: FRAME_ENGINES_IGNITED
DESCRIPTION: Variable containing the number of
the frame during which the engines were ignited
USED IN: AECLP, GP
UNITS: none
RANGE: [0, 231-1]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE
ACCURACY: TBD

NAME: FULL_UP_TIME
DESCRIPTION: Time for axial engines to reach
optimum operational condition
USED IN: AECLP
UNITS: seconds
RANGE: [0, 60]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G1
DESCRIPTION: coefficient used to adjust A_GAIN
USED IN: ASP

UNITS:

meters
sec2

deg ree C

RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G2
DESCRIPTION: coefficient used to adjust A_GAIN
USED IN: ASP

UNITS:

meters
sec2

deg ree C 2

RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G3
DESCRIPTION: coefficient used to adjust G_GAIN
USED IN: GSP

UNITS:

radians
sec

deg ree C

RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A
NAME: G4
DESCRIPTION: coefficient used to adjust G_GAIN
USED IN: GSP

UNITS:

radians
sec

deg ree C 2

RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G_COUNTER
DESCRIPTION: gyroscope measurement of vehicle
rotation rates
USED IN : GSP
UNITS: none
RANGE: [-(214-1), 214-1]
DATA TYPE: array (1..3) of Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: G_GAIN_085
DESCRIPTION: standard gain in vehicle rotation
rates as measured by the gyroscopes
USED IN: GSP

UNITS:
radians

sec

RANGE: [-1, 1]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G_OFFSET
DESCRIPTION: standard offset of the rotation raw
values
USED IN: GSP

UNITS:
radians

sec

RANGE: [-0.5, 0.5]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: G_ROTATION86
DESCRIPTION: vehicle rotation rates
USED IN: CP, GSP, GP, RECLP

104

UNITS:
radians

sec

RANGE: [-1.0, 1.0]
DATA TYPE: array (1..3, 0..4)of real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD
NAME: G_STATUS
DESCRIPTION: status of the gyroscopes
USED IN: CP, GSP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: GA
DESCRIPTION: gain
USED IN: AECLP

UNITS:
sec

meter

RANGE: [0, 50]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GAX87
DESCRIPTION: gain
USED IN: AECLP
UNITS: none
RANGE: [0, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GP1
DESCRIPTION: gain
USED IN: AECLP
UNITS: none
RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GP2
DESCRIPTION: gain
USED IN: AECLP
UNITS: none
RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

105

NAME: GP_ALTITUDE88
DESCRIPTION: altitude as seen by guidance
processor
USED IN: AECLP, CP, GP
UNITS: meters
RANGE: [0, 2000]
DATA TYPE: array (0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: GP_ATTITUDE
DESCRIPTION: direction cosine matrix
USED IN: AECLP, CP, GP
UNITS: none
RANGE: [-1, 1]
DATA TYPE: array (1..3, 1..3, 0..4) real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: GP_DONE
DESCRIPTION: Flag indicating completion of GP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task GP incomplete,
TRUE: running of task GP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: GP_PHASE89
DESCRIPTION: phase of operation as seen by
guidance processor
USED IN: CP, GP
UNITS: none
RANGE: [1, 5]
DATA TYPE: integer*4
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: GP_ROTATION90
DESCRIPTION: rotation rates as determined by the
guidance processing functional unit
USED IN: AECLP, CP, GP

UNITS:
radians

sec

RANGE: [-1.0, 1.0]
DATA TYPE: array (1..3, 1..3) real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE,
ACCURACY: TBD

NAME: GP_VELOCITY
DESCRIPTION: Velocity as corrected by the
guidance algorithm.
USED IN: AECLP, CP, GP

UNITS:
meters

sec

RANGE: [-100, 100]
DATA TYPE: array (1..3, 0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: GPY
DESCRIPTION: gain
USED IN: AECLP
UNITS: none
RANGE: [-5, 5]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GQ91
DESCRIPTION: gain
USED IN: AECLP
UNITS: seconds
RANGE: [-5, 8]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GR92
DESCRIPTION: gain
USED IN: AECLP
UNITS: seconds
RANGE: [-5, 8]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GRAVITY
DESCRIPTION: gravity of planet
USED IN: AECLP, GP

UNITS:
meters

sec2

RANGE: [0, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

106

NAME: GSP_DONE
DESCRIPTION: Flag indicating completion of GSP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task GSP incomplete,
TRUE: running of task GSP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: GV93
DESCRIPTION: gain
USED IN: AECLP

UNITS:
sec

meter

RANGE: [-5, 8]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GVE94
DESCRIPTION: gain
USED IN: AECLP
UNITS: /second
RANGE: [0, 500]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GVEI95
DESCRIPTION: gain
USED IN: AECLP
UNITS: /second2
RANGE: [-5, 40]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GVI96
DESCRIPTION: gain
USED IN: AECLP
UNITS: /meter
RANGE: [-5, 5]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GW97
DESCRIPTION: gain
USED IN: AECLP

