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Preface 
 

The NASA Langley Research Center has been conducting a series of software error studies in an effort 

to better understand the software failure process and improve development and reliability estimation 

techniques for avionics software.  The Guidance and Control Software (GCS) project is the latest study in the 

series.  This project involves production of guidance and control software for the purpose of gathering failure 

data from a credible software development environment.  To increase the credibility and relevance of this 

study, guidelines used in the development of commercial aircraft were adopted.  The use of the Radio 

Technical Commission for Aeronautics RTCA/DO-178A guidelines, "Software Considerations in Airborne 

Systems and Equipment Certification," is required by the Federal Aviation Administration (FAA) for 

developing software to be certified for use in commercial aircraft equipment [1]. 

This is document #2 in the series of documents required to fulfill the RTCA/DO-178A guidelines.  The 

documents in the series are numbered as specified in the DO-178A guidelines and are used to demonstrate 

compliance with the guidelines by describing the application of the procedures and techniques used during 

the development of flight software.  For the GCS project, the series consists of the following documents: 

 

-  GCS Configuration Index  Document no. 1 

-  GCS Development Specification  Document no. 2 

-  GCS Design Description  Document no. 3 

-  GCS Programmer's Manual  Document no. 4 (this document includes Software Design 

Standards  Document no. 12) 

-  GCS Configuration Management Plan  Document no. 5A 

-  Software Quality Assurance Plan for GCS  Document no. 5B 

-  GCS Source Listing  Document no. 6 

-  GCS Source Code  Document no. 7 

-  GCS Executable Object Code  Document no. 8 (not available in hardcopy) 

-  GCS Support/Development System Configuration Description  Document no. 9 
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-  GCS Accomplishment Summary  Document no. 10 

-  Software Verification Plan for GCS  Document no. 11 

-  GCS Development Specification Review Description  Document no. 11A 

-  GCS Simulator (GCS_SIM) System Description  Document no. 13 

-  GCS Simulator (GCS_SIM) Certification Plan  Document no. 13A 

-  GCS Plan for Software Aspects of Certification  Document no. 14 

  

A GCS implementation (code which fulfills the requirements outlined in the Guidance and Control 

Software Development Specification ) runs in conjunction with a software simulator that provides input based 

on an expected usage distribution in the operational environment, provides response modeling, and receives 

data from the implementation.  For the purposes of the project, a number of GCS implementations are being 

developed by different programmers according to the structured approach found in the DO-178A guidelines.  

The GCS simulator is designed to allow an experimenter to run one or more implementations in a 

multitasking environment and collect data on the comparison of the results from multiple implementations.  

Certain constraints have been incorporated in the software requirements due to the nature of the GCS 

project.  Further information on goals of the GCS project are available in the GCS Plan for Software Aspects 

of Certification.   
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FOREWORD 
 

This specification defines a guidance and control system for a planetary landing vehicle during its terminal 

phase of descent.  The guidance and control system is specified using an extension to the popular method of 

structured analysis.  This specification is written for an experienced programmer with two or more years of full-time 

industrial programming experience using a scientific programming language.  The programmer should have an 

adequate background, either through college courses or job training in mathematics, physics, differential equations, 

and numerical integration.  The specification was written with the assumption that the implementation would 

be coded in FORTRAN;  however, other languages can be used. 

 

Version 2.2 of this specification contains a number of modifications to version 2.1 of the specification.  

The text that has been modified from version 2.1 is bolded in version 2.2.  Some existing text has been moved 

to another place in the document, and some text has been deleted.  There is no demarcation to indicate where 

text has been moved or deleted.  The modifications that are significant (may impact the coding of an 

implementation) are marked with a footnote number (note that there is only a footnote number and not a 

traditional footnote containing an explanation of the change).  If there are a number of significant 

modifications within a processing step (in Chapter 5 of the specification), a footnote number has been placed 

just at the top of the processing step (as opposed to marking each individual change within the processing 

step).  Note that there is a significant new addition to the specification:  requirements for exception handling.  

New additions to the text are also bolded.  
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INTRODUCTION 
 

 
PURPOSE OF THE GUIDANCE AND CONTROL SOFTWARE 

The Guidance and Control Software (GCS) represents the Viking lander on-board navigational 

software.  The purpose of this software is to: 

 

1. provide guidance and engine control of the vehicle (shown in Figure 1.1) during its terminal phase of 

descent onto a surface and  

2. communicate sensory information about the vehicle and its descent to some other receiving device.  

 

A typical descent trajectory is shown in Figure 1.2.  

 

The initialization of the GCS starts the sensing of vehicle altitude.  When a predefined engine ignition altitude 

is sensed by the altimeter radar, the GCS begins guidance and control of the vehicle.  The axial and roll engines are 

ignited; while the axial engines are warming up, the parachute remains connected to the vehicle.  During this engine 

warm-up phase, the aerodynamics of the parachute dictate the trajectory followed by the vehicle.  Vehicle attitude is 

maintained by firing the engines in a throttled-down condition.  Once the main engines become hot, the parachute is 

released and the GCS performs an attitude correction maneuver and then follows a controlled acceleration 

descent until a predetermined velocity-altitude contour is crossed (see Figure 5.1).  The GCS then attempts to 

maintain the descent of the vehicle along this predetermined velocity-altitude contour.  The vehicle descends along 

this contour until a predefined engine shut off altitude is reached or touchdown is sensed.  After all engines are shut 

off, the vehicle free-falls to the surface. 

 
VEHICLE CONFIGURATION 

The vehicle to be controlled is a guidance package containing sensors which obtain information about the 

vehicle state, a guidance and control computer, and actuators providing the thrust necessary for maintaining a safe 

descent.  The vehicle has three accelerometers (one for each body axis), one doppler radar with four beams, one 

altimeter radar, two temperature sensors, three strapped-down gyroscopes, three opposed pairs of roll engines, three 

axial thrust engines, one parachute release actuator, and a touch down sensor.  The vehicle has a hexagonal, box-like 

shape with three legs and a surface sensing rod protruding from its undersurface. 
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Figure 1.1:  THE LANDING VEHICLE DURING DESCENT1 
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Figure 1.2:  A TYPICAL TERMINAL DESCENT TRAJECTORY3 
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TERMINAL DESCENT 

Prior to the terminal descent phase, the vehicle falls with a parachute attached.  This parachute is released 

seconds after the engines ignite, and terminal descent begins.  During terminal descent, the vehicle follows a 

modified gravity-turn guidance law until a predetermined altitude is reached.  The atmosphere introduces drag 

forces, including the random effects of wind.  Independently throttled engines slow the vehicle down.  These 

engines can control the vehicle's orientation, and roll engines control the vehicle's roll rate.  Roll control is necessary 

to keep the doppler radars in lock and insure that the desired touch down attitude (land on two legs prior to the third) 

is maintained. 

The velocity during descent follows the predetermined velocity-altitude contour.  At a specific altitude above 

the planet surface, the vehicle is maintained at a constant descent velocity.  Once the surface is sensed, all engines 

are shut down and the vehicle free falls to the surface.  

 
VEHICLE DYNAMICS 

 
Frames of Reference 

Terminal descent is described in terms of two coordinate systems: 

 

1. the surface-oriented coordinate system, and 

2. the vehicle-oriented coordinate system. 

 
In the surface coordinate system, the 

 

� 
z p  axis is viewed as normal to the surface and points down as shown in 

Figure 1.2.  The 
  

� 
x p  axis points north, and the 

 

� 
y p  points east. 

By defining a unit vector as a vector of length equal to one unit along each axis in both the planetary and 

vehicular frames of reference, a relation between these two frames of reference may be established.  Any vector can 

then be defined as a multiple of the unit vector along each of the axes defined in the frame of reference.  Thus, the 
velocity of the vehicle   

�
V   may be defined in the vehicle's frame of reference as: Vx v

ˆ i v + Vyv
ˆ j v + Vz v

ˆ k v , where ˆ i v ,  ˆ j v ,  

and ˆ k v  are the unit vectors in the x, y, and z  directions of the vehicles  coordinate system (unit vectors are usually 
represented by lower case i, j, or  k with a hat to show that they are unit vectors). Vx v

, Vy v
,  and Vzv

 represent the 

components of the vehicle velocity in the given direction.  At the same time, the velocity of the vehicle may be 
described in the planetary coordinate system as:   Vx p

ˆ i p +Vy p
ˆ j p +Vzp

ˆ k p  , where the subscript p  represents planetary 

rather than vehicle coordinates.  Note, since the two coordinate systems are not oriented in the same  direction, the 
values of Vx v

 will not be equal to Vx p
, but the  magnitude of the total vector  

�
V  will be the same in both systems.  

Also the difference in the magnitudes of individual components represents the difference in relative orientation 

between the two coordinate systems.  
The dot product 

  

� 
a ⋅
� 
b ( )  is defined as the magnitude of 

�
a  multiplied by the magnitude of  

�
b  and then by the 

cosine of the angle between the vectors, 
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� 
a ⋅
� 
b = a b cos∠

� 
a 
�
b  

 

The dot product is used to project  
�
a  onto 

�
b  and can be used to project a vector in one frame of reference 

onto another one.  Rather than calculate the needed cosines each time a vector must be transformed from one frame 

of reference into another, the cosines of the angles between each unit vector of the vehicular and planetary 

coordinate systems are computed and placed into a direction cosine matrix.  This matrix is then used along with the 

vector's magnitude in each dimension of the original frame of reference to compute a dot product.  This product 

gives the vector's magnitude in each dimension of the new frame of reference.  

The transformation between the vehicle and the surface coordinate systems at time t  is specified by a matrix 

of direction cosines, 

 

 
l1 l2 l3

m1 m2 m3

n1 n2 n3

 

 

 
  

 

 

 
  

t

=

cos θ ˆ i v , ˆ i p( ) cosθ ˆ i v , ˆ j p( ) cos θ ˆ i v , ˆ k p( )
cos θ ˆ j v , ˆ i p( ) cosθ ˆ j v , ˆ j p( ) cos θ ˆ j v , ˆ k p( )
cosθ ˆ k v , ˆ i p( ) cosθ ˆ k v , ˆ j p( ) cos θ ˆ k v , ˆ k p( )

 

 

 
 
 
 

 

 

 
 
 
 

t

 

 
where θ ˆ i , ˆ j ( ) denotes the angle between vectors ˆ i  and ˆ j , etc. 

The change in orientation of the vehicle during descent makes the update of the direction cosine matrix 

necessary at each time step.  This update is specified in the following equation: 

 

d / dt
l1 l2 l3

m1 m2 m3

n1 n2 n3

 

 

 
  

 

 

 
  

t

=
0 rv −qv

−rv 0 pv

qv −pv 0

 

 

 
  

 

 

 
  

t

l1 l2 l3
m1 m2 m3

n1 n2 n3

 

 

 
  

 

 

 
  

t

 

 
where the matrix containing the pv ,  qv ,  and rv  terms is the rate of rotation about the axes of the vehicle which may 

be obtained from sensor values.  

 
Linear Velocity 

The linear components of velocity for the vehicle during terminal descent are denoted by Ý x v ,  Ý y v ,  and Ý z v  in the 

vehicle coordinate system and by Ý x p ,  Ý y p ,  and Ý z p  in the surface coordinate system, where the dot Ý   ( )  notation 

indicates derivatives with respect to time. 

 
Vehicle Position 

Vehicle position is expressed in terms of the surface coordinate system by transforming change in position 

(velocity) in the vehicle coordinate system into change in position in the surface frame and integrating as follows: 
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Ý x p
Ý y p
Ý z p

 

 

 
 
 

 

 

 
 
 

t

=
l1 m1 n1

l2 m2 n2

l3 m3 n3

 

 

 
  

 

 

 
  

t

Ý x v
Ý y v
Ý z v

 

 

 
  

 

 

 
  

t

 

and 
xp

yp

z p

 

 

 
 
 

 

 

 
 
 

t

=
Ý x p
Ý y p
Ý z p

 

 

 
 
 

 

 

 
 
 

dτ∫
t

 

Angular Velocity 
Roll, pitch, and yaw angular velocities are represented by the quantities pv , qv , and rv  in the vehicle frame 

of reference only.  Roll is about the 
  

� 
x v  axis, pitch is about the 

 

� 
y v  axis, and yaw is about the 

  

�
z v  axis, as shown in 

Figure 1.3.  A more in-depth explanation of angular velocity naming conventions and other related material may be 

found in section II, part B of Reference [3]. 

 
Vehicle Attitude 

The vehicle attitude at time t  is a function of the vehicle attitude (known by reference to celestial objects) at 
the start of descent at time t0  and the cumulative changes in attitude from time t0   to  time t .  

 
Acceleration 

The linear components of acceleration for the vehicle in the vehicle frame of reference during terminal 

descent are denoted by Ý Ý x v ,  Ý Ý y v ,  and Ý Ý z v ,   respectively. 

 
Further Reading 

The subjects of vector mathematics, transformations between frames of references, vector calculus, and 

rotating coordinate systems may not be sufficiently covered here for the user; however, such depth is not intended for 

this document.  Chapter 4 of Classical Mechanics [4] contains a detailed explanation of rigid body motion and 

transformation of vectors into multiple frames of reference or coordinate systems.  Chapters 15 and 16 of 

Engineering Mechanics [5] contains a more basic approach to the same ideas of multiple frames of reference and 

vector mechanics.  Chapter 14 of [6] and Chapter 5 of [7] also discuss rotational motion and multiple frames of 

reference, as well as vector mechanics and calculus.  Two other books of possible interest are [8] and [9].  Both 

cover the mechanics of particles and dynamics, with strong references to particle trajectories and rocket dynamics.  

Also, these texts are basic in nature and require only a rudimentary knowledge of physics, math, or engineering.  
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Figure 1.3:  ENGINEERING ILLUSTRATION OF VEHICLE5 
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VEHICLE GUIDANCE 

Vehicle guidance is accomplished by varying the engine thrust so that the vehicle follows a single 

predetermined velocity-altitude contour.  This contour is made available during GCS initialization.  Applying too 

great a deceleration early in the descent brings the vehicle velocity to its terminal value too high above the surface, 

resulting in insufficient propellant for final descent.  Applying too small a thrust lets the vehicle impact the surface 

with too great a velocity.  Either condition could be disastrous.  As soon as the touch down sensor touches the 

surface, the engines are shut off.  Approximately ninety percent of propellant or thrust is used to minimize gravity 

losses; the remaining ten percent is used for steering.  

A gravity-turn steering law is mechanized by rotating the vehicle in pitch and yaw until the body's lateral axis 

velocities are zero (causing the thrust axis to point along the total velocity vector).  The action of gravity causes the 

thrust axis to rotate toward the vertical as the total velocity is reduced.  An arbitrary roll orientation is maintained 

with an attitude hold mode during the descent.  

 
ENGINES 

The vehicle has three axial engines that supply the force necessary to slow the vehicle and allow it to safely 

land.  Roll is controlled by three pairs of roll engines on the lander supplying rotational thrust.  Figure 1.3 shows the 

axial and roll engines and the resulting thrust forces they impart to the vehicle. 

 
Axial Engine (Thrust) Control 

Three thrust engines first orient the vehicle so that their combined thrust vector opposes the vehicle's velocity 

vector.  Thrust (axial direction) engine control is a function of pitch error, yaw error, thrust error, and deviation from 

the velocity-altitude contour.  A combination of proportional and integral control (PI) logic is applied to pitch and 

yaw control.  The integral portion helps to reduce the steady-state pitch and yaw error. 

If no thrust error or velocity-altitude contour deviation occurs, then axial engine response provides only pitch 

and yaw control via the PI control law.  Use of this control law implies that the overshoot problem for pitch-yaw 

control is probably small. 

Thrust control is implemented by a proportional-integral-derivative (PID) control law.  The derivative control 

added here damps out overshoot.  

 
Roll Engine Control 

Roll control is attained by pulsing the three pairs of roll engines and is a function of roll angle deviation and 

roll rate ( pV ) about the x  axis.  Roll engine specific impulse and thrust per unit time are constant with the integrated 

thrust controlled by pulse rate.  Angle deviations are controlled within a very small range of 0.25 to 0.35 degrees. 
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GENERAL INFORMATION  

 
NOTATION 

 
Matrices and Arrays 

It should be noted that throughout this specification, the words matrix and array are often interchanged.  No 

significance should be placed upon the use of one word as opposed to use of the other. 

All matrices are referenced with the row index first and the column index second. In the cases where there is a 

time history (see definition of history variable below), the last index is the time index. 

When the name of an array which contains a time history is given without any indices being specified, the 

most recent value is implied. 

 
Operators 

Throughout this specification, matrix operations (particularly multiplication) are required, and on some 

occasions, non-standard operations are used upon matrices.  The following symbols are used to denote the types of 

multiplication to be applied. 

 

Dots ⋅( ) Small dots are used to denote scalar multiplication.  For example: 

3 ⋅ 4 =12  

 
Multiplication sign ×( )  This symbol is used to denote standard matrix multiplication.  This does 

NOT imply a cross product, nor strictly a dot product.  The definition of this type of 

operation is given below: 

A × B = C  

 where 

Cij = Aik ⋅ Bkj
k =1

n

∑  

 

Asterisks (*)  Asterisks are used in conjunction with index markers to show that the operations are 

to be conducted on individual elements of arrays or vectors as if they were scalars.  This is 

often the case when calculating sensor values or other similar  functions when multiple 

scalars are grouped together for convenience. For example, the following equation is listed in 

ASP: 

 The equation for measured acceleration is: 

 

A_ ACCELERATION_ M(i ) = A_ BIAS(i ) + A_ GAIN(i )* A_ COUNTER(i ) 
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 where i  ranges from 1 to 3 and represents the three directions x, y, and z.  In this case, the 

first element of A_ACCELERATION_M would be calculated as follows: 

 

A_ ACCELERATION_ M(1) = A_ BIAS(1) + A_ GAIN(1)⋅ A_ COUNTER(1)  

 

No Operator  In those cases where variables, matrices, or scalars are located directly beside each 

other with no operator between, standard multiplication is implied.  Thus two matrices 

collocated would be multiplied as if they had the ×  operator between them, while two scalars 

would be multiplied as if they had the ⋅ operator between them.  Also, if a scalar and a matrix 

(of one or more dimensions) were collocated, then the scalar would be multiplied by each 

element of the matrix and a new matrix of equal dimensions would be generated. 
 
 

DEFINITIONS 

 
Implementation 

Computer code which fulfills all of the requirements outlined in the GCS Development Specification. 

 
Functional Unit  

Chapter 5 is divided into eleven subsections, each of which describes the requirements for a particular 

function to be performed by the GCS software.  Throughout this specification, the term "functional unit" will 

be used to refer to one of these eleven functions. Note that there is not necessarily a one-to-one 

correspondence between a "functional unit" and a distinct unit or module of software code in an 

implementation.   

 
Frame 

A frame is the length of time necessary to execute all scheduled functional units.  Each frame has two 

different time values associated with it.  The first is the actual c.p.u. time that it takes to execute the GCS 

software on the simulation host computer, while the second is the allotted time for a frame on the actual 

lander.  The global variable DELTA_T  represents the time for one frame on the actual lander and is needed 

in the GCS code for the integration of the dynamic equations for the lander.   

 
Subframe 

A subframe is one of the three individual units of time which together make up a frame.  The three 

subframes are named the Sensor Processing subframe (subframe 1), the Guidance Processing subframe 

(subframe 2), and the Control Law Processing subframe (subframe 3).  In each frame, subframe 1 is executed 

first, subframe 2 is executed second, and subframe 3 is the last subframe executed. 
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Data Store 

The definition for a data or control store given in Hatley [13] is "A data or control store is simply a data or 

control flow frozen in time.  The data or control information it contains may be used any time after that information 

is stored and in any order."  In this specification, all stores contain data, while some also contain data conditions.  

For the purposes of this specification, the term "data store" will be used to refer to any store which contains some 

combination of data and data conditions.  Thus, all four stores listed in the Data Requirements Dictionary part II will 

be referred to as "data stores". 

 
Global Data Store Variable 

 A global data store variable is any variable listed in any of the four global data stores in Chapter 6, 

namely GUIDANCE_STATE data store (Table 6.1), EXTERNAL data store (Table 6.2), SENSOR_OUTPUT 

data store (Table 6.3), or RUN_PARAMETERS data store (Table 6.4). 

 
History Variable 

Within this specification, a particular array, hereafter referred to as a "history variable" is one which 

contains a time history dimension; that is, it contains values for the current frame as well as for previous 

frames. The history variables are the following: 

 
A_ACCELERATION (1:3,0:4) 
A_STATUS   (1:3,0:3) 
AR_ALTITUDE  (0:4) 
AR_STATUS  (0:4) 
G_ROTATION (1:3,0:4) 
GP_ALTITUDE  (0:4) 
GP_ATTITUDE  (1:3,1:3,0:4) 
GP_VELOCITY  (1:3,0:4) 
K_ALT  (0:4) 
K_MATRIX  (1:3,1:3,0:4) 
TDLR_VELOCITY  (1:3,0:4) 

 

In each case, the last dimension is the time dimension. The first subscript in a time history dimension is 

always declared to be zero.  The time dimension contains a set of scalars, vectors, or arrays, depending on 

whether the total number of dimensions is one, two, or three, respectively. Let the term "object" denote a 

scalar, vector, or array, as appropriate for the particular variable.  Each of these variables contains either 

four or five objects, depending on whether the last dimension is declared to be 0:3 or 0:4 respectively.  The 

variable A_STATUS contains four objects, while each of the other time history variables contains five objects. 

Each of the variables listed contains a most recent object and either three or four previous objects.  The 

object with a time subscript of zero is the most recent object; the object with a time subscript of one is the 

object which is one frame older; the object with a time subscript of two is the object which is two frames 

older, etc.; the object with the largest time subscript (three or four) is the oldest object.7 
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CONVENTIONS 

 
FORTRAN Convention 

This specification was written with the assumption that the implementation would be coded in 

FORTRAN.  If the development language used is something other than FORTRAN, the programmer must 

investigate the possibility of differences between FORTRAN and the development language chosen.  

 
REQUIREMENTS 

 
Order of Processing 

Within each functional unit in Chapter 5, the processing steps are given in a particular order.  If the 

implementation uses the same order as that given in the specification, then correct results should be obtained; 

however, the programmer is free to use a different order as long as the change in order does not affect the 

outputs.8 

 
Calls to GCS_SIM_RENDEZVOUS 

There must be a call to GCS_SIM_RENDEZVOUS prior to the execution of each subframe.9 

 
Control Signals 

The control signals listed in Table 6.5 in Part III of the Data Requirements Dictionary may be 

implemented by the programmer in any form desired, or they may be completely ignored and the control of 

the program may be conducted through other means. 

 
Number Representations 

When variables are given in sign-magnitude or other unusual formats, conversion or manipulation may 

be necessary.10 

 
Conversion of Units 

It is the responsibility of the programmer to be sure that any implied conversion of units is 

performed.11 

 
Global Data Store Organization 

Part II of the Data Requirements Dictionary contains descriptions of four required data stores.  Each 

of these data stores is to be located in a separate, globally accessible data region.  The division of the global 

data stores into four separate regions illustrates the fact these regions have a direct mapping to a specific 

implementation of GCS on hardware components of an actual lander.(See Figure B.1).   

If the implementation is being written in FORTRAN, four labeled common blocks should be declared 

with the labels GUIDANCE_STATE, EXTERNAL, SENSOR_OUTPUT, and RUN_PARAMETERS, 
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respectively (See Tables 6.1, 6.2, 6.3,  and 6.4).  The variables declared in each labeled common block must be 

in  the same order as those in the corresponding table.12 
Use of Variables That Are Not in the Global Data Stores 

A programmer may use variables in addition to the global data store variables; however, if the value of 

such a variable is dependent upon the values of any global data store variable(s), then the programmer should 

only use the value of such a variable in the same subframe of the same frame in which it was calculated. 

 
Use of Tables 

Some tables have the heading "CURRENT STATE" and "ACTIONS".  If the actual state of the 

variables appears under the "CURRENT STATE" section in the table, then the actions listed in the same line 

are to be performed.  If the actual current state is not represented in any line under the "CURRENT 

STATE" section of the table, then no action is to be taken. 

 
Rotation of History Variables 

In Chapter 5, in certain functional units, an instruction is given to "rotate" specific variables.  Table 

1.1 illustrates what is meant by rotation.  The table is given for a variable with a time dimension of 0:4.  For a 

variable with a time dimension of 0:3, the last line of the table should be ignored.  Note that after the variable 

has been rotated, the new or current object is calculated and placed into the zeroth time history position.13 

 

Table 1.1:  ROTATION OF VARIABLES14 
 
 

TIME HISTORY 
SUBSCRIPT 

Values BEFORE 
ROTATION 

VALUES AFTER 
ROTATION 

VALUE AFTER 
CALCULATIONS 
FOR CURRENT 

FRAME 
0 On-1 X On 
1 On-2 On-1 On-1 
2 On-3 On-2 On-2 
3 On-4 On-3 On-3 
4 On-5 On-4 On-4 

 
Note: Oi denotes object that was calculated in frame i 

  n = current frame number 

  X = denotes that any value is acceptable 

 

 
EXCEPTION HANDLING15 
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 During the execution of a computer program, exception conditions may sometimes occur.  The 

implementation should anticipate or detect certain types of exception conditions and take specific actions.  

The relevant exception conditions and the actions to be taken are listed below. 
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Exception Conditions 

 

  DIVIDE BY ZERO  

A division is performed, but the divisor is equal to zero. 

 

  NEGATIVE SQUARE ROOT 

A square root is taken, but the argument for the square root is negative. 

 

  UPPER OR LOWER LIMIT EXCEEDED 

The current value for a data element in the GUIDANCE_STATE or SENSOR_OUTPUT 

data store exceeds its upper or lower limit as specified in the range section in the Data 

Requirements Dictionary Part I.  The data elements in the RUN_PARAMETERS and 

EXTERNAL data stores need not be checked for limit exceeded.  In addition, it is not necessary 

for the functional unit CP to check any data elements for limit exceeded. 

 
Action to be Taken for Each Specified Exception Condition 

Write the appropriate output as specified below to the FORTRAN Logical Unit Number 6 and then 

continue.  In the case of UPPER/LOWER LIMIT EXCEEDED, do not modify the data element.  Note that to 

"continue" implies that the divide will be executed, or the square root will be taken, or the data element with 

exceeded limit will be used.  

 
Output to be Generated for Each Exception Condition 

The first line of the exception message should appear as follows: 
 

 " %EXCEPTIONAL-CONDITION-GCS-"<insert specific condition here> 

  where the specific condition is one of the following: 

  "DIVIDE_BY_ZERO" 

  "NEGATIVE_SQUARE_ROOT" 

  "LOWER_LIMIT_EXCEEDED" 

  "UPPER _LIMIT_EXCEEDED" 

 

The second line of the exception message should contain the name of the functional unit where the 

exception condition occurred (i.e. AECLP, ASP, etc.), the name of the actual subroutine where the exception 

condition occurred, and the current value of the frame counter.  Implementations that are coded in 

FORTRAN should use the following FORTRAN format statement: 
 

 FORMAT (x, a6, x, a32, x, i4) 
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A third line of the exception message containing information that is specific to the individual error type 

may be required as specified below. 

 Divide By Zero 

  No additional output necessary. 

 

  Negative Square Root 

  Display the value  of the argument to the square root operation. 

  Use FORTRAN format statement FORMAT (x, e23.14). 

 

 Lower Limit Exceeded 

  Display the name of the data element in question and the value of the data element. 

  Use FORTRAN format statement FORMAT (x, a32, e23.14) for type real elements, and use  

 FORMAT (x, a32, i12) for integer or logical data elements. 

 

 Upper Limit Exceeded 

  Display the name of the data element in question and the value of the data element. 

  Use FORTRAN format statement FORMAT (x, a32, e23.14) for type real elements, and use  

 FORMAT (x, a32, i12) for integer or logical data elements. 
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2.  LEVELS 0 AND 1 SPECIFICATION 
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LEVEL 0 SPECIFICATION 

 

The GCS will provide an interface between the sensors (rate of descent, attitude, etc.) and the engines (roll 

and axial).  The purpose of the GCS is to keep the vehicle descending along the predetermined velocity-altitude 

contour which has been chosen to conserve enough fuel to effect a safe attitude and touch down. 

 

The GCS effects this control by:  

•  processing the following sensor information: 

- acceleration data from the three accelerometers -- one for each vehicle axis,  

- range rate data from four splayed doppler radar beams, 

- altitude data from one altimeter radar, 

- temperature data from a solid-state temperature sensor and a thermocouple pair temperature 

sensor, 

- rates of rotation from three strapped-down gyroscopes -- one for each vehicle axis, and 

- sensing of touch down by the touch down sensor. 

• determining the appropriate commands for the axial and roll engines and the chute release mechanism 

and issuing them to keep the vehicle on a predetermined velocity-altitude contour. 

 

The GCS also transmits telemetry data and synchronizes through a rendezvous routine 

(GCS_SIM_RENDEZVOUS) with GCS_SIM [10], the simulator and controller.   

Note that implementations of the GCS developed from this specification may be executed singly or in 

parallel.  Consequently, only specific system services can be used in an implementation.  In particular, a rendezvous 

routine will be provided and should be invoked, as specified in the implementation notes in Appendix B.  In 

addition, FORTRAN Intrinsic Functions may be used.  Other system services and library routines are explicitly 

excluded from use by the programmer. 

 

Figures 2.2 through 2.5, 3.1, 3.2, and 4.1 through 4.4, and Tables 2.1, 3.1, 4.1, and 4.2 follow Hatley's 

extension to Structured Analysis (see Appendix A), with the following exceptions and assumptions. 

 

Exceptions: 

1.  Any data store may appear at more than one level because the processes specified do not communicate 

directly but only through data stores. 

2.  Any unlabeled flow between a process and a data store may not necessarily carry all the information in 

the data store (the actual flow content is defined by the process specification and the Data 

Requirements Dictionary Part II). 
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Assumptions: 

1.  The initial value for control signals is assumed to be "FALSE". 

2.  In a process activation table (PAT), an empty process cell indicates the process is deactivated. 

3.  In a PAT, an empty output cell indicates the control signal value remains unchanged. 

4.  In a PAT, output control signals receive values before any processes are activated and therefore may 

delay the activation of processes by deactivating their parent process. 

 

An example of assumption 4 is Table 3.1 where setting RENDEZVOUS to "TRUE" delays the activation of 

the processes of which RUN_GCS is composed until GCS_SIM sets RENDEZVOUS to "FALSE". 
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Figure 2.1:  STRUCTURE OF THE GCS SPECIFICATION 
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Figure 2.2:  DATA CONTEXT DIAGRAM:  LANDER 
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Figure 2.3:  CONTROL CONTEXT DIAGRAM:  LANDER 
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LEVEL 1 SPECIFICATION 

 

 

Figure 2.4:  DATA FLOW DIAGRAM (DFD) 0: GCS 
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Figure 2.5:  CONTROL FLOW DIAGRAM (CFD) 0: GCS 
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RENDEZVOUS is only set to "TRUE" by RUN_GCS and it is only set to "FALSE" by GCS_SIM. 
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Table 2.1:  CONTROL SPECIFICATION (C-SPEC) 0: GCS 
 

 "INIT_GCS" "RUN_GCS" 

~RENDEZVOUS & ~RUN_DONE  1 

RENDEZVOUS & ~INIT_DONE & ~RUN_DONE 1  

(RENDEZVOUS & INIT_DONE) | RUN_DONE   
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3.  LEVEL 2 SPECIFICATION
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LEVEL 2 SPECIFICATION 
 
PROCESS SPECIFICATION (P-Spec) 1: INIT_GCS16 

 

PURPOSE  INIT_GCS initializes the guidance and control software. 

 
INPUT 

INITIALIZATION_DATA 

 
OUTPUT 

INITIALIZATION_DATA 

 

PROCESS  INIT_GCS is actually a part of GCS_SIM_RENDEZVOUS, which will be supplied to the 

programmer; thus the functions performed by INIT_GCS are listed here for information only, but are not the 

responsibility of the programmer.  There should be a call to GCS_SIM_RENDEZVOUS, prior to executing each 

subframe.  The first call to GCS_SIM_RENDEZVOUS will cause INIT_GCS to automatically be executed.  