UNITS:
sec

meter

RANGE: [-5, 8]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: GWI98
DESCRIPTION: gain
USED IN: AECLP
UNITS: /meter
RANGE: [-5, 5]
DATA TYPE: array (1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: INIT_DONE
DESCRIPTION: Flag indicating completion of GCS
initialization.
USED IN: 0. GCS
UNITS: none
RANGE: [FALSE: initialization incomplete, TRUE:
initialization complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: INTERNAL_CMD99
DESCRIPTION: Real vector containing the
command to be sent to the axial engines
USED IN: AECLP
UNITS: none
RANGE: [-0.7, 1.7]
DATA TYPE: array (1..3) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: K_ALT
DESCRIPTION: Determines use of altimeter radar
by guidance processor
USED IN: ARSP, CP, GP
UNITS: none
RANGE: [0, 1]
DATA TYPE: array (0..4) of Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

107

NAME: K_MATRIX
DESCRIPTION: Determines use of doppler radar by
guidance processor.
USED IN: CP, GP, TDLRSP
UNITS: none
RANGE: [0, 1]
DATA TYPE: array (1..3, 1..3, 0..4) Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: M1
DESCRIPTION: lower measured temperature
calibration point for solid state temperature sensor
USED IN: TSP
UNITS: none
RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: M2
DESCRIPTION: upper measured temperature
calibration point for solid state temperature sensor
USED IN: TSP
UNITS: none
RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: M3
DESCRIPTION: lower measured temperature
calibration point for thermocouple pair temperature
sensor
USED IN: TSP
UNITS: none
RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: M4
DESCRIPTION: upper measured temperature
calibration point for thermocouple pair temperature
sensor
USED IN: TSP
UNITS: none
RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

108

NAME: MAX_NORMAL_VELOCITY100
DESCRIPTION: Maximum vertical
velocity for safe landing
USED IN: GP
UNITS:

meters
sec

RANGE: [0, 3.35]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION:
RUN_PARAMETERS
ACCURACY: N/A

NAME: OMEGA
DESCRIPTION: gain of angular velocity
USED IN: AECLP
UNITS: /second
RANGE: [-50, 50]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P1
DESCRIPTION: pulse rate boundary
USED IN: RECLP

UNITS:
radians

sec

RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P2
DESCRIPTION: pulse rate boundary
USED IN: RECLP

UNITS:
radians

sec

RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P3
DESCRIPTION: pulse rate boundary
USED IN: RECLP

UNITS:
radians

sec

RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: P4
DESCRIPTION: pulse rate boundary
USED IN: RECLP

UNITS:
radians

sec

RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: PACKET
DESCRIPTION: Packet of telemetry data
USED IN: CP
UNITS: N/A
RANGE: N/A
DATA TYPE: array (1..256) of Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: PE_INTEGRAL101
DESCRIPTION: Integral portion of Pitch error
equation
USED IN: AECLP, CP
UNITS: meters
RANGE: [-100, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: PE_MAX
DESCRIPTION: Maximum pitch error tolerable
USED IN: AECLP
UNITS: none
RANGE: [0, 1]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: PE_MIN
DESCRIPTION: Minimum pitch error tolerable.
USED IN: AECLP
UNITS: none
RANGE: [-1, 0]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

109

NAME: RE_CMD102
DESCRIPTION: roll engine command
USED IN: CP, RECLP
UNITS: none
RANGE: [1, 7]
D (direction) [0: positive, 1: negative]
I (intensity) [0: off, 1: minimum, 2: intermediate,
 3: maximum]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: TBD

NAME: RE_STATUS
DESCRIPTION: status of the roll engines
USED IN: CP, RECLP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: RE_SWITCH
DESCRIPTION: Flag indicating whether or not the
roll engines are turned on.
USED IN: GP, RECLP
UNITS: none
RANGE: [0: roll engines are off, 1: roll engines are
on.]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE
ACCURACY: N/A

NAME: RECLP_DONE
DESCRIPTION: Flag indicating completion of
RECLP task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task RECLP
incomplete, TRUE: running of task RECLP
complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: RENDEZVOUS
DESCRIPTION: Control signal which indicates
whether or not GCS_SIM_RENDEZVOUS is to be
activated.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: GCS_SIM_RENDEZVOUS is
not to be activated, TRUE:
GCS_SIM_RENDEZVOUS is to be activiated]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: RUN_DONE
DESCRIPTION: Flag indicating completion of GCS.
USED IN: 0. GCS
UNITS: none
RANGE: [FALSE: running of GCS incomplete,
TRUE: running of GCS complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: SP_DONE
DESCRIPTION: Control signal which indicates
whether or not Sensor Processing function has been
completed.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of Sensor Processing
function incomplete, TRUE: running of Sensor
Processing function complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: SS_TEMP
DESCRIPTION: Solid state temperature data
USED IN: TSP
UNITS: none
RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