INIT_GCS will initialize all variables in the group flow INITIALIZATION_DATA, which is defined in Table 6.7 in 

the Data Requirements Dictionary Part III.  Since the variables FRAME_COUNTER and SUBFRAME_COUNTER 

are part of INITIALIZATION_DATA, they will be initialized at this time.  FRAME_COUNTER will be initialized 

to a value representing the next frame to be executed, while SUBFRAME_COUNTER will always be initialized to 

the value one, which implies that the first subframe of the first frame to be executed will always be the sensor 

processing subframe.  Although a terminal descent trajectory begins with FRAME_COUNTER initialized to the 

value one, the option exists for starting execution at some point other than at the beginning of the trajectory, i.e., 

FRAME_COUNTER may be initialized to a value greater than one. 
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Figure 3.1:  DFD 2: RUN_GCS 
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Figure 3.2:  CFD 2: RUN_GCS 
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Table 3.1:  C-Spec 2: RUN_GCS 

 

 
 "SP" "GP" "CLP" "CP" SP_DONE GP_DONE CLP_DONE CP_DON

E 
RENDEZVOUS RUN_DONE

~SP_DONE & 
~GP_DONE & 
~CLP_DONE & 
~CP_DONE 

 
1 

   
2 

     
"TRUE" 

 

SP_DONE & 
CP_DONE 

 1  2 "FALSE"   "FALSE" "TRUE"  

GP_DONE & 
CP_DONE & 
GP_PHASE ~= 5 

   
1 

 
2 

  
"FALSE" 

  
"FALSE" 

 
"TRUE" 

 

CLP_DONE & 
CP_DONE 

1   2   "FALSE" "FALSE" "TRUE"  

GP_DONE & 
CP_DONE & 
GP_PHASE = 5 

          
"TRUE" 
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4.  LEVEL 3 FLOW DIAGRAMS AND C-SPECS 
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Figure 4.1:  DFD 2.1: SP -- Sensor Processing 
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Figure 4.2:  CFD 2.1: SP -- Sensor Processing 
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Table 4.1:  C-Spec 2.1: SP -- Sensor Processing 

 

 
 "ASP" "ARSP" "TDLRSP" "GSP" "TSP" "TDSP" ASP_ 

DONE 

ARSP_ 

DONE 

TDLRSP_ 

DONE 

GSP_ 

DONE 

TSP_ 

DONE 

TDSP_ 

DONE 

SP_ 

DONE 

~ASP_DONE & 

~ARSP_DONE & 

~TDLRSP_DONE & 

~GSP_DONE & 

~TSP_DONE & 

~TDSP_DONE & 

~SP_DONE 

 
 

2 

 
 

2 

 
 

2 

 
 

2 

 
 

1 

 
 

2 

       

ASP_DONE & 

ARSP_DONE & 

TDLRSP_DONE & 

GSP_DONE & 

TSP_DONE & 

TDSP_DONE & 

~SP_DONE 

       

 

"FALSE" 

 

 

"FALSE" 

 

 

"FALSE" 

 

 

"FALSE" 

 

 

"FALSE" 

 

 

"FALSE" 

 

 

"TRUE" 
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Figure 4.3:  DFD 2.3: CLP -- Control Law Processing 
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Figure 4.4:  CFD 2.3: CLP -- Control Law Processing 
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Table 4.2:  C-Spec 2.3: CLP -- Control Law Processing 

 

 
 

 "AECLP" "RECLP" "CRCP" AECLP_DONE RECLP_DON
E 

CRCP_DONE CLP_DONE 

~AECLP_DONE & 
~RECLP_DONE & 
~CRCP_DONE & 
~CLP_DONE 

 
1 

 
1 

     

AECLP_DONE & 
~CRCP_DONE & 
~CLP_DONE 

  
1 

 
1 

    

AECLP_DONE & 
RECLP_DONE & 
CRCP_DONE & 
~CLP_DONE 

    
"FALSE" 

 
"FALSE" 

 
"FALSE" 

 
"TRUE" 
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SCHEDULING 

Within each frame, the Sensor Processing Subframe is to be executed first, the Guidance Processing 

Subframe is to be executed second, and the Control Law Processing Subframe is to be the last subframe 

executed.  Table 4.3 lists each functional unit in the GCS according to the subframe in which it should be 

executed.  A number "I" is located along with the functional unit name. This number indicates that the functional 

unit should be executed every "Ith" frame. Note that all functional units are executed during frame number 1.  Also 

note that execution of the GCS may begin at any frame number and should operate as if it had been running from the 

beginning of the trajectory (frame number 1).  There are minor sequencing constraints to be imposed upon the 

functional units in each subframe.  During the sensor processing subframe, TSP should be executed before any of 

the other functional units, and CP should be executed last.  In the guidance and control subframes, CP should be 

executed after the other functional units.  Lastly, during the control processing subframe, AECLP needs to be 

executed before CRCP.  All functional units not specified here may be executed in any order within their 

subframes.  On the first, and subsequent, calls to GCS_SIM_RENDEZVOUS, FRAME_COUNTER and 

SUBFRAME_COUNTER will be returned to the implementation containing the correct values for operation.  The 

value in FRAME_COUNTER should be compared to the numbers listed in Table 4.3 to determine if a functional 

unit should be executed. As an example, TSP has a number of 2, which means that it executes every other frame; 

while ASP has a number of 1, meaning it executes every frame; and TDSP has a number of 5, so it executes only 

every fifth frame. 

 

 

Table 4.3:  FUNCTIONAL UNIT SCHEDULING17 

 
SCHEDULING 
Sensor Processing Subframe (Subframe 1) "I" 
ARSP 1* 
ASP 1 
CP 1 
GSP 1 
TDLRSP 1* 
TDSP 5 
TSP 2 
Guidance Processing Subframe (Subframe 2) "I" 
CP 1 
GP 1 
Control Law Processing Subframe (Subframe 3) "I" 
AECLP 1 
CP 1 
CRCP 5 
RECLP 1 

 
* This functional unit has special scheduling considerations.  For details, see the 

appropriate functional unit description in Chapter 5. 
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The GCS software must meet all the requirements for a particular frame for any specific value of the variable 

FRAME_COUNTER.  The software must be capable of executing continuously one frame after another until 

specified termination conditions are met, at which time it must terminate itself according to specified termination 

procedures. 

The termination conditions and procedures are:  GCS should check whether to terminate itself in each frame 

immediately after executing the Guidance Processing functional unit.  At that time if the value of the variable 

GP_PHASE is equal to 5, then GCS should terminate itself gracefully (without any exception conditions).  In this 

case, the implementation should terminate at the end of the present subframe, i.e., it should execute the functional 

unit Communications Processing and then terminate without calling GCS_SIM_RENDEZVOUS. 
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5.  P-SPECS FOR LEVELS 3 and 4 
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AECLP -- Axial Engine Control Law Processing (P-Spec 2.3.1) 
 

PURPOSE  The AECLP functional unit computes the valve settings for each of the three main (axial) engines.  

Measurements of the vehicle's velocity, acceleration, and roll rates are combined to produce error signals for the 

pitch, yaw, and thrust of the vehicle.  These error signals are then mixed to produce the axial engine valve settings. 

 
INPUT  

AE_SWITCH  AE_TEMP 
A_ACCELERATION CHUTE_RELEASED 
CL CONTOUR_CROSSED 
DELTA_T ENGINES_ON_ALTITUDE 
FRAME_COUNTER FRAME_ENGINES_IGNITED 
FULL_UP_TIME GA 
GAX GP1 
GP2 GPY 
GP_ALTITUDE GP_ATTITUDE 
GP_ROTATION GP_VELOCITY 
GQ GR 
GRAVITY GV 
GVE GVEI 
GVI GW 
GWI OMEGA 
PE_INTEGRAL PE_MAX 
PE_MIN TE_DROP 
TE_INIT TE_INTEGRAL 
TE_LIMIT TE_MAX 
TE_MIN VELOCITY_ERROR 
YE_INTEGRAL YE_MAX 
YE_MIN   

 
OUTPUT 

AE_CMD AE_STATUS 
AE_TEMP INTERNAL_CMD 
PE_INTEGRAL TE_INTEGRAL 
TE_LIMIT YE_INTEGRAL 

 

PROCESS  The reader should refer to Appendix C for notes on integration.  Note that once the correct value 

of AE_CMD has been determined, it will automatically be transmitted to the engines during the next call to the 

GCS_SIM_RENDEZVOUS routine provided in the GCS_SIM rendezvous package.  (See Appendix B. 

Implementation Notes).  Computation of the axial engine valve settings requires the following steps: 

 

✔✔✔✔  PROCESSING WHEN AXIAL ENGINES ARE OFF19 

• IF AE_SWITCH  is set to OFF, then perform the following steps: 

•• Set all elements of AE_CMD to 0 
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•• Proceed directly to the step "SET AXIAL ENGINE STATUS TO HEALTHY." 
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✔✔✔✔  PROCESSING WHEN AXIAL ENGINES ARE ON 20 

The variable CL is used here as a subscript.  Explanations for the variables CL and 

VELOCITY_ERROR are provided in  functional unit 2.6 GP.  The variables PE_INTEGRAL, 

YE_INTEGRAL, and TE_INTEGRAL will be initialized by INIT_GCS. 

 

• If AE_SWITCH is set to ON then perform the following steps: 

 

(Note:  
pv

, 
qv

, and 
rv

 are the current elements of GP_ROTATION; 

Ý x v
, 

Ý y v
, and 

Ý z v
 are the current elements of GP_VELOCITY; 

Ý Ýx v
 is the 

current x component of A_ACCELERATION.) 

 

DETERMINE ENGINE TEMPERATURE  

•• Set AE_TEMP according to Table 5.1 

 
 

Table 5.1:  DETERMINATION OF AXIAL ENGINE TEMPERATURE21 

 
CURRENT STATE ACTION 

AE_TEMP GP_ALTITUDE 
(FRAME_ COUNTER −−−−

FRAME_ ENGINES_ IGNITED
DELTA_T

 

AE_TEMP 

cold ≤ ENGINES_ON_ALTITUDE 
 

< FULL_UP_TIME warming-up 

warming-up ≤ ENGINES_ON_ALTITUDE 
 

≥ FULL_UP_TIME hot 

 

COMPUTE LIMITING ERRORS FOR PITCH 
 

•• 
PE_ INTEGRAL ==== PE _ INTEGRAL ++++

Ý z v
Ý x vt0

t

∫∫∫∫ dt
 ,  

where t0  is the beginning of the time step and t is the end of the time step. 
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•• 
Pe

L ==== GQ(CL ) ⋅⋅⋅⋅ qv ++++GW(CL) ⋅⋅⋅⋅
Ý z v
Ý x v

    

    
    

    

    
    ++++ GWI (CL ) ⋅⋅⋅⋅ PE_ INTEGRAL

 

 

•• If  
Pe

L <<<< PE _ MIN (CL )
  then set  

Pe
L

 to PE_MIN(CL). 

 

•• If  
Pe

L >>>> PE _ MAX(CL)
  then set  

Pe
L

 to PE_MAX(CL). 
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COMPUTE LIMITING ERROR FOR YAW 

 

•• 
YE _ INTEGRAL ==== YE_ INTEGRAL ++++

Ý y v
Ý x vt0

t

∫∫∫∫ dt
, 

 where t0 is the beginning of the time step and t is the end of the time step. 

 

•• 
Ye

L ==== −−−−GR(CL) ⋅⋅⋅⋅ r v ++++ GV(CL) ⋅⋅⋅⋅
Ý y v
Ý x v

    

    
    

    

    
    ++++GVI (CL) ⋅⋅⋅⋅ YE_ INTEGRAL

 

 

•• If  
Ye

L <<<< YE _ MIN (CL )
 then set  

Ye
L

 to YE_MIN(CL). 

 

•• If 
Ye

L >>>> YE _ MAX(CL)
 then set  

Ye
L

 to YE_MAX.CL). 

 

COMPUTE LIMITING ERROR FOR THRUST 

 

•• If CONTOUR_CROSSED is set to "contour not crossed", then proceed directly 

to the step "COMPUTE PITCH, YAW, AND THRUST ERRORS." 

 

•• If CONTOUR_CROSSED is set to "contour crossed", then perform the 

following steps: 

 

•••  
TE _ INTEGRAL = TE _ INTEGRAL + (VELOCITY _ ERROR)dt

t 0

t
∫

 

 

••• Solve the following equation analytically in order to calculate the value for 

TE_LIMIT: 
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d
dt

(TE_ LIMIT ) ++++ OMEGA ⋅⋅⋅⋅ TE_ LIMIT

GA
====

−−−−GAX ⋅⋅⋅⋅ (Ý Ý x v ++++ GRAVITY ⋅⋅⋅⋅ GP _ ATTITUDE(1, 3, 0)) ++++
GVE ⋅⋅⋅⋅ VELOCITY _ ERROR ++++ GVEI (CL ) ⋅⋅⋅⋅ TE_ INTEGRAL  

 

••• If  
TE _ LIMIT <<<< TE_ MIN (CL)

 then set TE_LIMIT to TE_MIN(CL). 

 

••• If  
TE _ LIMIT>>>>TE_ MAX(CL)

 then set TE_LIMIT to TE_MAX(CL). 
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COMPUTE PITCH, YAW, AND THRUST ERRORS 

 
•• Compute pitch error (Pe), Yaw Error (Ye), and Thrust Error (Te), according to 

Table 5.2 

 

Table 5.2:  DETERMINATION OF ERROR TERMS23 

 

AE_SWITCH CHUTE_ 

RELEASED 

CONTOUR_ 

CROSSED 

Pe  Ye  Te  

1 1 1 Pe
L  Ye

L  TE_LIMIT 

1 1 0 Pe
L  Ye

L  TE_DROP 

1 0 0,1 GQ(CL) ⋅⋅⋅⋅ qv  −−−−GR(CL) ⋅⋅⋅⋅ rv  TE_INIT 

 

 

COMPUTE AXIAL ENGINE VALVE SETTINGS 
Given pitch, yaw, and thrust errors, ( Pe , Ye , Te ), the valve settings (AE_CMD) for each of the 

three main engines are calculated as: 

 

INTERNAL_ CMD  =  
GP1 0 1
GP2 −GPY 1
GP2 GPY 1

 

 

 
  

 

 

 
  

×
Pe

Ye

Te

 

 

 
  

 

 

 
  
 

 
which will result in each element of the INTERNAL_CMD vector being a real value.  This value 

should be converted into an integer value between 0 and 127 and placed into the appropriate 

element of the AE_CMD vector.  The mapping for the conversion from real to integer values for 

each of the three elements should be as follows: 

 

Table 5.3:  DETERMINATION OF AXIAL ENGINE COMMANDS 
 

INTERNAL_CMD AE_CMD 

I < 0.0 A = 0 

0.0 ≤ I ≤  1.0 0 ≤  A ≤  127 

1.0 < I A = 127 

 
Note: "I" represents the appropriate element of the vector INTERNAL_CMD 
  "A" represents the appropriate element of the vector AE_CMD 
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with INTERNAL_CMD between 0 and 1.0 being converted linearly to a value of AE_CMD 

between 0 and 127.  Each value for AE_CMD is to be rounded to the nearest integer, where 

rounding is defined as follows:25 

  Let  x  represent the real value that is to be rounded 

  Then, AE_CMD = the integer part of (x+0.5) 

 

✔  SET AXIAL ENGINE STATUS TO HEALTHY 

• Set AE_STATUS to healthy. 
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ARSP -- Altimeter Radar Sensor Processing (P-Spec 2.1.2) 
 

PURPOSE  The vehicle has one altimeter radar.  The ARSP functional unit reads the altimeter counter provided by 

this radar and converts the data into a measure of distance to the surface. 

 
INPUT 

AR_ALTITUDE AR_COUNTER 
AR_FREQUENCY AR_STATUS 
FRAME_COUNTER K_ALT 

 
OUTPUT 

AR_ALTITUDE AR_STATUS 
K_ALT  

 

PROCESS  It is only necessary that this functional unit perform its normal calculations every other frame, 

namely on the odd-numbered frames;  however, one will notice that in the scheduling Table 4.1, it is required 

that this functional unit execute every frame.  The reason for this is that during its normal processing it must 

rotate history variables.  This means that during the frames when it does not need to calculate new outputs, 

namely the even-numbered frames, it must still rotate its history variables and set its new or current values 

equal to the previous values, thus creating double entries for each rotated variable.  By doubling the entries, 

consistency of time histories will be maintained at the expense of keeping two copies of each value in these 

variables, and forcing the functional unit to execute every frame.26 

The processing of the altimeter counter data (AR_COUNTER) into the vehicle's altitude above the planet's 

terrain  depends on whether or not an echo is received by the altimeter radar for the current time step.  The distance 

covered by the radio pulses emitted from the altimeter radar is directly proportional to the time between transmission 

and  reception of its echo.  A digital counter (AR_COUNTER) is started as the radar pulse is transmitted.  The 

counter increments AR_FREQUENCY times per second.  If an echo is received, the lower order fifteen bits of 

AR_COUNTER contain the pulse count, and the sign bit will contain the value zero.  If an echo is not 

received, AR_COUNTER will contain sixteen one bits.27 

    

✔✔✔✔  ROTATE VARIABLES 

• Rotate AR_ALTITUDE, AR_STATUS, AND K_ALT. 

 

✔✔✔✔    PERFORM ALTERNATE PROCESSING IF THIS IS AN EVEN-NUMBERED FRAME 

• If FRAME_COUNTER is an even number, then  perform the following: 

•• Insure that the current values of AR_ALTITUDE, AR_STATUS, and K_ALT are equal 

to the previous values of AR_ALTITUDE, AR_STATUS, and  K_ALT respectively. 

•• Exit from this functional unit. 
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✔  DETERMINE ALTITUDE28 

• If an echo is received, perform the following:  

••  Convert the AR_COUNTER value to a distance to be returned in the variable 

AR_ALTITUDE according to the following equation: 

 

AR_ ALTITUDE =  
AR_ COUNTER ⋅3 ×108 m

sec
AR_ FREQUENCY ⋅ 2  

 

• If an echo is not received,  compute AR_ALTITUDE as follows: 

•• If all four previous values of AR_STATUS are healthy: 

••• In order to smooth the estimate of altitude, fit a third-order polynomial to the 

previous four values of AR_ALTITUDE. 

••• Use this polynomial to extrapolate a value for AR_ALTITUDE for the current 

time step. 

•• If any of the previous four values of AR_STATUS is failed: 

••• Set the current value of AR_ALTITUDE equal to the previous value of 

AR_ALTITUDE. 

 

✔✔✔✔  SET ALTIMETER RADAR STATUS  

• Set the current values for AR_STATUS and K_ALT according to TABLE 5.4. 

 

 

Table 5.4:  DETERMINATION OF ALTITUDE STATUS29 

 
CURRENT STATE ACTIONS TO BE TAKEN 

ECHO RETURNED? All 4 previous 
AR_STATUS values 

healthy? 

AR_STATUS K_ALT 

yes d healthy 1 

no yes failed 1 

no no failed 0 
 
Note:  "d" = don't care condition 
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ASP -- Accelerometer Sensor Processing (P-Spec 2.1.1) 
 

PURPOSE  Three accelerometers, located at the vehicle's center of gravity, are slightly misaligned along the 

vehicle's 
  

� 
x v , 
  

� 
y v , and 

  

�
z v  axes.  Each accelerometer produces a 16-bit binary value (A_COUNTER), represented as 

the magnitude portion of a sign magnitude number which is a linear function of the acceleration along its axis.  The 

sign of the counter will always be positive, but the offset given in A_BIAS will be negative or zero, so if the 

magnitude of the product of A_COUNTER and A_GAIN is smaller than that of A_BIAS, the measured 

acceleration is negative.  The Acceleration Sensor Processing (ASP) functional unit provides measures of the 

vehicle accelerations through the conversion and digital filtering of this raw accelerometer data. 

 
INPUT 

A_ACCELERATION  A_BIAS 
A_COUNTER  A_GAIN_0 
A_SCALE  A_STATUS  
ALPHA_MATRIX  ATMOSPHERIC_TEMP 
G1  G2 

 
OUTPUT 

A_ACCELERATION A_STATUS 

 

PROCESS  The processing of the accelerometer data (A_COUNTER) into vehicle accelerations 

(A_ACCELERATION) requires the following steps: 

 

✔✔✔✔    ROTATE VARIABLES30 

• Rotate A_ACCELERATION and A_STATUS. 

    

✔✔✔✔  ADJUST GAIN FOR TEMPERATURE 

The standard gain (A_GAIN_0) must be adjusted for the effects of temperature prior to the conversion 

of the raw accelerometer values.  The adjusted gain is a quadratic function of the ambient temperature 

(ATMOSPHERIC_TEMP) and the standard gain. 

• Adjust the gain for temperature as follows: 

 

A_ GAIN(i) = A_ GAIN_ 0(i) + (G1 ⋅ ATMOSPHERIC_ TEMP)

                         +  (G2 ⋅  ATMOSPHERIC_ TEMP 2 )
 

where i  ranges from 1 to 3 and represents the three directions x, y, and z, and where 

A_GAIN_0 is the standard gain. 
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✔  REMOVE CHARACTERISTIC BIAS 

Each accelerometer has a characteristic DC bias (A_BIAS) which must be removed from the signal 

prior to conversion. The acceleration is a linear function of its A_COUNTER value where the gain 

specifies the slope and the offset (A_BIAS)  specifies the intercept. 

• Remove the bias as follows: 

A_ACCELERATION_M(i) = A_BIAS(i) + A_GAIN(i) * A_COUNTER(i) 

 where i  ranges from 1 to 3 and represents the three directions x, y, and z. 

 

✔  CORRECT FOR MISALIGNMENT 

Each accelerometer is slightly misaligned from the true vehicle axes. The multiplier matrix 

(ALPHA_MATRIX) which is shown below,  is based on  small angle approximations and corrects 

for this misalignment.  It is used for transforming the measured acceleration data into the true vehicle 

accelerations. 

 

    ALPHA_MATRIX =
1 −α xz α xy

α yz 1 −α yx

−α zy α zx 1

 

 

 
 
 

 

 

 
 
 

 

 
α xy  defines the angle of rotation about the vehicle's 

 

� 
y v  axis between the 

  

� 
x v  axis and the 

misaligned 
  

� 
x v  axis. The other misalignment angles are defined similarly, based upon a right-

handed coordinate system. 

• Compute preliminary current value of A_ACCELERATION as follows: 

A_ ACCELERATION = ALPHA_ MATRIX × A_ ACCELERATION_ M  

 

✔  DETERMINE ACCELERATIONS AND ACCELEROMETER STATUS31 

The variable A_STATUS is a four-element array in each of the three physical dimensions, and contains 

the present and previous three values of  status for each accelerometer.  The variable 

A_ACCELERATION is a five-element array in each of the three dimensions (x, y, and z).   

A_ACCELERATION contains the present and previous four values of  acceleration. 

 

• The following steps are described for the x axis but should be performed for each axis: 

•• If one or more of the previous three values of A_STATUS is unhealthy, leave the current 

value of A_ACCELERATION unchanged, set the current value of A_STATUS to healthy 

and do no further processing for this axis. 

•• If all three of the previous values of A_STATUS are healthy, check for extreme values and 

set A_STATUS and A_ACCELERATION according to the method described below. The 
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accelerometer processing includes filtering of the calculated accelerations along each axis (i.e. 
filtering of Ý Ý x v ,  Ý Ý y v ,  Ý Ý z v( )t  ), and ignoring or eliminating calculated accelerations which are out 

of range.  To effect this filtering, the means and standard deviations for each component of 

acceleration are to be computed using the calculated accelerations from the previous three 

time steps.  That is, for the current time step t and the measurement of acceleration along the x  

axis: 

••• Calculate 

ˆ µ =
Ý Ý x v ( i)

3i = t −3

t −1

∑  

which is the current sample mean 

 
••• Calculate 

ˆ σ =
Ý Ý x v (i )( )2

3
− ˆ µ 

2

i= t −3

t −1

∑  

which is the current sample standard deviation. 

 
••• If ˆ µ − Ý Ý x v (t) > A_ SCALE ⋅ ˆ σ  

 
  set Ý Ý x v(t ) to  ˆ µµµµ 

  

  

  set A_STATUS to unhealthy 

 
where Ý Ý x v(t)  is the acceleration along the x axis for the current  time step.  

Similar equations hold for eliminating outliers in the measures of  acceleration 

along the y  and z axes. 

 

 otherwise 

set A_STATUS to healthy 

 

In summary, if the calculated acceleration for the current time step for any component 

differs from the mean  by more than A_SCALE times the standard deviation, then that 

component of acceleration should be replaced by its current mean and A_STATUS 

should be set to unhealthy.  

 

If the calculated acceleration for any component is within the specified range of the mean, 

then the preliminary value of A_ACCELERATION should remain unchanged and 

A_STATUS should be set to healthy. 
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CP -- Communications Processing (P-Spec 2.4) 
 

PURPOSE  Data from the vehicle sensors and guidance processor is relayed back to the orbiting platform for later 

analysis.  The CP functional unit converts the sensed data into a data packet appropriate for radio transmission. 

 
INPUT 

AE_CMD AE_STATUS 
AE_TEMP AR_ALTITUDE 
AR_STATUS ATMOSPHERIC_TEMP 
A_ACCELERATION A_STATUS 
CHUTE_RELEASED COMM_SYNC_PATTERN 
CONTOUR_CROSSED FRAME_COUNTER 
GP_ALTITUDE GP_ATTITUDE 
GP_PHASE GP_ROTATION 
GP_VELOCITY G_ROTATION 
G_STATUS K_ALT 
K_MATRIX PE_INTEGRAL 
RE_CMD RE_STATUS 
SUBFRAME_COUNTER TDLR_STATE 
TDLR_STATUS TDLR_VELOCITY 
TDS_STATUS TD_SENSED 
TE_INTEGRAL TS_STATUS 
VELOCITY_ERROR YE_INTEGRAL 

 
OUTPUT 

C_STATUS PACKET  

 

PROCESS  The data packet (PACKET) prepared for transmission is organized to sequentially contain a 

synchronization pattern, a sequence number, new sample mask, the data itself, and the checksum information.  The 

data packet created will automatically be transmitted during the next call to GCS_SIM_RENDEZVOUS. 

 

✔  SET COMMUNICATOR STATUS TO HEALTHY 

• Set C_STATUS to healthy. 

 

The construction of the packet requires the following steps: 

 

✔  CONSTRUCT PACKET: 

• GET SYNCHRONIZATION PATTERN 

The synchronization pattern is provided in the variable COMM_SYNC_PATTERN.  It is a 16-bit 

pattern dictated by the design of the receiving communications equipment. 
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• DETERMINE SEQUENCE NUMBER 

The sequence number identifies the packet of data that is being sent.  It is a byte value in the range 

0..255.  The sequence number will be 0 during the first subframe of frame number 1.  Sequence 

numbers increase by one every subframe, except that the values repeat after the 256th packet.  The 

sequence number can be calculated based on the values of the variables FRAME_COUNTER and 

SUBFRAME_COUNTER. 

 

• PREPARE SAMPLE MASK 

The sample mask is a boolean vector where "ones" represent variables that have been sampled 

since the previous transmission.  Any variables listed in Table 5.5 that may have changed during 

the present subframe should be marked in the mask and transmitted.  The output variables from the 

functional units ARSP and TDLRSP, however, should not be transmitted when the variable 

FRAME_COUNTER is an even number.  Values that have been rotated into subsequent elements 

of an array are not considered "new" and thus do not have to be transmitted.  This eliminates the 

need to maintain previous values on all variables and also eliminates making comparisons to 

determine which variables should be sent.  Each bit position in the mask represents a particular 

variable listed in Table 5.5.  The leftmost bit of the mask corresponds to AE_CMD, and moving 

across the mask from left to right, the next mask bit corresponds to the next variable in Table 5.5 

(in row order). 

 

• PREPARE DATA SECTION 

The data section of the packet contains the sixteen bit values for the elements of the variables in 

Table 5.5 that may have new samples available.  Values that have been rotated into subsequent 

elements of an array are not considered "new" and thus do not have to be transmitted.  Once it has 

been determined which variables should be transmitted for this particular subframe, those variables 

should be packed into the data section.  Although the length of the variable PACKET is fixed, the 

number of bytes of PACKET which contain actual variables to be transmitted will vary depending 

on the values of FRAME_COUNTER and SUBFRAME_COUNTER.  The variables to be 

transmitted should be concatenated so that there are no unused bytes between the data to be 

transmitted.  There may however be unused bytes following the checksum.  The data are 

concatenated in the order given by the sample mask, starting with the most significant bit (i.e. left 

most bit).  Variables should be packed to the nearest byte boundary; thus, a single element of 

PACKET could contain a logical*1 and the first byte of the variable that follows it.  Arrays should 

be sent with the first index changing most rapidly.  It should be noted that some arrays have terms 

that are constant (e.g. the off-diagonal terms of K_MATRIX and the diagonal terms of 

GP_ROTATION) and since these terms can never have "new" values, they should not be 
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transmitted.  The values in Table 5.5 should be sent in row order, starting at the top of the 

table.  The first value in alphabetical order goes next to the mask in the packet.32 

 

• CALCULATE CHECKSUM  

The data checksum is calculated on the entire packet (excluding the checksum) using the standard 

CRC-16 polynomial as defined in [11].  The calculation of the checksum should begin with the 

COMM_SYNC_PATTERN portion of PACKET, and conclude with the last variable to be sent 

during the current subframe.  Any unused parts of PACKET should be ignored for the calculation 

of the checksum.  The checksum should be placed in the two bytes immediately following the last 

byte of actual data to be transmitted for this subframe. 

 

 

Table 5.5:  PACKET VARIABLES 

 
AE_CMD AE_STATUS AE_TEMP 
AR_ALTITUDE AR_STATUS ATMOSPHERIC_TEMP 
A_ACCELERATION A_STATUS CHUTE_RELEASED 
CONTOUR_CROSSED C_STATUS GP_ALTITUDE 
GP_ATTITUDE GP_PHASE GP_ROTATION 
GP_VELOCITY G_ROTATION G_STATUS 
K_ALT K_MATRIX PE_INTEGRAL 
RE_CMD RE_STATUS TDLR_STATE 
TDLR_STATUS TDLR_VELOCITY TDS_STATUS 
TD_SENSED TE_INTEGRAL TS_STATUS 
VELOCITY_ERROR YE_INTEGRAL    

 

Note:  when read by rows, this table represents the alphabetical listing of variables that are to appear in the 

data section of the packet. 

 

 

Table 5.6:  SAMPLE MASK 

 
INFORMATION SENT A B C ... Z  
EXAMPLE MASK 1 1 0 ... 1  

 

Note: this table gives information only on the order of the packet.  The packet should be packed to a byte-

boundary limit into integer*2 elements. 
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Table 5.7:  EXAMPLE OF PACKET 

 
COMM_SYNC_PATTERN 

. 

. 

. 
SEQUENCE NUMBER 

SAMPLE MASK 
. 
. 
. 

DATA SECTION 
containing the 
variables that 

may have changed 
since last packet  

. 

. 

. 
CHECKSUM  

. 

. 

. 

 

Note: this table is one byte wide, but any section containing three vertical dots represents one that may be 

more than one byte long (e.g. DATA SECTION).  Also note that the variables inserted into PACKET are inserted in 

the VAX standard byte order. 
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CRCP -- Chute Release Control Processing (P-Spec 2.3.3) 
 

PURPOSE  The CRCP functional unit implements the release of the parachute which is attached prior to the 

beginning of the terminal descent phase. 

 
INPUT 

AE_TEMP CHUTE_RELEASED 

 
OUTPUT 

CHUTE_RELEASED 

 

PROCESS  If the chute has been released, leave CHUTE_RELEASED unchanged and this signal will be 

automatically transmitted to the chute release mechanism during the next call to GCS_SIM_RENDEZVOUS.  If the 

chute has not been released, the engine temperature will determine whether or not to release the chute.  If the chute 

has not been released and the engines are hot (i.e. AE_TEMP is HOT), then release the chute by setting 

CHUTE_RELEASED to "chute released." 
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GP -- Guidance Processing (P-Spec 2.2)    
 

PURPOSE  GP uses the information available from ASP, ARSP, CRCP, GSP, TDLRSP, and TDSP and the results 

of its previous computations to control the vehicle's state during terminal descent. 

 
INPUT 

A_ACCELERATION AE_SWITCH 
AE_TEMP AR_ALTITUDE 
CHUTE_RELEASED CL33 
CONTOUR_ALTITUDE CONTOUR_CROSSED 
CONTOUR_VELOCITY DELTA_T 
DROP_HEIGHT DROP_SPEED34 
ENGINES_ON_ALTITUDE   FRAME_COUNTER 
GP_ALTITUDE GP_ATTITUDE 
GP_PHASE GP_VELOCITY 
GRAVITY G_ROTATION 
K_ALT K_MATRIX 
MAX_NORMAL_VELOCITY35 RE_SWITCH  
TD_SENSED TDLR_VELOCITY 
TDS_STATUS  

 
OUTPUT 

AE_SWITCH CL36 
CONTOUR_CROSSED FRAME_ENGINES_IGNITED 
GP_ALTITUDE GP_ATTITUDE 
GP_PHASE GP_ROTATION 
GP_VELOCITY RE_SWITCH 
TE_INTEGRAL37 VELOCITY_ERROR 

 

ARRAYS  The variables GP_ATTITUDE, GP_ALTITUDE, and GP_VELOCITY are five element arrays in each of 

their history dimensions and contain enough previous values to provide the required history for integration in 

updating the vehicle and guidance states. 

 

PROCESS  The Guidance Processor computes the velocity, altitude, and attitude to be used in controlling the 

engines. 

 

✔✔✔✔  ROTATE VARIABLES38 

• Rotate GP_ATTITUDE, GP_ALTITUDE, and GP_VELOCITY. 

 

✔  SET UP THE GP_ROTATION MATRIX 

G_ROTATION contains three values:  p, q, and r, in that order.  These values must be placed into a   
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3 x 3 matrix (GP_ROTATION) in the correct positions for later calculations.  Note that 

GP_ROTATION does not include any time histories; thus it may be convenient to use a temporary 

variable during calculation to hold the time histories of GP_ROTATION or to use elements directly 

from G_ROTATION; however, GP_ROTATION does describe the correct matrix orientation for 

operations and upon exiting from GP should contain the correct values for the present time step. 

 

• Place the values from G_ROTATION into GP_ROTATION as shown: 
 

GP_ ROTATION =   
0 rv −−−−qv

−−−−rv 0 pv

qv −−−−pv 0

    

    

    
        

    

    

    
        
  

 

 

✔  CALCULATE NEW VALUES OF ATTITUDE, VELOCITY, AND ALTITUDE 

The attitude, velocity, and altitude are each calculated by: 

1. finding a rate of change from known values, and then  
2. integrating this rate of change through one time step by some method of integration providing the 

accuracy specified.  That is:  
 

Xt = Xt −1 + Ý X dt
t −1

t
∫  

where ÝX  represents the rate of change of velocity, altitude, or attitude.  These are calculated 

according to the following formula: 
 

d
dt

var iable( ) = α × var iable + β + correction term  

 

Table 5.8 shows the values of the variables, α, β, and the correction terms for each of the 

variables GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE. 

 

• Solve for the current values of GP_ATTITUDE, GP_VELOCITY, and GP_ALTITUDE 

using the equations given above, Table 5.8, and an appropriate integration method (see 

Appendix C Numerical Integration Instructions).39 

 

Table 5.8:  DIFFERENTIAL EQUATIONS 

 
Variable α β Correction Term  

GP_ATTITUDE GP_ROTATION 0 0 
GP_VELOCITY GP_ROTATION GRAVITY * GP_ATTITUDE(i,3) + 

A_ACCELERATION 
i goes from 1 to 3 

K_ MATRIX ×
(TDLR_VELOCITY −
GP_ VELOCITY)
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GP_ALTITUDE 0 −GP _ ATTITUDE ×
GP_ VELOCITY

 
K_ ALT ⋅( AR_ ALTITUDE −
GP_ ALTITUDE)
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In Table 5.8, note that: 

1. Gravity is given as a scalar although it is actually a vector quantity.  To obtain the correct 

quantity, the scalar given should be multiplied by the last column of the GP_ATTITUDE 

matrix to produce a column vector appropriate to the equation.  