110

NAME: SUBFRAME_COUNTER
DESCRIPTION: Counter containing the number of
the present subframe.
USED IN: CP
UNITS: none
RANGE: [1, 3]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: T1
DESCRIPTION: lower ambient temperature
calibration point for solid state temperature sensor
USED IN: TSP
UNITS: degrees C
RANGE: [-250, 250]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: T2
DESCRIPTION: upper ambient temperature
calibration point for solid state temperature sensor
USED IN: TSP
UNITS: degrees C
RANGE: [-250, 250]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: T3
DESCRIPTION: lower ambient temperature
calibration point for thermocouple pair temperature
sensor
USED IN: TSP
UNITS: degrees C
RANGE: [-50, 50]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: T4
DESCRIPTION: upper ambient temperature
calibration point for thermocouple pair temperature
sensor
USED IN: TSP
UNITS: degrees C
RANGE: [-50, 50]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TD_COUNTER
DESCRIPTION: value returned by Touch Down
Sensor
USED I N: TDSP
UNITS: none
RANGE: [-215 , 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: TD_SENSED
DESCRIPTION: Flag indicating whether or not
touch down has been sensed.
USED IN: CP, GP, TDSP
UNITS: none
RANGE: [0: touch down not sensed, 1: touch down
sensed]
DATA TYPE: logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: N/A

NAME: TDLR_ANGLES103
DESCRIPTION: vector of doppler radar beam offset
angles (i.e., α , β, γ)
USED IN: TDLRSP
UNITS: radians

RANGE: [0,
π
2

)

DATA TYPE: array (1..3) real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TDLR_COUNTER
DESCRIPTION: value returned by Doppler radar
USED IN: TDLRSP
UNITS: none
RANGE: [0, 215-1]
DATA TYPE: array (1..4) Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: TDLR_GAIN104
DESCRIPTION: gain in doppler radar beam
USED IN: TDLRSP

UNITS:

meters
sec

RANGE: [-1, 1]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS

111

ACCURACY: N/A

NAME: TDLR_LOCK_TIME
DESCRIPTION: locking time of doppler radar beam
USED IN: TDLRSP
UNITS: seconds
RANGE: [0, 60]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TDLR_OFFSET
DESCRIPTION: offset in doppler radar beam
USED IN: TDLRSP

UNITS:
meters

sec

RANGE: [-100, 0]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TDLR_STATE105
DESCRIPTION: state of the touch down landing
radar beams.
USED IN: CP, TDLRSP
UNITS: none
RANGE: [0: Beam unlocked, 1: Beam locked]
DATA TYPE: array (1..4) logical*1
ATTRIBUTE: data condition
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: TDLR_STATUS
DESCRIPTION: status of the doppler radar
USED IN: CP, TDLRSP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: array (1..4) of logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: TDLR_VELOCITY
DESCRIPTION: Velocity as computed by the touch
down landing radar.
USED IN: CP, GP, TDLRSP

UNITS:
meters

sec

RANGE: [-100, 100]
DATA TYPE: array (1..3, 0..4) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: SENSOR_OUTPUT
ACCURACY: TBD

112

NAME: TDLRSP_DONE
DESCRIPTION: Flag indicating completion of
TDLRSP task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task TDLRSP
incomplete, TRUE: running of task TDLRSP
complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: TDSP_DONE
DESCRIPTION: Flag indicating completion of
TDSP task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task TDSP
incomplete, TRUE: running of task TDSP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

NAME: TDS_STATUS
DESCRIPTION: status of the touch down sensor
USED IN: CP, GP, TDSP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: TE_DROP
DESCRIPTION: The axial thrust error when axial
engines are warm and the velocity altitude contour
has not been intersected.
USED IN: AECLP
UNITS: none
RANGE: [-2, 2]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TE_INIT
DESCRIPTION: The axial thrust error when the
axial engines are cold.
USED IN: AECLP
UNITS: none
RANGE: [-2, 2]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

113

NAME: TE_INTEGRAL106
DESCRIPTION: Integral portion of Thrust error
equation
USED IN: AECLP, CP, GP
UNITS: meters
RANGE: [-100, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: TE_LIMIT107
DESCRIPTION: Limiting thrust error
USED IN: AECLP
UNITS: none
RANGE: [-100, 100]
DATA TYPE: real*8
ATTRIBUTE: Data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: TE_MAX
DESCRIPTION: Maximum thrust error tolerable
USED IN: AECLP
UNITS: none
RANGE: [-2, 2]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TE_MIN
DESCRIPTION: Minimum thrust error tolerable.
USED IN: AECLP
UNITS: none
RANGE: [-2, 2]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: THERMO_TEMP
DESCRIPTION: thermocouple pair temperature
USED IN: TSP
UNITS: none
RANGE: [0, 215-1]
DATA TYPE: Integer*2
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