 

2. The equation for rate of change of altitude uses GP_ATTITUDE and GP_VELOCITY.  The 

third column of GP_ATTITUDE should be treated as a row for this calculation.  Thus element 

(1,3) of GP_ATTITUDE becomes the first element in a vector of one row and three columns.  

The element (2,3) becomes the second element, and (3,3) is the third element in this vector.  

This row-vector is then multiplied by the column-vector GP_VELOCITY to produce a scalar. 

 

The correction terms represent a difference between the guidance processors value and the radar's 

value.  The correction term is turned on or off by the "K" terms which are determined in the 

respective radar processors. 

 

✔  DETERMINE IF ENGINES SHOULD BE ON OR OFF40 

Note that RE_SWITCH is initialized to on, while AE_SWITCH is initialized to off, and 

FRAME_ENGINES_IGNITED is initialized to zero by INIT_GCS.  Use Table 5.9 to determine 

whether to turn axial engines on (set AE_SWITCH to on and set 

FRAME_ENGINES_IGNITED) or whether to turn axial and roll engines off (set AE_SWITCH 

and RE_SWITCH to off). 

 

 

TABLE 5.9:  DETERMINATION OF AXIAL AND ROLL ENGINE ON/OFF SWITCHES41 

 
CURRENT STATE ACTIONS 

AE_ 

SWITCH 

GP_ 

ALTITUDE 2 ⋅⋅⋅⋅GRAVITY ⋅⋅⋅⋅ GP_ ALTITUDE ++++

x component of GP _VELOCITY
      ≤≤≤≤ MAX_ NORMAL_VELOCITY

? 

Have engines 
been turned 
off in a prior 

frame? 

TD_ 

SENSED 

FRAME_ 

ENGINES_ 

IGNITED 

AE_ 

SWITCH 

RE_ 

SWITCH 

off ≤ 
ENGINES_ON_ 

ALTITUDE 

d no not sensed current 
FRAME_ 

COUNTER 

on  

on ≤ DROP_ 

HEIGHT 

yes d not sensed  off off 

on d d d sensed  off off 

 
Note:  A blank box under "ACTIONS" indicates no action is to be taken 

 "d" = don't care condition 
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✔  DETERMINE VELOCITY ERROR 

The velocity error represents the difference between the x component of the velocity of the craft and 

the optimal velocity of the craft at the vehicle altitude (Shown in Figure 5.1).  This distance is actually 

a difference between two velocities and is called VELOCITY_ERROR.  The velocity-altitude contour 

is contained in two variables: CONTOUR_ALTITUDE and CONTOUR_VELOCITY.  These are both 

arrays with 100 elements that contain known points along the contour.  CONTOUR_VELOCITY and 

CONTOUR_ALTITUDE are related such that element i of CONTOUR_VELOCITY is the 

optimum velocity at the altitude given by element i of CONTOUR_ALTITUDE.  It should be 

noted that the point in the first element is the lowest altitude given; and, as the index number increases, 

altitude increases.  Since not all of these array elements may be needed, all unused elements beyond the 

highest given altitude will be filled with zeroes, and that the value of zero is never given for altitude 

except as this filler.  The value of velocity at any other point may be found by linear interpolation (or 

extrapolation if the value is outside the range of the supplied contour) at the given vehicle altitude. 

 

• The optimal velocity should be calculated by finding the present altitude in 

CONTOUR_ALTITUDE and then locating the corresponding velocity in 

CONTOUR_VELOCITY, using interpolation if necessary.  Let "optimal_velocity" represent 

the interpolated value calculated from the CONTOUR_VELOCITY table. 

 

• Calculate VELOCITY_ERROR as follows:42 

 
VELOCITY_ ERROR ==== x component of GP_VELOCITY −−−−optimal_velocity  

 

✔  DETERMINE IF CONTOUR HAS BEEN CROSSED 

• If GP_ALTITUDE ≤ ENGINES_ON_ALTITUDE, then check whether the contour has been 

crossed as follows: 
 

•• If CONTOUR_CROSSED = "contour not crossed" and VELOCITY_ERROR ≥ 0, then set 

CONTOUR_CROSSED to "contour crossed".  Otherwise CONTOUR_CROSSED should 

remain unchanged.43 

 

Figure 5.1 shows two possible trajectories, with the point along each where the contour is first sensed and also 

an example of VELOCITY_ERROR.  Note: the altitude where the engines are turned on should be the earliest point 

to check crossing the contour, even though the trajectory may have crossed the contour at some greater altitude.   
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Figure 5.1:  VELOCITY-ALTITUDE CONTOUR44 

 

1 2Trajectory

Velocity
Error Velocity

Error

Contour 
Crossed

Altitude

ENGINES_ON_ALTITUDE

Velocity  
 

 

✔  DETERMINE GUIDANCE PHASE 

• The guidance phase (GP_PHASE) is determined according to the events in Table 5.10.  These 

phases are based upon information that may be provided by processes other than the guidance 

processor. 

 

The current phase (GP_PHASE) and the event are to be used where appropriate to reset 

GP_PHASE to the next phase.  If there is no combination of current phase and event from 

the table that is true, then GP_PHASE should not be changed.  Note that the two columns 

labeled "PRESENT STATE" DESCRIPTION  and "NEXT STATE DESCRIPTION " are 

for informational purposes only, and are not used in the setting of GP_PHASE. 
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Table 5.10:  DETERMINATION OF GUIDANCE PHASE46 

 

CURRENT STATE NEXT STATE 

 ACTION  
GP_ 

PHASE 
CURRENT STATE 

DESCRIPTION 
EVENT GP_ 

PHASE
NEXT STATE 

DESCRIPTION 
1 Chute attached 

Engines off 
Touch Down not sensed 

Altitude for turning engines on is 
sensed  

2 Chute attached 
Engines on 
Touch down not sensed 

2 Chute attached 
Engines on 
Touch down not sensed 

Axial Engines become hot and 
the chute is released 

3 Chute released 
Axial Engines Hot 
Touch down not sensed 

2 Chute attached 
Engines on 
Touch down not sensed 

Touched down is sensed 5 Chute attached 
Engines off 
Touch down sensed 

3 Chute released 
Axial Engines Hot 
Touch down not sensed 

Altitude ≤ DROP_HEIGHT and 
TDS_STATUS = healthy and  
Touch down not sensed and 
 

( 2 ⋅⋅⋅⋅GRAVITY ⋅⋅⋅⋅GP_ ALTITUDE

    ++++ x component of GP_ VELOCITY
    ≤≤≤≤ MAX_ NORMAL_VELOCITY

 

4 Chute released 
Engines off 
Touch down not sensed 

3 Chute released 
Axial Engines Hot 
Touch down not sensed 

Altitude ≤ 
DROP_HEIGHT and 
TDS_STATUS = failed 

5 Chute released 
Engines off 
Touch down not sensed 

3 Chute released 
Axial Engines Hot 
Touch down not sensed 

Touch down is sensed 5 Chute released 
Engines off 
Touch down sensed 

4 Chute released 
Engines off 
Touch down not sensed 

Touch down is sensed 5 Chute released 
Engines off 
Touch down sensed 

4 Chute released 
Engines off 
Touch down not sensed 

TDS_STATUS = failed 5 Chute released 
Engines off 
Touch down not sensed 

 

 

• PHASE 1:  If the altitude provided by the guidance processor is less than or equal to the 

ENGINES_ON_ALTITUDE, set GP_PHASE = 2.47 

 

• PHASE 2:  If the axial engines have become hot and the parachute has been released, set 

GP_PHASE = 3.  If touch down is sensed, set GP_PHASE = 5.48 

 

• PHASE 3:  If touch down has not been sensed and DROP_HEIGHT has not been reached, then 

control the axial and roll engines to cause the lander to follow a gravity-turn steering descent.  If 
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DROP_HEIGHT is reached and touch down is not sensed and  

 
2 ⋅⋅⋅⋅ GRAVITY ⋅⋅⋅⋅ GP_ ALTITUDE ++++ x component of GP _VELOCITY

                  ≤≤≤≤ MAX_ NORMAL _VELOCITY
  

and TDS_STATUS = healthy, then set GP_PHASE = 4.  If DROP_HEIGHT is reached, and 

TDS_STATUS = failed, then set GP_PHASE = 5.  If touch down is sensed, then set GP_PHASE 

= 5.49 

 

• PHASE 4 : If touch down has not been sensed and TDS_STATUS is healthy, then take no action.  

If TDS_STATUS is failed, then set GP_PHASE to 5.  If touch down has been sensed, set 

GP_PHASE to 5.50 

 

✔✔✔✔  DETERMINE WHICH SET OF CONTROL LAW PARAMETERS TO USE51 

The "Control Law Parameters" are a subset of the variables in the global data store named 

"RUN_PARAMETERS."  This subset consists of the following variables:  GVEI, GV, GVI, GR, 

GW, GWI, GQ, PE_MIN, PE_MAX, TE_MIN, TE_MAX, YE_MIN, and YE_MAX.  Note that 

each one of these variables is an array of two elements.  The elements with a subscript of one will 

be referred to as the "first" set of Control Law Parameters, while the elements with a subscript 

of two will be referred to as the "second" set of Control Law Parameters. 

 

The variable CL is used to control which set of Control Law Parameters is used in the control 

laws at any given time by the functional unit AECLP.  The functional unit GP must determine 

the value of CL for use by AECLP.  The variable CL has two valid values, namely "first" which 

means that the first set of Control Law Parameters should be used by AECLP, and "second" 

which means that the second set of Control Law Parameters should be used by AECLP in the 

equations for 
Pe

 , 
Ye

, 
Pe

L

 , 
Ye

L

, and TE_LIMIT.  See the Data 

Requirements Dictionary for the actual numeric values for CL which correspond to "first" and 

"second."  The variable CL is initialized to the value "first" by INIT_GCS, and thus the first set 

of parameters will be used by AECLP until CL is changed.  The second set of Control Law 

Parameters should be used by AECLP at the first point where the lander crosses the 

constant-velocity part of the Velocity-Altitude contour.  The constant-velocity part of the 

contour is the final part of the contour where the optimal velocity for the lander remains 

constant (and equal to DROP_SPEED).  The GUIDANCE PROCESSOR (GP) must determine 

when to begin using the second set of Control Law Parameters, as follows: 
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• If the following conditions are true: 

 CL = first, and 

 optimal_velocity = DROP_SPEED, and 

 x component of GP_VELOCITY < DROP_SPEED 

Then  

 Set CL = second 

 Set TE_INTEGRAL = 0.0 
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GSP -- Gyroscope Sensor Processing (P-Spec 2.1.4) 
 

PURPOSE  Three fiber-optic ring gyroscopes are located on the lander, one for each of the x, y, and z axes as 

shown.  The Gyroscope Sensor Processing (GSP) functional unit provides a measure of the vehicle's rotation rates 

through the conversion and filtering of the raw gyroscope data. 

 
INPUT 

ATMOSPHERIC_TEMP G3  
G4 G_COUNTER  
G_GAIN_0 G_OFFSET  
G_ROTATION  

 
OUTPUT 

G_ROTATION G_STATUS   

 

PROCESS  The output from each of the gyroscopes is a 16-bit quantity (G_COUNTER) divided into 2 parts: the 

lower 14 bits represent the vehicle's rate of rotation about that axis and the high-order bit represents the direction of 

this rotation.  This is a sign-magnitude representation of the counter value that only uses the lower 14 bits of the  

magnitude portion of the number.  Following is a map of  G_COUNTER: 

 

16 15 14 13 12 ... 1 

D X MAGNITUDE 

 

where D = direction, and X = unused.  The high bit set to 1 indicates a negative rotation consistent with a right-

handed coordinate system. 

 

✔  ROTATE VARIABLES52 

• Rotate G_ROTATION . 

 

✔  ADJUST GAIN 

The standard gain (G_GAIN_0) must be adjusted for the effects of temperature prior to the conversion 

of the raw gyroscope values.  The adjusted gain is a quadratic function of the ambient temperature 

(ATMOSPHERIC_TEMP) and the standard gain. 

That is, 

 
G_ GAIN(i) =  G_ GAIN_ 0(i ) + (G3 ⋅ ATMOSPHERIC_ TEMP) 

                    +   (G4 ⋅  ATMOSPHERIC_ TEMP2 )
 

where i  ranges from 1 to 3 and represents the three directions x, y, and z. 
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✔  CONVERT G_COUNTER 

The rotation rate is linear with respect to the unprocessed gyroscope values, i.e. the lower 14 bits must 

be converted.  G_GAIN is the multiplier for this conversion and G_OFFSET is the constant offset.  The 

equation for converting counter to rotation then becomes:  

 

G_ROTATION(i)  = G_OFFSET(i)  + G_GAIN(i)  * (G_COUNTER(i)) 

where i  ranges from 1 to 3 and represents the three directions x, y, and z. 

 

✔  SET GYROSCOPE STATUS TO HEALTHY. 

• Set G_STATUS to healthy. 
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RECLP -- Roll Engine Control Law Processing (P-Spec 2.3.2) 
 

PURPOSE  RECLP generates the roll engine command which controls the firing pulse and direction of the roll 

engines. 

 
INPUT 

DELTA_T  G_ROTATION 
P1 P2  
P3 P4  
RE_SWITCH THETA 
THETA1 THETA2 

 
OUTPUT 

RE_CMD RE_STATUS  
THETA   

 

PROCESS  Roll control of the lander is achieved by generating the roll commands as functions of the differences 

between the actual and desirable values for the roll angle and rate.  These differences are limited, and the 

control commands are proportional to them.  Note that once the roll command (RE_CMD) has been set with the 

correct value, it will automatically be sent to the engines during the next call to GCS_SIM_RENDEZVOUS.  The 

steps to be performed are as follows:53 

 

✔  DETERMINE IF ENGINES ARE ON 54 

• If RE_SWITCH is off, then set RE_CMD to 1, and proceed directly to the step "SET ROLL 

ENGINE STATUS TO HEALTHY." 

 

✔  DETERMINE PULSE INTENSITY AND DIRECTION  
• The pulse intensity and direction are derived from the graph shown in Figure 5.2 using pv( )t .  For 

each region of the graph, the intensity is given, followed by the direction inside parentheses.

Note that the x axis represents the integral of the roll rate.  This is really the present angle of roll.  

This integral should be calculated by Euler's method (see Appendix C).  As an example, THETA 

= THETA + (integral of roll rate for this step).  The variable THETA will be initialized by 

INIT_GCS.  Note that when the vehicle status is located on a boundary between two or more roll 

command regions, the lowest intensity signal should be used to avoid over-commanding the 

engines.  One should refer to the Data Requirements Dictionary under RE_CMD for the 

actual values for intensity and direction. 
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✔  DETERMINE ROLL ENGINE COMMAND 

• The pulse intensity and direction are packed into the lowest three lower-order bits of the actual roll 

engine command (RE_CMD) as shown: 

 

X X X  � X I I D 

16 15 14  � 4 3 2 1 
 

where X = unused, I = intensity, and D = direction.  The bits marked "X = unused" in RE_CMD 

must be left at 0. 

 

✔  SET ROLL ENGINE STATUS TO HEALTHY 

• Set RE_STATUS to healthy. 

 

 

Figure 5.2:  GRAPH FOR DERIVING ROLL ENGINE COMMANDS55 
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TDLRSP -- Touch Down Landing Radar Sensor Processing  
 (P-Spec 2.1.3) 
 

PURPOSE  A single touch down landing radar (TDLR) gauges the velocity of the vehicle during terminal descent.  

This radar is a doppler radar with four radar beams, each of which emanates from the vehicle's center of gravity with 
a slight offset from the vehicle's 

  

�x v  axis.  The radar beams form the edges of the pyramid as shown in Figure 5.3 

The Touch Down Landing Radar Sensor Processing (TDLRSP) functional unit converts measurements of the 

frequency shift of each beams reflection into vehicle velocities; however, the receivers associated with each beam 

may not find a usable reflection.  If no usable reflection is found, the receiver returns a status of beam in search mode 

(unlocked). 

 
INPUT 

DELTA_T FRAME_BEAM_UNLOCKED 
FRAME_COUNTER K_MATRIX 
TDLR_ANGLES TDLR_COUNTER 
TDLR_GAIN TDLR_LOCK_TIME 
TDLR_OFFSET TDLR_STATE 
TDLR_VELOCITY  

 
OUTPUT 

FRAME_BEAM_UNLOCKED K_MATRIX 
TDLR_STATE TDLR_STATUS 
TDLR_VELOCITY  

 

PROCESS  It is only necessary that this functional unit perform its normal calculations every other frame, 

namely on the odd-numbered frames;  however, one will notice that in the scheduling Table 4.1, it is required 

that this functional unit execute every frame.  The reason for this is that during its normal processing it must 

rotate history variables.  This means that during the frames when it does not need to calculate new outputs, 

namely the even-numbered frames, it must still rotate its history variables and set its new or current values 

equal to the previous values, thus creating double entries for each rotated variable.  By doubling the entries, 

consistency of time histories will be maintained at the expense of keeping two copies of each value in these 

variables, and forcing the functional unit to execute every frame.56 

The value returned by each beam (TDLR_COUNTER) is proportional to the beam frequency shift down that 

beam, which is, in turn, proportional to the velocity down that beam.  The processing of the TDLR_COUNTER data 
into the component velocities along the vehicle's 

�
x , 
�
y , and 

�
z  axes requires the following steps: 

 

✔  ROTATE VARIABLES 57 

• Rotate TDLR_VELOCITY and K-MATRIX. 
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✔✔✔✔  PERFORM ALTERNATE PROCESSING IF THIS IS AN EVEN-NUMBERED FRAME58 

• If FRAME_COUNTER is an even number, then do the following:: 

•• Insure that the values for the current TDLR_VELOCITY array are equal to the values 

for the previous TDLR_VELOCITY array and also that the values for the current 

K_MATRIX array are equal to the values for the previous K_MATRIX array. 

•• Exit from this functional unit. 

 

 

Figure 5.3:  DOPPLER RADAR BEAM LOCATIONS 
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✔  DETERMINE RADAR BEAM STATES59 

The processing of the four radar beams depends on the current state of the radar, i.e. whether or not 

each of the four beams is searching or in lock, and also upon the previous states of the beams.  Note 

that at the beginning of each trajectory, FRAME_BEAM_UNLOCKED will be set to zero, thus 

meaning that the beam has never been unlocked.  If the receiver for a beam does not sense an echo (i.e. 

the beam is in search mode), the corresponding TDLR_COUNTER value will be zero.  Note that a 

beam which becomes unlocked will be ignored for TDLR_LOCK_TIME seconds. 

• Use Table 5.11 to determine the state (TDLR_STATE and FRAME_BEAM_UNLOCKED) 

for each of the four beams. 
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Table 5.11:  DETERMINATION OF RADAR BEAM STATES60 

 
CURRENT STATE ACTIONS 

TDLR_ 
STATE 

TDLR_ 
COUNTER                                         DELTA_ T

⋅⋅⋅⋅ ( FRAME_ COUNTER −−−− FRAME_ BEAM_ UNLOCKE
                           ≥≥≥≥ TDLR _ LOCK _ TIME?

 

TDLR_ 
STATE 

FRAME_BEAM_ 
UNLOCKED 

locked   0 d unlocked 
current 

FRAME_COUNTER

unlocked ≠  0 yes locked  

unlocked   0 yes  
current 

FRAME_COUNTER
 
Note:  A blank box under "ACTIONS" indicates no action is to be taken 
 "d" = don't care condition 

 

✔  DETERMINE BEAM VELOCITIES 

A beam velocity is a linear function of its TDLR_COUNTER value where the gain (TDLR_GAIN) 

specifies the slope and the offset (TDLR_OFFSET) specifies the intercept. 

• Calculate the beam velocities as follows: 

B(i) = TDLR_OFFSET + TDLR_GAIN * (TDLR_COUNTER(i)) 

where i  ranges from 1 to 4 and represents the four radar beams. 

 

✔✔✔✔  PROCESS THE BEAM VELOCITIES61 

• Use Table 5.12 to calculate values for 
ˆ B x

, 
ˆ B y

, and 
ˆ B z

, which are the 

processed beam velocities.  Note that in Table 5.12,  Bi is shorthand for B(i), where i ranges 

from 1 to 4.  Note also that the knowledge of which beams are in lock is used to determine 

which line of the table to use in order to calculate 
ˆ B x

, 
ˆ B y

, and 
ˆ B z

. 

    

✔✔✔✔  CONVERT TO BODY VELOCITIES62 

• In order to convert the processed beam velocities to body velocities (TDLR_VELOCITY), 

use the following equations, which make use of the angles αααα, ββββ and γγγγ (TDLR_ANGLES) 

which are the offsets of the beams from the body axes: 

 

TDLR_VELOCITY(1) ====
ˆ B X

cos αααα
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TDLR_VELOCITY(2) ====
ˆ B y

cos ββββ
 

TDLR_VELOCITY(3) ====
ˆ B z

cos γγγγ
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✔✔✔✔  SET VALUES IN K_MATRIX63 

When calculating the vehicle velocity, the Guidance Processor must know which components of 

the body velocities are usable.  A value of one in the diagonal element of the K_MATRIX 

indicates that the corresponding velocity should be used, while a value of zero indicates that it 

should not. 

• Use Table 5.12 to set the values for Kx, Ky, and Kz in K_MATRIX, (again on the basis of 

which beams are in lock), as follows: 

 

K_ MATRIX =
Kx 0 0
0 K y 0
0 0 Kz

 

 

 
  

 

 

 
  

 

 

✔  SET TDLR_STATUS 

• Set all elements of TDLR_STATUS to healthy. 



 88

Table 5.12:  PROCESSING OF DOPPLER RADAR BEAMS IN LOCK64 

 
BEAMS 

IN LOCK 
ˆ B X  Kx

 
ˆ B y  Ky

 
ˆ B z  Kz

none 0 0 0 0 0 0 
B1 0 0 0 0 0 0 
B2  0 0 0 0 0 0 
B3  0 0 0 0 0 0 
B4  0 0 0 0 0 0 

B1, B2 0 0 B1 − B2( ) 2  1 0 0 
B1, B3 B1 + B3( ) 2 1 0 0 0 0 
B1, B4 0 0 0 0 B1 − B4( ) 2  1 
B2, B3 0 0 0 0 B2 − B3( ) 2 1 
B2, B4 B2 + B4( ) 2  1 0 0 0 0 
B3, B4 0 0 B4 − B3( ) 2 1 0 0 

B1, B2, B3 B1 + B3( ) 2 1 B1 − B2( ) 2  1 B2 − B3( ) 2 1 
B1, B2, B4 B2 + B4( ) 2  1 B1 − B2( ) 2  1 B1 − B4( ) 2  1 
B1, B3, B4 B1 + B3( ) 2 1 B4 − B3( ) 2 1 B1 − B4( ) 2  1 
B2, B3, B4 B2 + B4( ) 2  1 B4 − B3( ) 2 1 B2 − B3( ) 2 1 

B1, B2, B3, B4 B1 + B2 + B3 + B4( ) 4 1 B1 − B2 − B3 + B4( ) 4 1 B1 + B2 − B3 − B4( ) 4 1 
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TDSP -- Touch Down Sensor Processing (P-Spec 2.1.6) 
 

PURPOSE  The touch down sensor is attached to the end of a rod which is attached to the bottom of the vehicle.  Its 

purpose is to trigger engine shutdown when the vehicle is at the correct distance from the surface.  This shutdown is 

necessary to: 

• avoid the stirring up of dust and debris and 

• avoid scorching immediate area of the experiment site. 

 
INPUT 

TD_COUNTER TDS_STATUS 

 
OUTPUT 

TD_SENSED TDS_STATUS 
 

PROCESS  The touch down sensor is a simple switch at the end of a pole on the underside of the lander.  If the 

sensor is functioning properly, then TD_COUNTER will contain one of only two 16-bit values, namely sixteen 

"ones", which means that touch down has been sensed, or sixteen "zeroes", which means that touch down has 

not been sensed.  If the sensor has failed due to electrical noise, TD_COUNTER will contain some 

combination of "ones" and "zeroes" other than all "ones" or all "zeroes".65 

 

✔✔✔✔  DETERMINE STATUS OF TOUCH DOWN SENSOR AND WHETHER TOUCH DOWN HAS 

BEEN SENSED: 

• Use Table 5.13 to determine whether the touch down sensor is functioning properly (set 

TDS_STATUS), and whether touch down has been sensed (set TD_SENSED).  Note that if 

the sensor fails, the guidance processor will decide when the vehicle has touched down.66 

 

Table 5.13:  DETERMINATION OF TOUCH DOWN SENSOR AND STATUS67 

 
CURRENT STATE ACTIONS 

TDS_STATUS TD_COUNTER TD_SENSED TDS_STATUS 

healthy all zeroes not sensed  
healthy all ones sensed  
healthy mixture of ones & 

zeroes 
not sensed failed 

 

Note:  A blank block under "ACTIONS" indicates no action is to be  taken 
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TSP -- Temperature Sensor Processing (P-Spec 2.1.5) 
 

PURPOSE  A temperature gauge on the vehicle is used to adjust the response of the accelerometers and gyroscopes.  

The gauge contains two temperature sensing devices, namely a solid-state sensor and a matched pair of 

thermocouples.  The Temperature Sensor Processing (TSP) functional unit determines the ambient temperature, 

using either the solid-state sensor or the thermocouple pair in a manner maximizing the accuracy of the measurement. 

 
INPUT 

M1 M2 
M3 M4 
SS_TEMP T1 
T2 T3 
T4 THERMO_TEMP 

 
OUTPUT 

ATMOSPHERIC_TEMP TS_STATUS 
 

PROCESS  The temperature values from the solid-state sensor are highly quantized.  The processing of raw 

temperature data from the solid-state sensor and thermocouple pair, SS_TEMP and THERMO_TEMP, is based on 

the solid-state sensor being less accurate than the thermocouple pair, but having a greater usable operating range.  

The ambient temperature (ATMOSPHERIC_TEMP) is to be calculated using either the solid state 

sensor value (SS_TEMP) or the thermocouple sensor value (THERMO_TEMP).  Since the thermocouple 

sensor is more accurate, it should be used whenever possible;  the solid state sensor should be used only if the 

temperature does not lie within the usable range of the thermocouple pair. 69 

The response of the solid-state temperature sensor is linear with respect to the ambient temperature and is 

computed using the two calibration points (M1, T1) and (M2, T2) which characterize the line. 

The response of the thermocouple pair is calibrated differently depending on the region (linear or parabolic) 

where the measurement lies (see Figure 5.4):  

 

Thermocouple linear region - The linear region is bounded by the calibration points used by the 

thermocouple sensor (i.e., [M3, T3] and [M4, T4] inclusive).  Temperatures measured within this region 

are calibrated accordingly. 
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Figure 5.4: CALIBRATION OF THERMOCOUPLE PAIR70 
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Thermocouple parabolic regions - The upper and lower parabolic regions extend plus or minus 15 percent 

of the difference between the measured calibration points, M4 and M3, respectively.  These parabolic 

regions each intersect the line at the calibration points.  The rate of change in temperature, with respect to 

the thermocouple measurements, is continuous at these intersections.  The upper (and lower) parabolas 

are defined so that the temperature goes up (or down) as the square of the measurement value 

(THERMO_TEMP).  The parabolas are offset along both the temperature and measurement axes.  By 

using the values of T3, T4, M3, and M4, and the fact that the function is continuous at the endpoints, the 

offsets for the parabolas may be determined, and the equations for the parabolas may be generated.  Note 

that the line in the linear region in Figure 5.4 is tangent to both parabolas.   

 

The processing of the values SS_TEMP and THERMO_TEMP into an accurate measure of ambient 

temperature (ATMOSPHERIC_TEMP) requires several steps, as follows: 

✔✔✔✔  CALCULATE THE SOLID STATE TEMPERATURE71 

• Use the value of SS_TEMP and the equation appropriate to the solid-state linear region to 

compute the temperature. 

 

✔✔✔✔  DETERMINE WHETHER TO USE SOLID STATE OR THERMOCOUPLE 

TEMPERATURE72 

• If the temperature derived from SS_TEMP in the previous step does not fall within the 

accurate temperature response zone of the thermocouple pair (the linear as well as parabolic 

regions), then set ATMOSPHERIC_TEMP to the temperature derived from SS_TEMP and 

proceed directly to the step labeled "SET STATUS TO HEALTHY"; otherwise, proceed to 

the step "CALCULATE THE THERMOCOUPLE TEMPERATURE". 

    

✔✔✔✔  CALCULATE THE THERMOCOUPLE TEMPERATURE73 

• Use the value of THERMO_TEMP to determine whether the temperature lies in the 

thermocouple linear or the upper parabolic or the lower parabolic region. 

• Use the value of THERMO_TEMP and the equation appropriate to the particular 

thermocouple region (as determined above) to calculate ATMOSPHERIC_TEMP. 

 

✔  SET STATUS TO HEALTHY 

• Set the values of both elements of TS_STATUS to healthy. 
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6. DATA REQUIREMENTS DICTIONARY 
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PART I. DATA ELEMENT DESCRIPTIONS 
 

The following template has been constructed for defining the data elements in the four required global data 

stores and the optional variables shown in Table 6.5: 

 
NAME: 
DESCRIPTION: 
USED IN: 
UNITS: 
RANGE: 
DATA TYPE: 
ATTRIBUTE: 
DATA STORE LOCATION: 
ACCURACY: 

 

NAME  This field gives the name of the variable used in the  specification. The variable name used during coding 

must be the same as specified. 

DESCRIPTION  This field gives a brief description of the variable. 

USED IN  This field provides a reference to the functional units using this variable. 

UNITS  This field indicates the unit of measure for the data contained in the variable being defined. 

RANGE  This field specifies the acceptable range of data values for the variable. 

DATA TYPE  The data type field specifies the data type to be used when declaring the variable during coding. 

ATTRIBUTE  This field indicates whether or not the variable contains data, control information, or a data 

condition. 

DATA STORE LOCATION  This field references the common region where the variable must be stored. 

ACCURACY  This field dictates the degree of accuracy required for output comparisons to be made between 

implementations.  In the data dictionary, accuracy is listed as N/A where accuracy is not applicable, or TBD where 

accuracy is (T)o (B)e (D)etermined later.  A formal modification will be released when the values of the accuracy 

requirements have been approved. 
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NAME:  A_ACCELERATION74 
DESCRIPTION:  vehicle accelerations 
USED IN:  AECLP, ASP, CP, GP 

UNITS:  
meters
sec2  

RANGE:  [-20, 5] 
DATA TYPE:  array (1..3, 0..4) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  SENSOR_OUTPUT 
ACCURACY:  TBD 
 
NAME:  A_BIAS 
DESCRIPTION:  characteristic bias in the 
accelerometer measurements 
USED IN:  ASP 

UNITS:  
meters
sec2  

RANGE:  [-30, 0] 
DATA TYPE:  array (1..3) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  A_COUNTER 
DESCRIPTION:  accelerations along the  

�
x , 
�
y , and 

 
�
z  axes  
USED IN:  ASP 
UNITS:  none 
RANGE:  [0, 215 -1] 
DATA TYPE:  array (1..3) of Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
 
NAME:  A_GAIN_075 
DESCRIPTION:  standard gain in the accelerations 
USED IN:  ASP 

UNITS:  

meters
sec2

 

RANGE:  [0, 1] 
DATA TYPE:  array (1..3) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  A_SCALE76 
DESCRIPTION:  multiplicative constant used to 
determine limit on deviation accelerometer values. 
USED IN:  ASP 
UNITS:  none 
RANGE:  [0, 3] 
DATA TYPE:  Integer*4 
ATTRIBUTE:  data 
DATA STORE LOCATION: RUN_PARAMETERS 

ACCURACY:  N/A 
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NAME:  A_STATUS 
DESCRIPTION:  Flag indicating whether or not the 
accelerometers are working properly. 
USED IN:  ASP, CP 
UNITS:  none 
RANGE:  [0 : healthy, 1: unhealthy] 
DATA TYPE:  array (1..3, 0..3) of logical*1 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME: AECLP_DONE 
DESCRIPTION:  Flag indicating completion of 
AECLP task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task AECLP 
incomplete, TRUE: running of task AECLP 
complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  AE_CMD 
DESCRIPTION:  Valve settings for the axial engines. 
USED IN:  AECLP, CP 
UNITS:  none 
RANGE:  [0, 127] 
DATA TYPE:  array (1..3) of Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  TBD 
 
NAME:  AE_STATUS 
DESCRIPTION:  Status of axial engines. 
USED IN:  AECLP, CP 
UNITS:  none 
RANGE:  [0: Healthy, 1: Failed.] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  AE_SWITCH 
DESCRIPTION:  Flag indicating whether or not axial 
engines are turned on. 
USED IN:  AECLP, GP 
UNITS:  none 
RANGE:  [0: axial engines are off, 1: axial engines 
are on.] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data condition 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 

NAME:  AE_TEMP 
DESCRIPTION:  Temperature of axial engines when 
they are turned on. 
USED IN:  AECLP, CP, CRCP, GP 
UNITS:  none 
RANGE:  [0: Cold, 1: Warming-Up, 2: Hot] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data condition 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  ALPHA_MATRIX 
DESCRIPTION:  Matrix of misalignment angles 
USED IN:  ASP 
UNITS:  none 
RANGE: [-π , π ] 
DATA TYPE:  array (1..3, 1..3) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  AR_ALTITUDE 
DESCRIPTION:  altimeter radar height above terrain 
USED IN:  ARSP, CP, GP 
UNITS:  meters 
RANGE:  [0, 2000] 
DATA TYPE:  array (0..4) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  SENSOR_OUTPUT 
ACCURACY:  TBD 
 
NAME:  AR_COUNTER77 
DESCRIPTION:  counter containing elapsed time 
since transmission of radar pulse 
USED IN:  ARSP 
UNITS:  Cycles 
RANGE:  [-1, 215-1] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
 
NAME:  AR_FREQUENCY78 
DESCRIPTION: increment frequency of 
AR_COUNTER 
USED IN:  ARSP 