NAME: THETA108
DESCRIPTION: roll angle
USED IN: RECLP
UNITS: radians
RANGE: [-π, π]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE
ACCURACY: TBD

NAME: THETA1
DESCRIPTION: pulse angle boundary
USED IN: RECLP
UNITS: radians
RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: THETA2
DESCRIPTION: pulse angle boundary
USED IN: RECLP
UNITS: radians
RANGE: [0, 0.05]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: TS_STATUS
DESCRIPTION: status of the temperature sensors in
solid state, then thermocouple pair order
USED IN: CP, TSP
UNITS: none
RANGE: [0 : healthy, 1: failed]
DATA TYPE: array (1..2) of logical*1
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: N/A

NAME: TSP_DONE
DESCRIPTION: Flag indicating completion of TSP
task.
USED IN: 2. RUN_GCS
UNITS: none
RANGE: [FALSE: running of task TSP incomplete,
TRUE: running of task TSP complete]
DATA TYPE: logical*1
ATTRIBUTE: control
DATA STORE LOCATION: none
ACCURACY: N/A

114

NAME: VELOCITY_ERROR109
DESCRIPTION: Distance from velocity-altitude
contour. (Difference in velocities from actual to
desired on contour.)
USED IN: AECLP, CP, GP

UNITS:
meters

sec

RANGE: [-300, 20]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: YE_INTEGRAL110
DESCRIPTION: Integral portion of Yaw error
equation
USED IN: AECLP, CP
UNITS: meters
RANGE: [-100, 100]
DATA TYPE: real*8
ATTRIBUTE: data
DATA STORE LOCATION: GUIDANCE_STATE
ACCURACY: TBD

NAME: YE_MAX
DESCRIPTION: Maximum yaw error tolerable
USED IN: AECLP
UNITS: none
RANGE: [-1, 1]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

NAME: YE_MIN
DESCRIPTION: Minimum yaw error tolerable.
USED IN: AECLP
UNITS: none
RANGE: [-1, 1]
DATA TYPE: array(1..2) of real*8
ATTRIBUTE: data
DATA STORE LOCATION: RUN_PARAMETERS
ACCURACY: N/A

 115

PART II. CONTENTS OF DATA STORES

Table 6.1: DATA STORE: GUIDANCE_STATE

VARIABLE NAME USED BY:

A_STATUS ASP, CP
AE_STATUS AECLP, CP
AE_SWITCH AECLP, GP
AE_TEMP AECLP, CP, CRCP, GP
AR_STATUS ARSP, CP
C_STATUS CP
CHUTE_RELEASED AECLP, CP, CRCP, GP
CL111 AECLP, GP
CONTOUR_CROSSED AECLP, CP, GP
FRAME_BEAM_UNLOCKED TDLRSP
FRAME_ENGINES_IGNITED AECLP, GP
G_STATUS CP, GSP
GP_ALTITUDE CP, GP, AECLP
GP_ATTITUDE AECLP, CP, GP
GP_PHASE CP, GP
GP_ROTATION AECLP, CP, GP
GP_VELOCITY AECLP, CP, GP
INTERNAL_CMD AECLP
K_ALT ARSP, CP, GP
K_MATRIX CP, GP, TDLRSP
PE_INTEGRAL AECLP, CP
RE_STATUS CP, RECLP
RE_SWITCH GP, RECLP
TDLR_STATE CP, TDLRSP
TDLR_STATUS CP, TDLRSP
TDS_STATUS CP, GP, TDSP
TE_INTEGRAL AECLP, CP, GP
TE_LIMIT AECLP
THETA RECLP
TS_STATUS CP, TSP
VELOCITY_ERROR AECLP, CP, GP
YE_INTEGRAL AECLP, CP

 116

Table 6.2: DATA STORE: EXTERNAL

VARIABLE NAME USED BY

A_COUNTER ASP
AE_CMD AECLP, CP
AR_COUNTER ARSP
FRAME_COUNTER AECLP, ARSP, CP, GP, TDLRSP
G_COUNTER GSP
PACKET CP
RE_CMD RECLP, CP
SS_TEMP TSP
SUBFRAME_COUNTER CP
TD_COUNTER TDSP
TDLR_COUNTER TDLRSP
THERMO_TEMP TSP

Table 6.3 : DATA STORE: SENSOR_OUTPUT

VARIABLE NAME USED BY:

A_ACCELERATION AECLP, ASP, CP, GP
AR_ALTITUDE ARSP, CP, GP
ATMOSPHERIC_TEMP ASP, CP, GSP, TSP
G_ROTATION CP, GSP, GP, RECLP
TD_SENSED CP, GP, TDSP
TDLR_VELOCITY CP, GP, TDLRSP