UNITS:  
cycles

sec
 

RANGE:  [1, 2.45x109] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
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NAME:  AR_STATUS 
DESCRIPTION:  status of the altimeter radars 
USED IN:  ARSP, CP 
UNITS:  none 
RANGE:  [0 : healthy, 1: failed] 
DATA TYPE:  array (0..4) of logical*1 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  ARSP_DONE 
DESCRIPTION:  Flag indicating completion of 
ARSP task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task ARSP 
incomplete, TRUE: running of task ARSP complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  ASP_DONE 
DESCRIPTION:  Flag indicating completion of ASP 
task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task ASP incomplete, 
TRUE: running of task ASP complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
 NAME:  ATMOSPHERIC_TEMP79 
DESCRIPTION:  atmospheric temperature 
USED IN:  ASP, CP, GSP, TSP 
UNITS:  degrees C 
RANGE:  [-200, 25] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  SENSOR_OUTPUT, 
ACCURACY:  TBD 
 
NAME:  C_STATUS 
DESCRIPTION:  Flag indicating whether or not the 
communications processor is working properly. 
USED IN:  CP 
UNITS:  none 
RANGE:  [0 :  healthy, 1:  failed] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 

NAME:  CHUTE_RELEASED 
DESCRIPTION:  signal indicating parachute has 
been released 
USED IN:  AECLP, CP, CRCP, GP 
UNITS:  none 
RANGE:  [0: Chute Attached, 1: Chute Released] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data condition 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  CL80 
DESCRIPTION:  Index which specifies which set 
of Control Law Parameters to use 
USED IN:  AECLP, GP 
UNITS:  none 
RANGE:  [1:  first, 2:  second] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  
GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  CLP_DONE 
DESCRIPTION:  Control signal which indicates 
whether or not Control Law Processing function has 
completed. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of Control Law 
Processing function incomplete, TRUE: running of 
Control Law Processing function complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  COMM_SYNC_PATTERN 
DESCRIPTION:  sixteen bit synchronization pattern 
USED IN:  CP 
UNITS:  none 
RANGE:  [1101100110110010] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  CONTOUR_ALTITUDE81 
DESCRIPTION:  Altitude in velocity-altitude 
contour.   
USED IN:  GP 
UNITS:  kilometers 
RANGE:  [-.01, 2] 
DATA TYPE:  array (1..100) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
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NAME:  CONTOUR_CROSSED82 
DESCRIPTION:  Indicates if the velocity-altitude 
contour has been sensed. 
USED IN:  AECLP, CP, GP 
UNITS:  none 
RANGE:  [0: contour not crossed, 1: contour 
crossed] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data condition 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  CONTOUR_VELOCITY 
DESCRIPTION:  Velocity in velocity-altitude 
contour.  
USED IN:  GP 

UNITS:  
kilometers

sec
 

RANGE:  [0, 0.5] 
DATA TYPE:  array (1..100) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  CP_DONE 
DESCRIPTION:  Flag indicating completion of CP 
task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task CP incomplete, 
TRUE: running of task CP complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  CRCP_DONE 
DESCRIPTION:  Flag indicating completion of 
CRCP task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task CRCP 
incomplete, TRUE: running of task CRCP complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  DELTA_T83 
DESCRIPTION:  Time step duration. 
USED IN:  AECLP, GP, RECLP, TDLRSP 
UNITS:  seconds 
RANGE:  [0.005, 0.20] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 

ACCURACY:  N/A 
 
NAME:  DROP_HEIGHT 
DESCRIPTION:  Height from which vehicle should 
free-fall to surface 
USED IN:  GP 
UNITS:  meters 
RANGE:  [0, 100] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  DROP_SPEED84 
DESCRIPTION:  Optimal  speed during constant 
velocity descent. 
USED IN:  GP 
UNITS:  

meters
sec

 

RANGE:  [0, 4.0] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION: 
RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  ENGINES_ON_ALTITUDE 
DESCRIPTION:  Altitude at which the axial engines 
are turned on. 
USED IN:  AECLP, GP 
UNITS:  meters 
RANGE:  [0, 2000] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  FRAME_BEAM_UNLOCKED 
DESCRIPTION:  Variable containing the number of 
the frame during which the radar beam unlocked 
USED I N:  TDLRSP 
UNITS: none 
RANGE:  [0, 231-1] 
DATA TYPE:  array (1..4) of Integer*4 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  FRAME_COUNTER 
DESCRIPTION:  Counter containing the number of 
the present frame 
USED IN:  AECLP, ARSP, CP, GP, TDLRSP 
UNITS:  none 
RANGE:  [1, 231-1] 
DATA TYPE:  Integer*4 
ATTRIBUTE:  data 
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DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
 
 
NAME:  FRAME_ENGINES_IGNITED 
DESCRIPTION:  Variable containing the number of 
the frame during which the engines were ignited 
USED IN:  AECLP, GP 
UNITS:  none 
RANGE:  [0, 231-1] 
DATA TYPE:  Integer*4 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE 
ACCURACY:  TBD 
 
NAME:  FULL_UP_TIME 
DESCRIPTION:  Time for axial engines to reach 
optimum operational condition 
USED IN:  AECLP 
UNITS:  seconds 
RANGE:  [0, 60] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  G1 
DESCRIPTION:  coefficient used to adjust A_GAIN 
USED IN:  ASP 

UNITS:  

meters
sec2

deg ree C
 

RANGE:  [-5, 5] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  G2 
DESCRIPTION:  coefficient used to adjust A_GAIN 
USED IN:  ASP 

UNITS:  

meters
sec2

deg ree C 2  

RANGE:  [-5, 5] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  G3 
DESCRIPTION:  coefficient used to adjust G_GAIN 
USED IN: GSP 

UNITS:  

radians
sec

deg ree C
 

RANGE:  [-5, 5] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
NAME:  G4 
DESCRIPTION:  coefficient used to adjust G_GAIN 
USED IN:  GSP 

UNITS:  

radians
sec

deg ree C 2  

RANGE: [-5, 5] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  G_COUNTER 
DESCRIPTION:  gyroscope measurement of vehicle 
rotation rates 
USED IN :  GSP 
UNITS: none 
RANGE:  [-(214-1), 214-1] 
DATA TYPE:  array (1..3) of Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
 
NAME:  G_GAIN_085 
DESCRIPTION:  standard gain in vehicle rotation 
rates as measured by the gyroscopes 
USED IN:  GSP 

UNITS: 
radians

sec
 

RANGE:  [-1, 1] 
DATA TYPE:  array (1..3) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  G_OFFSET 
DESCRIPTION: standard offset of the rotation raw 
values 
USED IN:  GSP 

UNITS:  
radians

sec
 

RANGE:  [-0.5, 0.5] 
DATA TYPE:  array (1..3) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  G_ROTATION86 
DESCRIPTION:  vehicle rotation rates 
USED IN:  CP, GSP, GP, RECLP 
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UNITS:  
radians

sec
 

RANGE:  [-1.0, 1.0] 
DATA TYPE:  array (1..3, 0..4)of real*8 
ATTRIBUTE: data 
DATA STORE LOCATION:  SENSOR_OUTPUT 
ACCURACY:  TBD 
NAME:  G_STATUS 
DESCRIPTION:  status of the gyroscopes 
USED IN:  CP, GSP 
UNITS:  none 
RANGE:  [0 : healthy, 1: failed] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  GA 
DESCRIPTION:  gain 
USED IN:  AECLP 

UNITS:  
sec

meter
 

RANGE:  [0, 50] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GAX87 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [0, 5] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GP1 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-5, 5] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GP2 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-5, 5] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
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NAME:  GP_ALTITUDE88 
DESCRIPTION:  altitude as seen by guidance 
processor 
USED IN:  AECLP, CP, GP 
UNITS:  meters 
RANGE:  [0, 2000] 
DATA TYPE:  array (0..4) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  GP_ATTITUDE 
DESCRIPTION:  direction cosine matrix 
USED IN:  AECLP, CP, GP 
UNITS:  none 
RANGE:  [-1, 1] 
DATA TYPE:  array (1..3, 1..3, 0..4) real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  GP_DONE 
DESCRIPTION:  Flag indicating completion of GP 
task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task GP incomplete, 
TRUE: running of task GP complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  GP_PHASE89 
DESCRIPTION:  phase of operation as seen by 
guidance processor 
USED IN:  CP, GP 
UNITS:  none 
RANGE:  [1, 5] 
DATA TYPE:  integer*4 
ATTRIBUTE:  data condition 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  GP_ROTATION90 
DESCRIPTION:  rotation rates as determined by the 
guidance processing functional unit 
USED IN:  AECLP, CP, GP 

UNITS:  
radians

sec
 

RANGE:  [-1.0, 1.0] 
DATA TYPE:  array (1..3, 1..3) real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE, 
ACCURACY:  TBD 
 
 

NAME:  GP_VELOCITY 
DESCRIPTION:  Velocity as corrected by the 
guidance algorithm. 
USED IN:  AECLP, CP, GP 

UNITS:  
meters

sec
 

RANGE:  [-100, 100] 
DATA TYPE:  array ( 1..3, 0..4) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  GPY 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-5, 5] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GQ91 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS:  seconds 
RANGE:  [-5, 8] 
DATA TYPE:  array  (1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GR92 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS:  seconds 
RANGE:  [-5, 8] 
DATA TYPE:  array  (1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GRAVITY 
DESCRIPTION:  gravity of planet 
USED IN:  AECLP, GP 

UNITS:  
meters

sec2  

RANGE:  [0, 100] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
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NAME:  GSP_DONE 
DESCRIPTION:  Flag indicating completion of GSP 
task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task GSP incomplete, 
TRUE: running of task GSP complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  GV93 
DESCRIPTION:  gain 
USED IN:  AECLP 

UNITS:  
sec

meter
 

RANGE:  [-5, 8] 
DATA TYPE:  array  (1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GVE94 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS:  /second 
RANGE:  [0, 500] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GVEI95 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS:  /second2 
RANGE:  [-5, 40] 
DATA TYPE:  array  (1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GVI96 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS: /meter 
RANGE:  [-5, 5] 
DATA TYPE:  array  (1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 

NAME:  GW97 
DESCRIPTION:  gain 
USED IN:  AECLP 

UNITS:  
sec

meter
 

RANGE:  [-5, 8] 
DATA TYPE:  array  (1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  GWI98 
DESCRIPTION:  gain 
USED IN:  AECLP 
UNITS:  /meter 
RANGE:  [-5, 5] 
DATA TYPE:  array  (1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  INIT_DONE 
DESCRIPTION:  Flag indicating completion of GCS 
initialization. 
USED IN:  0. GCS 
UNITS:  none 
RANGE:  [FALSE: initialization incomplete, TRUE: 
initialization complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  INTERNAL_CMD99 
DESCRIPTION:  Real vector containing the 
command to be sent to the axial engines 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-0.7, 1.7] 
DATA TYPE:  array (1..3) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  K_ALT 
DESCRIPTION:  Determines use of altimeter radar 
by guidance processor 
USED IN:  ARSP, CP, GP 
UNITS:  none 
RANGE:  [0, 1] 
DATA TYPE:  array (0..4) of Integer*4 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
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NAME:  K_MATRIX 
DESCRIPTION:  Determines use of doppler radar by 
guidance processor. 
USED IN:  CP, GP, TDLRSP 
UNITS:  none 
RANGE:  [0, 1] 
DATA TYPE:  array (1..3, 1..3, 0..4) Integer*4 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  M1 
DESCRIPTION:  lower measured temperature 
calibration point for solid state temperature sensor 
USED IN:  TSP 
UNITS:  none 
RANGE:  [0, 215-1] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE  LOCATION: RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  M2 
DESCRIPTION:  upper measured temperature 
calibration point for solid state temperature sensor 
USED IN:  TSP 
UNITS:  none 
RANGE:  [0, 215-1] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  M3 
DESCRIPTION:  lower measured temperature 
calibration point for thermocouple pair temperature 
sensor 
USED IN:  TSP 
UNITS:  none 
RANGE:  [0, 215-1] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  M4 
DESCRIPTION:  upper measured temperature 
calibration point for thermocouple pair temperature 
sensor 
USED IN:  TSP 
UNITS:  none 
RANGE:  [0, 215-1] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
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NAME:  MAX_NORMAL_VELOCITY100 
DESCRIPTION:  Maximum vertical 
velocity for safe landing 
USED IN:  GP 
UNITS:  

meters
sec

 

RANGE:  [0, 3.35]   
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION: 
RUN_PARAMETERS 
ACCURACY: N/A 
 
NAME:  OMEGA 
DESCRIPTION:  gain of angular velocity 
USED IN:  AECLP 
UNITS:  /second 
RANGE:  [-50, 50] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  P1 
DESCRIPTION:  pulse rate boundary 
USED IN:  RECLP 

UNITS:  
radians

sec
 

RANGE:  [0, 0.05] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  P2 
DESCRIPTION:  pulse rate boundary 
USED IN:  RECLP 

UNITS:  
radians

sec
 

RANGE:  [0, 0.05] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  P3 
DESCRIPTION:  pulse rate boundary 
USED IN:  RECLP 

UNITS:  
radians

sec
 

RANGE:  [0, 0.05] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 

NAME:  P4 
DESCRIPTION:  pulse rate boundary 
USED IN:  RECLP 

UNITS:  
radians

sec
 

RANGE:  [0, 0.05] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  PACKET 
DESCRIPTION:  Packet of telemetry data 
USED IN:  CP 
UNITS:  N/A 
RANGE:  N/A 
DATA TYPE:  array (1..256) of Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
 
NAME:  PE_INTEGRAL101 
DESCRIPTION:  Integral portion of Pitch error 
equation 
USED IN:  AECLP, CP 
UNITS:  meters 
RANGE:  [-100, 100] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  PE_MAX 
DESCRIPTION:  Maximum pitch error tolerable 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [0, 1] 
DATA TYPE:  array(1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  PE_MIN 
DESCRIPTION:  Minimum pitch error tolerable. 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-1, 0] 
DATA TYPE:  array(1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
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NAME:  RE_CMD102 
DESCRIPTION:  roll engine command 
USED IN: CP, RECLP 
UNITS:  none 
RANGE:  [1, 7]   
D (direction) [0: positive, 1: negative] 
I (intensity) [0: off, 1: minimum, 2: intermediate,   
        3: maximum] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  TBD 
 
NAME:  RE_STATUS 
DESCRIPTION:  status of the roll engines 
USED IN:  CP, RECLP 
UNITS:  none 
RANGE:  [0 : healthy, 1: failed] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  RE_SWITCH 
DESCRIPTION:  Flag indicating whether or not the 
roll engines are turned on. 
USED IN:  GP, RECLP 
UNITS:  none 
RANGE:  [0: roll engines are off, 1: roll engines are 
on.] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data condition 
DATA STORE LOCATION:  GUIDANCE 
ACCURACY:  N/A 
 
NAME:  RECLP_DONE 
DESCRIPTION:  Flag indicating completion of 
RECLP task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task RECLP 
incomplete, TRUE: running of task RECLP 
complete] 
DATA TYPE:   logical*1 
ATTRIBUTE: control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 

NAME:  RENDEZVOUS 
DESCRIPTION:  Control signal which indicates 
whether or not GCS_SIM_RENDEZVOUS is to be 
activated. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: GCS_SIM_RENDEZVOUS is 
not to be activated, TRUE: 
GCS_SIM_RENDEZVOUS is to be activiated] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  RUN_DONE 
DESCRIPTION:  Flag indicating completion of GCS. 
USED IN:  0. GCS 
UNITS:  none 
RANGE:  [FALSE: running of GCS incomplete, 
TRUE: running of GCS complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  SP_DONE 
DESCRIPTION:  Control signal which indicates 
whether or not Sensor Processing function has been 
completed. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of Sensor Processing 
function incomplete, TRUE: running of Sensor 
Processing function complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  SS_TEMP 
DESCRIPTION:  Solid state temperature data 
USED IN:  TSP 
UNITS:  none 
RANGE:  [0, 215-1] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
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NAME:  SUBFRAME_COUNTER 
DESCRIPTION:  Counter containing the number of 
the present subframe. 
USED IN:  CP 
UNITS:  none 
RANGE:  [1, 3] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
 
NAME: T1 
DESCRIPTION:  lower ambient temperature 
calibration point for solid state temperature sensor 
USED IN:  TSP 
UNITS:  degrees C 
RANGE:  [-250, 250] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  T2 
DESCRIPTION:  upper ambient temperature 
calibration point for solid state temperature sensor 
USED IN:  TSP 
UNITS:  degrees C 
RANGE:  [-250, 250] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
  
NAME: T3 
DESCRIPTION:  lower ambient temperature 
calibration point for thermocouple pair temperature 
sensor 
USED IN:  TSP 
UNITS:  degrees C  
RANGE:  [-50, 50] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  T4 
DESCRIPTION: upper ambient temperature 
calibration point for thermocouple pair temperature 
sensor 
USED IN:  TSP 
UNITS:  degrees C 
RANGE:  [-50, 50] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 

NAME:  TD_COUNTER 
DESCRIPTION:  value returned by Touch Down 
Sensor 
USED I N:  TDSP 
UNITS: none 
RANGE:  [-215 , 215-1] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
 
NAME:  TD_SENSED 
DESCRIPTION:  Flag indicating whether or not 
touch down has been sensed. 
USED IN:  CP, GP, TDSP 
UNITS:  none 
RANGE:  [0: touch down not sensed, 1: touch down 
sensed] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data condition 
DATA STORE LOCATION:  SENSOR_OUTPUT 
ACCURACY:  N/A 
 
NAME:  TDLR_ANGLES103 
DESCRIPTION:  vector of doppler radar beam offset 
angles (i.e., α , β, γ) 
USED IN:  TDLRSP 
UNITS:  radians 