 117

Table 6.4: DATA STORE: RUN_PARAMETERS

VARIABLE NAME USED BY

A_BIAS ASP
A_GAIN_0 ASP
A_SCALE ASP
ALPHA_MATRIX ASP
AR_FREQUENCY ARSP
COMM_SYNC_PATTERN CP
CONTOUR_ALTITUDE GP
CONTOUR_VELOCITY GP
DELTA_T AECLP, GP, RECLP, TDLRSP
DROP_HEIGHT GP
DROP_SPEED112 GP
ENGINES_ON_ALTITUDE AECLP, GP
FULL_UP_TIME AECLP
G1 ASP
G2 ASP
G3 GSP
G4 GSP
G_GAIN_0 GSP
G_OFFSET GSP
GA AECLP
GAX AECLP
GP1 AECLP
GP2 AECLP
GPY AECLP
GQ AECLP
GR AECLP
GRAVITY AECLP, GP
GV AECLP
GVE AECLP
GVEI AECLP
GVI AECLP
GW AECLP
GWI AECLP
M1 TSP
M2 TSP
M3 TSP
M4 TSP
MAX_NORMAL_VELOCITY113 GP
OMEGA AECLP
P1 RECLP
P2 RECLP
P3 RECLP
P4 RECLP
PE_MAX AECLP
PE_MIN AECLP
T1 TSP
T2 TSP
T3 TSP
T4 TSP

 118

Table 6.4 (continued): DATA STORE: RUN_PARAMETERS

VARIABLE NAME USED BY

TDLR_ANGLES TDLRSP
TDLR_GAIN TDLRSP
TDLR_LOCK_TIME TDLRSP
TDLR_OFFSET TDLRSP
TE_DROP AECLP
TE_INIT AECLP
TE_MAX AECLP
TE_MIN AECLP
THETA1 RECLP
THETA2 RECLP
YE_MAX AECLP
YE_MIN AECLP

119

PART III. CONTROL SIGNALS, DATA CONDITIONS, AND GROUP
 FLOWS

Table 6.5: CONTROL SIGNALS (OPTIONAL USAGE)

CONTROL SIGNAL NAME

AECLP_DONE
ARSP_DONE
ASP_DONE
CLP_DONE

CP_DONE114
CRCP_DONE

GP_DONE
GSP_DONE
INIT_DONE

RECLP_DONE115
RENDEZVOUS
RUN_DONE116

SP_DONE
TDLRSP_DONE

TDSP_DONE
TSP_DONE

Note: These variables are not in the required global data stores.

Table 6.6: DATA CONDITIONS (REQUIRED USAGE)

DATA CONDITION VARIABLE NAME

AE_SWITCH
AE_TEMP

CHUTE_RELEASED
CONTOUR_CROSSED

GP_PHASE
RE_SWTICH
TD_SENSED

TDLR_STATE

120

Table 6.7: INITIALIZATION DATA

VARIABLE NAME USED BY

A_ACCELERATION AECLP, ASP, CP, GP
A_BIAS ASP
A_COUNTER ASP
A_GAIN_0 ASP
A_SCALE ASP
A_STATUS ASP, CP
AE_STATUS AECLP, CP
AE_SWITCH AECLP, GP
AE_TEMP AECLP, CP, CRCP, GP
ALPHA_MATRIX ASP
AR_ALTITUDE ARSP, CP, GP
AR_COUNTER ARSP
AR_FREQUENCY ARSP
AR_STATUS ARSP, CP
ATMOSPHERIC_TEMP ASP, CP, GSP, TSP
C_STATUS CP
CHUTE_RELEASED AECLP, CP, CRCP, GP
CL117 AECLP, GP
COMM_SYNC_PATTERN CP
CONTOUR_ALTITUDE GP
CONTOUR_CROSSED AECLP, CP, GP
CONTOUR_VELOCITY GP
DELTA_T AECLP, GP, RECLP, TDLRSP
DROP_HEIGHT GP
DROP_SPEED118 GP
ENGINES_ON_ALTITUDE AECLP, GP
FRAME_BEAM_UNLOCKED TDLRSP
FRAME_COUNTER AECLP, ARSP, CP, GP, TDLRSP
FRAME_ENGINES_IGNITED AECLP, GP
FULL_UP_TIME AECLP
G1 ASP
G2 ASP
G3 GSP
G4 GSP
G_COUNTER GSP
G_GAIN_0 GSP
G_OFFSET GSP
G_ROTATION CP, GSP, GP, RECLP
G_STATUS CP, GSP
GA AECLP
GAX AECLP
GP1 AECLP
GP2 AECLP
GP_ALTITUDE AECLP, CP, GP
GP_ATTITUDE AECLP, CP, GP
GP_PHASE CP, GP
GP_ROTATION AECLP, CP, GP
GP_VELOCITY AECLP, CP, GP
GPY AECLP
GQ AECLP
GR AECLP
GRAVITY AECLP, GP
GV AECLP

121

Table 6.7 (continued): INITIALIZATION DATA

VARIABLE NAME USED BY

GVE AECLP
GVEI AECLP
GVI AECLP
GW AECLP
GWI AECLP
K_ALT ARSP, CP, GP
K_MATRIX CP, GP, TDLRSP
M1 TSP
M2 TSP
M3 TSP
M4 TSP
MAX_NORMAL_VELOCITY119 GP
OMEGA AECLP
P1 RECLP
P2 RECLP
P3 RECLP
P4 RECLP
PE_INTEGRAL AECLP, CP
PE_MAX AECLP
PE_MIN AECLP
RE_STATUS CP, RECLP
RE_SWITCH GP, RECLP
SS_TEMP TSP
SUBFRAME_COUNTER CP
T1 TSP
T2 TSP
T3 TSP
T4 TSP
TD_COUNTER TDSP
TD_SENSED CP, GP, TDSP
TDLR_ANGLES TDLRSP
TDLR_COUNTER TDLRSP
TDLR_GAIN TDLRSP
TDLR_LOCK_TIME TDLRSP
TDLR_OFFSET TDLRSP
TDLR_STATE CP, TDLRSP
TDLR_STATUS CP, TDLRSP
TDLR_VELOCITY CP, GP, TDLRSP
TDS_STATUS CP, GP, TDSP
TE_DROP AECLP
TE_INIT AECLP
TE_INTEGRAL AECLP, CP, GP
TE_LIMIT AECLP
TE_MAX AECLP
TE_MIN AECLP
THERMO_TEMP TSP
THETA RECLP
THETA1 RECLP
THETA2 RECLP
TS_STATUS CP, TSP
VELOCITY_ERROR AECLP, CP, GP
YE_INTEGRAL AECLP, CP
YE_MAX AECLP

122

YE_MIN AECLP

Table 6.8: TEMP_DATA

VARIABLE NAME
SS_TEMP

THERMO_TEMP

Table 6.9: SENSOR_DATA

VARIABLE NAME
A_COUNTER

AR_COUNTER
TDLR_COUNTER

G_COUNTER
TEMP_DATA

TD_COUNTER

Table 6.10: OUTPUT_DATA

VARIABLE NAME
AE_CMD
RE_CMD
PACKET

Table 6.11: OUTPUT_CONTROL

VARIABLE NAME
AE_SWITCH
RE_SWITCH

CHUTE_RELEASED

Table 6.12: FRAME_DATA

VARIABLE NAME

123

FRAME_COUNTER
SUBFRAME_COUNTER

125

A. NOTATION FOR LEVELS 0, 1, 2, AND 3 SPECIFICATION

127

A. NOTATION FOR LEVELS 0, 1, 2, AND 3 SPECIFICATION

This specification was developed using the extended structured analysis method advocated by Hatley [12,

13] and Cadre's teamwork [19]. This method is based on a hierarchical approach to defining functional modules and

the associated data and control flows.

The documents constructed as a part of this specification include data context and flow diagrams; control

context and flow diagrams; process and control descriptions; and a Data Requirements Dictionary. Figure A.1

defines the graphical symbols used in the data flow and control flow diagrams, respectively.

The data flow diagrams describe the processes, data flows, and data stores. The data context diagram is the

highest-level data flow diagram and represents the data flow for the entire system.

The control flow diagrams describe processes, control signal and data condition flows, control specifications,

and data stores. The control signal and data condition flows are depicted using directed arcs with broken lines. The

control signals listed in the data dictionary may be implemented by the programmer in any form desired; or, they

may be completely ignored and the control of the program conducted through other means. The control signals

simply show the logic involved in the system. Signal flows between the control flow diagram and the control

specification have a short bar at the end of the directed arc. The control flow diagrams contain duplicate

descriptions of the processes represented on the data flow diagram. The control context diagram representing the

most abstract control flow is similar to the data context diagram.

The control specifications describe the control requirements of a system. These specifications contain the

conditions when the processes detailed in the data and control flow diagrams are activated and de-activated.

The Data Requirements Dictionary contains definitions for data, data conditions, control signals, and group

flows.

Following is a list of definitions and explanations for the structured analysis diagrams:

1. The data and control flow names on the directed arcs in the structured analysis figures can be found in

the Data Requirements Dictionary Part I, while the group flow names on the arcs can be found in the

Data Requirements Dictionary Part III.

2. In the Process Activation Tables, the first column contains the inputs. The second set of columns

(separated by two vertical lines) contains the cells which indicate whether a process is to be activated

or deactivated. A blank cell indicates that the process is deactivated. An integer indicates that the

process is activated. A process whose cell contains the integer "n" must complete before the process

with integer "n+1" is activated. All processes whose cells contain the same integer can be activated in

any order. The third set of columns, if present, represents the output values for control signals.

3. The meanings for the symbols used in the expressions for inputs are:

= equal

~= not equal

~ logical NOT

128

& logical AND

| logical OR

() grouping (expression inside parentheses is evaluated first)

Figure A.1: GRAPHICAL SYMBOLS USED IN STRUCTURED ANALYSIS DIAGRAMS

PROCESS MODULE

SOURCE OR SINK

DATA CONDITION OR
CONTROL FLOW

CONTROL SPECIFICATION

DATA FLOW

DATA STORE

129

B. IMPLEMENTATION NOTES

131

INTERFACE

Background

For the purposes of this research experiment, each GCS implementation must function as if it were actually

controlling a planetary lander. In reality, each GCS implementation will be interacting with a software simulator

(GCS_SIM) that models the behavior of a physical lander when exposed to the environmental forces of a planet.

Due to the fact that each GCS implementation must interact with GCS_SIM as if it were connected to the

lander hardware, there are some additional requirements that are placed on a GCS implementation that help define a

software interface. The software interface to the simulator replaces the physical connection to planetary lander

hardware through the use of a simulator support utility and an additional requirement involving the organization of

the global data stores.

Simulator Support Utility

A single simulator support utility (GCS_SIM_RENDEZVOUS) is provided to form a uniform interface

between the GCS implementation and the simulation environment (GCS_SIM). This utility is a routine which

simplifies the interface between the GCS implementations and the simulation of the vehicle sensing and control

mechanisms. This utility also includes a synchronization mechanism for the configurations using more than one

version of the GCS. This routine provides the following support functions:

• Initialization for the Beginning of Terminal Descent

• Simulator Rendezvous Synchronization

• GCS Interface for Simulated Reads and Writes

Input/Output

The GCS_SIM_RENDEZVOUS routine simulates all of the input/output operations for each GCS

implementation. When using the rendezvous routine with a GCS implementation, all data needed by rendezvous is

passed via the four global data stores and there are no additional parameters required. All information read from or

written to each GCS implementation will be transferred through the four global data stores defined in the data

dictionary.

132

Figure B.1: DIAGRAM OF STORAGE AS SEEN BY GCS IMPLEMENTATIONS

 GCS
Implementation

Rendezvous

Run_parameters

Guidance_
 State
Sensor_
 Output

External

Rom Ram I/O Device

Simulated Hardware Interface

GCS_SIM
Simulated Hardware

and
Environment

Hardware Component

Input/Output Device
Read-Only Memory
On-board Random Access Memory
On-board Random Access Memory

Global Data Store (Software Interface)

EXTERNAL
RUN_PARAMETERS
GUIDANCE_STATE
SENSOR_OUTPUT

133

Process

The GCS uses the sensor input values in order to calculate control commands which are used by GCS_SIM

to manipulate the actuators. Since GCS_SIM handles the orbit to terminal descent portion of each trajectory, a

rendezvous must be issued at the start of each trajectory to load initial sensor values into each GCS implementation.

Following the first call to rendezvous, all GCS implementations will synchronize themselves by calling rendezvous

prior to the execution of each subframe. This rendezvous, in effect, suspends the GCS implementations until the

other GCS implementations have processed this time step or have run out of time.120

The calling convention for this GCS_SIM provided support utility is as follows:

• GCS_SIM_RENDEZVOUS (requires no parameters)

GCS Initialization

During the initialization phase of each GCS trajectory (the first call to GCS_SIM_RENDEZVOUS) the

frame counter (FRAME_COUNTER) will be updated with the starting frame number for the particular trajectory.

Under normal circumstances, the value of the frame counter will be "1," but the programmer should not rely on

that.121

By using the interface described above, the simulator can be transparent to the implementation.

135

C. NUMERICAL INTEGRATION INSTRUCTIONS

137

NUMERICAL INTEGRATION INSTRUCTIONS

Within the Guidance Processing functional unit, the calculations of GP_VELOCITY, GP_ALTITUDE,

and GP_ATTITUDE require the use of a highly accurate integration method. To maintain the necessary degree

of accuracy, three methods of numerical integration have been designated as acceptable for coding, namely

Adams-Moulton method, Hamming's method, and the Runge-Kutta fourth-order method for simultaneous

equations. If the Runge-Kutta method is used, it is required that the three equations be solved as a set of

simultaneous equations.122

Each method is briefly described in the following paragraphs, and references to numerical analysis texts

describing the method are provided. Algorithms specified in either a text listed or another suitable numerical

analysis text should be used during coding.

Adams-Moulton Method

The Adams-Moulton Method requires values from the previous four time steps to calculate the value at

the next time step. The Adams-Moulton method is a predictor/corrector method. Both [14] (pp. 346-7)

and [16] (pp. 478-81) explain the Adams-Moulton method.

Hamming's Method

The Hamming method uses a predictor/corrector method similar to that of Adams-Moulton. Hamming's

method uses the same predictor as Milne's, but uses a much simpler corrector formula. Milne's method

of integration was deemed too unstable for use, but Hamming's method with the simpler corrector is

sufficiently stable. A description of both Hamming's method and Milne's method can be found in [14]

(pp. 347-8).

Runge-Kutta Fourth-Order Method for Simultaneous Equations123

The well-known Runge-Kutta fourth-order method for simultaneous equations requires only the

previous two values to calculate the next value. References can be found in many texts including:

[15](pp. 356-60), [17] (pp. 240-6; pp. 282-5), [18] (pg. 447; pp. 471-3)

During the first time step, using a numerical integration method necessitates some specification of previous

values. These values will be provided during initialization for the data elements provided in Table C.1.

138

TABLE C.1: INITIAL VALUES PROVIDED FOR USE IN INTEGRATION

A_ACCELERATION (1..3, 0..4)
AR_ALTITUDE (0..4)
GP_ALTITUDE (0..4)
GP_ATTITUDE (1..3, 1..3, 0..4)
GP_VELOCITY (1..3, 0..4)
G_ROTATION (1..3, 0..4)
K_ALT (0..4)
K_MATRIX (1..3, 1..3, 0..4)
TDLR_VELOCITY (1..3, 0..4)

Note that not all integration required by the GCS specification requires the use of one of the methods listed in

this appendix. More specifically, in computing THETA, TE_INTEGRAL, PE_INTEGRAL, and YE_INTEGRAL,

Euler's method provides sufficient accuracy and simplicity and should be used. Information on Euler's method may

be found in: [14](pp. 318-22), [15](pg. 223), and [16](pp. 462-3).

139

BIBLIOGRAPHY

[1] Federal Aviation Administration. One McPherson Square, 1425 K Street N.W., Suite 500 Washington, DC

20005, Radio Technical Commission for Aeronautics Document RTCA/DO-178A, August 1986.

[2] George B. Finelli. Results of software error-data experiments. In AIAA/AHS/ASEE Aircraft Design,

Systems and Operations Conference, Atlanta, GA, September 1988.

[3] Harm Buning and D. T. Greenwood. Flight mechanics for space and re-entry vehicles. Technical report,

The University of Michigan Engineering Summer Conferences, Summer 1964.

[4] Herbert Goldstein. Classical Mechanics. Addison-Wesley Publishing Company, Inc., Reading,

Massachusetts, USA, 1959.

[5] Irving H. Shames. Engineering Mechanics -- Statics and Dynamics. Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1980.

[6] Dan Edwin Christie. Vector Mechanics. McGraw-Hill Inc., New York, 1964

[7] David Hestenes. New Foundations for Classical Mechanics. D. Reidel Publishing Company, Boston, 1986

[8] D. N. Burghes and A. M. Downs. Classical Mechanics and Control. Ellis Horwood Limited, Coll House,

Westergate, England, 1975.

[9] G. S. Light and J. B. Higham. Theoretical Mechanics. Longman Inc., New York, 1975.

[10] Don C. Rich and J. R. Dunham. Guidance and Control Software Simulator (GCS_SIM) Software

Specification. Technical Report NASA Contract NAS1-17964; Task Assignment No. 8, Research Triangle
Institute, Research Triangle Park, NC, 1987.

[11] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[12] Derek J. Hatley. The use of structured methods in the development of large, software-based avionics

systems. In Proceedings of the AIAA/IEEE 6th Digital Avionics Systems Conference, New York,
December 1984.

[13] Derek J. Hatley and Imtiaz A. Pirbhai, Strategies for Real-Time System Specification. Dorset House

Publishing Company, New York, New York, 1987.

[14] W. Allen Smith. Elementary Numerical Analysis. Harper and Row, New York, 1979.

[15] J. B. Scarborough. Numerical Mathematical Analysis. The Johns Hopkins Press, Baltimore, 1962

[16] Stephen M. Pizer. Numerical Computing and Mathematical Analysis. Science Research Associates, Inc.,

Chicago, 1975

[17] Richard L. Burden and J. Douglas Faires. Numerical Analysis. PWS-KENT Publishing

Company, Boston, 1989.

[18] Melvin J. Maron and Robert J. Lopez. Numerical Analysis: A Practical Approach.

Wadsworth Publishing Company, Belmont, California, 1990.

[19] teamwork/SA teamwork/RT User's Guide, Cadre Technologies, Inc., Providence, Rhode Island, Release

4.0, 1990.

140

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

141

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

142

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

143

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