RANGE:  [0, 
π
2

) 

DATA TYPE:  array (1..3) real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  TDLR_COUNTER 
DESCRIPTION:  value returned by Doppler radar 
USED IN:  TDLRSP 
UNITS:  none 
RANGE:  [0, 215-1] 
DATA TYPE:  array (1..4) Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
 
NAME:  TDLR_GAIN104 
DESCRIPTION:  gain in doppler radar beam 
USED IN:  TDLRSP 

UNITS:  

meters
sec  

RANGE:  [-1, 1] 
DATA TYPE:   real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
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ACCURACY:  N/A 
 

NAME:  TDLR_LOCK_TIME 
DESCRIPTION:  locking time of doppler radar beam 
USED IN:  TDLRSP 
UNITS:  seconds 
RANGE:  [0, 60] 
DATA TYPE:  real*8 
ATTRIBUTE: data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  TDLR_OFFSET 
DESCRIPTION:  offset in doppler radar beam 
USED IN:  TDLRSP 

UNITS:  
meters

sec
 

RANGE:  [-100, 0] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  TDLR_STATE105 
DESCRIPTION:  state of the touch down landing 
radar beams. 
USED IN:  CP, TDLRSP 
UNITS:  none 
RANGE:  [0: Beam unlocked, 1: Beam locked] 
DATA TYPE:  array (1..4) logical*1 
ATTRIBUTE:  data condition 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  TDLR_STATUS 
DESCRIPTION:  status of the doppler radar 
USED IN:  CP, TDLRSP 
UNITS:  none 
RANGE: [0 : healthy, 1: failed] 
DATA TYPE:  array (1..4) of logical*1 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  TDLR_VELOCITY 
DESCRIPTION:  Velocity as computed by the touch 
down landing radar. 
USED IN:  CP, GP, TDLRSP 

UNITS:  
meters

sec
 

RANGE:  [-100, 100] 
DATA TYPE:  array (1..3, 0..4) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  SENSOR_OUTPUT 
ACCURACY:  TBD 
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NAME:  TDLRSP_DONE 
DESCRIPTION:  Flag indicating completion of 
TDLRSP task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task TDLRSP 
incomplete, TRUE: running of task TDLRSP 
complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  TDSP_DONE 
DESCRIPTION:  Flag indicating completion of 
TDSP task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task TDSP 
incomplete, TRUE: running of task TDSP complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
 
NAME:  TDS_STATUS 
DESCRIPTION:  status of the touch down sensor 
USED IN:  CP, GP, TDSP 
UNITS:  none 
RANGE:  [0 : healthy, 1: failed] 
DATA TYPE:  logical*1 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  TE_DROP 
DESCRIPTION:  The axial thrust error when axial 
engines are warm and the velocity altitude contour 
has not been intersected. 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-2, 2] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  TE_INIT 
DESCRIPTION:  The axial thrust error when the 
axial engines are cold. 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-2, 2] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
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NAME:  TE_INTEGRAL106 
DESCRIPTION:  Integral portion of Thrust error 
equation 
USED IN:  AECLP, CP, GP 
UNITS:  meters 
RANGE:  [-100, 100] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
  
NAME:  TE_LIMIT107 
DESCRIPTION:  Limiting thrust error 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-100, 100] 
DATA TYPE:   real*8 
ATTRIBUTE: Data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  TE_MAX 
DESCRIPTION:  Maximum thrust error tolerable 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-2, 2] 
DATA TYPE:  array(1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  TE_MIN 
DESCRIPTION:  Minimum thrust error tolerable. 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-2, 2] 
DATA TYPE:  array(1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  THERMO_TEMP 
DESCRIPTION:  thermocouple pair temperature 
USED IN:  TSP 
UNITS:  none 
RANGE:  [0, 215-1] 
DATA TYPE:  Integer*2 
ATTRIBUTE:  data 
DATA STORE LOCATION:  EXTERNAL 
ACCURACY:  N/A 
 

NAME:  THETA108 
DESCRIPTION:  roll angle 
USED IN:  RECLP 
UNITS:  radians 
RANGE: [-π, π] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE 
ACCURACY:  TBD 
 
NAME:  THETA1 
DESCRIPTION:  pulse angle boundary 
USED IN:  RECLP 
UNITS:  radians 
RANGE:  [0, 0.05] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  THETA2 
DESCRIPTION:  pulse angle boundary 
USED IN:  RECLP 
UNITS:  radians 
RANGE:  [0, 0.05] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  TS_STATUS 
DESCRIPTION:  status of the temperature sensors in 
solid state, then thermocouple pair order 
USED IN:  CP, TSP 
UNITS:  none 
RANGE:  [0 : healthy, 1: failed] 
DATA TYPE:  array (1..2) of logical*1 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  N/A 
 
NAME:  TSP_DONE 
DESCRIPTION:  Flag indicating completion of TSP 
task. 
USED IN:  2. RUN_GCS 
UNITS:  none 
RANGE:  [FALSE: running of task TSP incomplete, 
TRUE: running of task TSP complete] 
DATA TYPE:  logical*1 
ATTRIBUTE:  control 
DATA STORE LOCATION:  none 
ACCURACY:  N/A 
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NAME:  VELOCITY_ERROR109 
DESCRIPTION:  Distance from velocity-altitude 
contour. (Difference in velocities from actual to 
desired on contour.) 
USED IN:  AECLP, CP, GP 

UNITS:  
meters

sec
 

RANGE:  [-300, 20] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  YE_INTEGRAL110 
DESCRIPTION:  Integral portion of Yaw error 
equation 
USED IN:  AECLP, CP 
UNITS:  meters 
RANGE:  [-100, 100] 
DATA TYPE:  real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  GUIDANCE_STATE 
ACCURACY:  TBD 
 
NAME:  YE_MAX 
DESCRIPTION:  Maximum yaw error tolerable 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-1, 1] 
DATA TYPE:  array(1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
 
NAME:  YE_MIN 
DESCRIPTION:  Minimum yaw error tolerable. 
USED IN:  AECLP 
UNITS:  none 
RANGE:  [-1, 1] 
DATA TYPE:  array(1..2) of real*8 
ATTRIBUTE:  data 
DATA STORE LOCATION:  RUN_PARAMETERS 
ACCURACY:  N/A 
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PART II. CONTENTS OF DATA STORES 
 
 

Table 6.1:  DATA STORE:  GUIDANCE_STATE 

 
VARIABLE NAME USED BY: 

A_STATUS ASP, CP 
AE_STATUS AECLP, CP 
AE_SWITCH AECLP, GP 
AE_TEMP AECLP, CP, CRCP, GP 
AR_STATUS ARSP, CP 
C_STATUS CP 
CHUTE_RELEASED AECLP, CP, CRCP, GP 
CL111 AECLP, GP 
CONTOUR_CROSSED AECLP, CP, GP 
FRAME_BEAM_UNLOCKED TDLRSP  
FRAME_ENGINES_IGNITED AECLP, GP  
G_STATUS CP, GSP 
GP_ALTITUDE CP, GP, AECLP 
GP_ATTITUDE AECLP, CP, GP 
GP_PHASE CP, GP 
GP_ROTATION AECLP, CP, GP 
GP_VELOCITY AECLP, CP, GP 
INTERNAL_CMD AECLP 
K_ALT ARSP, CP, GP 
K_MATRIX CP, GP, TDLRSP 
PE_INTEGRAL AECLP, CP 
RE_STATUS CP, RECLP 
RE_SWITCH GP, RECLP 
TDLR_STATE CP, TDLRSP  
TDLR_STATUS CP, TDLRSP  
TDS_STATUS CP, GP, TDSP 
TE_INTEGRAL AECLP, CP, GP 
TE_LIMIT AECLP 
THETA RECLP 
TS_STATUS CP, TSP 
VELOCITY_ERROR AECLP, CP, GP 
YE_INTEGRAL AECLP, CP 
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Table 6.2:  DATA STORE:  EXTERNAL 

 
VARIABLE NAME USED BY 

A_COUNTER ASP 
AE_CMD AECLP, CP 
AR_COUNTER ARSP 
FRAME_COUNTER AECLP, ARSP, CP, GP, TDLRSP  
G_COUNTER GSP 
PACKET CP  
RE_CMD RECLP, CP  
SS_TEMP TSP 
SUBFRAME_COUNTER CP 
TD_COUNTER TDSP 
TDLR_COUNTER TDLRSP 
THERMO_TEMP TSP 

 
 

 

 

Table 6.3 :  DATA STORE:  SENSOR_OUTPUT 

 
VARIABLE NAME USED BY: 

A_ACCELERATION AECLP, ASP, CP, GP 
AR_ALTITUDE ARSP, CP, GP 
ATMOSPHERIC_TEMP ASP, CP, GSP, TSP 
G_ROTATION CP, GSP, GP, RECLP 
TD_SENSED CP, GP, TDSP  
TDLR_VELOCITY CP, GP, TDLRSP 
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Table 6.4:  DATA STORE:  RUN_PARAMETERS 

 
VARIABLE NAME USED BY 

A_BIAS ASP 
A_GAIN_0 ASP 
A_SCALE ASP 
ALPHA_MATRIX ASP 
AR_FREQUENCY ARSP  
COMM_SYNC_PATTERN CP 
CONTOUR_ALTITUDE GP 
CONTOUR_VELOCITY GP 
DELTA_T AECLP, GP, RECLP, TDLRSP 
DROP_HEIGHT GP 
DROP_SPEED112 GP 
ENGINES_ON_ALTITUDE AECLP, GP 
FULL_UP_TIME AECLP 
G1 ASP 
G2 ASP 
G3 GSP 
G4 GSP 
G_GAIN_0 GSP 
G_OFFSET GSP 
GA AECLP 
GAX AECLP 
GP1 AECLP 
GP2 AECLP 
GPY AECLP 
GQ AECLP 
GR AECLP 
GRAVITY AECLP, GP  
GV AECLP 
GVE AECLP 
GVEI AECLP 
GVI AECLP 
GW AECLP 
GWI AECLP 
M1 TSP 
M2 TSP 
M3 TSP 
M4 TSP 
MAX_NORMAL_VELOCITY113 GP 
OMEGA AECLP 
P1 RECLP 
P2 RECLP 
P3 RECLP 
P4 RECLP 
PE_MAX AECLP 
PE_MIN AECLP 
T1 TSP 
T2 TSP 
T3 TSP 
T4 TSP 
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Table 6.4 (continued):  DATA STORE: RUN_PARAMETERS 

 
VARIABLE NAME USED BY 

TDLR_ANGLES TDLRSP 
TDLR_GAIN TDLRSP 
TDLR_LOCK_TIME TDLRSP 
TDLR_OFFSET TDLRSP 
TE_DROP AECLP 
TE_INIT AECLP 
TE_MAX AECLP 
TE_MIN AECLP 
THETA1 RECLP 
THETA2 RECLP 
YE_MAX AECLP 
YE_MIN AECLP 
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PART III. CONTROL SIGNALS, DATA CONDITIONS, AND GROUP  
                FLOWS 
 

 

Table 6.5:  CONTROL SIGNALS (OPTIONAL USAGE) 

 
CONTROL SIGNAL NAME 

AECLP_DONE 
ARSP_DONE 
ASP_DONE 
CLP_DONE 

CP_DONE114 
CRCP_DONE 

GP_DONE 
GSP_DONE 
INIT_DONE 

RECLP_DONE115 
RENDEZVOUS 
RUN_DONE116 

SP_DONE 
TDLRSP_DONE 

TDSP_DONE 
TSP_DONE 

 

Note:  These variables are not in the required global data stores. 

 

 

Table 6.6:  DATA CONDITIONS (REQUIRED USAGE) 

 
DATA CONDITION VARIABLE NAME 

AE_SWITCH 
AE_TEMP 

CHUTE_RELEASED 
CONTOUR_CROSSED 

GP_PHASE 
RE_SWTICH 
TD_SENSED  

TDLR_STATE 
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Table 6.7:  INITIALIZATION DATA 

 
VARIABLE NAME USED BY 

A_ACCELERATION AECLP, ASP, CP, GP 
A_BIAS ASP 
A_COUNTER ASP 
A_GAIN_0 ASP 
A_SCALE ASP 
A_STATUS ASP, CP 
AE_STATUS AECLP, CP 
AE_SWITCH AECLP, GP 
AE_TEMP AECLP, CP, CRCP, GP 
ALPHA_MATRIX ASP 
AR_ALTITUDE ARSP, CP, GP 
AR_COUNTER ARSP 
AR_FREQUENCY ARSP 
AR_STATUS ARSP, CP 
ATMOSPHERIC_TEMP ASP, CP, GSP, TSP 
C_STATUS CP 
CHUTE_RELEASED AECLP, CP, CRCP, GP 
CL117 AECLP, GP 
COMM_SYNC_PATTERN CP 
CONTOUR_ALTITUDE GP 
CONTOUR_CROSSED AECLP, CP, GP 
CONTOUR_VELOCITY GP 
DELTA_T AECLP, GP, RECLP, TDLRSP 
DROP_HEIGHT GP 
DROP_SPEED118 GP 
ENGINES_ON_ALTITUDE AECLP, GP 
FRAME_BEAM_UNLOCKED TDLRSP 
FRAME_COUNTER AECLP, ARSP, CP, GP, TDLRSP 
FRAME_ENGINES_IGNITED AECLP, GP 
FULL_UP_TIME AECLP 
G1 ASP 
G2 ASP 
G3 GSP 
G4 GSP 
G_COUNTER GSP 
G_GAIN_0 GSP 
G_OFFSET GSP 
G_ROTATION CP, GSP, GP, RECLP 
G_STATUS CP, GSP 
GA AECLP 
GAX AECLP 
GP1 AECLP 
GP2 AECLP 
GP_ALTITUDE AECLP, CP, GP 
GP_ATTITUDE AECLP, CP, GP 
GP_PHASE CP, GP 
GP_ROTATION AECLP, CP, GP 
GP_VELOCITY AECLP, CP, GP 
GPY AECLP 
GQ AECLP 
GR AECLP 
GRAVITY AECLP, GP 
GV AECLP 
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Table 6.7 (continued):  INITIALIZATION DATA 

 
VARIABLE NAME  USED BY 

GVE AECLP 
GVEI AECLP 
GVI AECLP 
GW AECLP 
GWI AECLP 
K_ALT  ARSP, CP, GP 
K_MATRIX  CP, GP, TDLRSP 
M1  TSP 
M2  TSP 
M3  TSP 
M4  TSP 
MAX_NORMAL_VELOCITY119 GP 
OMEGA  AECLP 
P1  RECLP 
P2  RECLP 
P3  RECLP 
P4  RECLP 
PE_INTEGRAL  AECLP, CP 
PE_MAX  AECLP 
PE_MIN  AECLP 
RE_STATUS  CP, RECLP 
RE_SWITCH  GP, RECLP 
SS_TEMP  TSP 
SUBFRAME_COUNTER CP 
T1  TSP 
T2  TSP 
T3  TSP 
T4  TSP 
TD_COUNTER TDSP 
TD_SENSED  CP, GP, TDSP 
TDLR_ANGLES  TDLRSP 
TDLR_COUNTER  TDLRSP 
TDLR_GAIN  TDLRSP 
TDLR_LOCK_TIME  TDLRSP 
TDLR_OFFSET  TDLRSP 
TDLR_STATE  CP, TDLRSP 
TDLR_STATUS  CP, TDLRSP 
TDLR_VELOCITY  CP, GP, TDLRSP 
TDS_STATUS  CP, GP, TDSP 
TE_DROP  AECLP 
TE_INIT  AECLP 
TE_INTEGRAL  AECLP, CP, GP 
TE_LIMIT  AECLP 
TE_MAX  AECLP 
TE_MIN  AECLP 
THERMO_TEMP  TSP 
THETA  RECLP 
THETA1  RECLP 
THETA2  RECLP 
TS_STATUS  CP, TSP 
VELOCITY_ERROR  AECLP, CP, GP 
YE_INTEGRAL  AECLP, CP 
YE_MAX  AECLP 
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YE_MIN  AECLP 

Table 6.8:  TEMP_DATA 
 

VARIABLE NAME 
SS_TEMP 

THERMO_TEMP 

 

 

 

Table 6.9:  SENSOR_DATA 
 

VARIABLE NAME 
A_COUNTER 

AR_COUNTER 
TDLR_COUNTER 

G_COUNTER 
TEMP_DATA 

TD_COUNTER 

 

 

 

Table 6.10:  OUTPUT_DATA 
 

VARIABLE NAME 
AE_CMD 
RE_CMD 
PACKET 

 

 

 

Table 6.11:  OUTPUT_CONTROL 
 

VARIABLE NAME 
AE_SWITCH 
RE_SWITCH 

CHUTE_RELEASED 

 

 

 

Table 6.12:  FRAME_DATA 
 

VARIABLE NAME 



 
123

FRAME_COUNTER 
SUBFRAME_COUNTER 
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A.  NOTATION FOR LEVELS 0, 1, 2, AND 3 SPECIFICATION 
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A.  NOTATION FOR LEVELS 0, 1, 2, AND 3 SPECIFICATION 
 

This specification was developed using the extended structured analysis method advocated by Hatley [12, 

13] and Cadre's teamwork [19].  This method is based on a  hierarchical approach to defining functional modules and 

the associated data and control flows. 

The documents constructed as a part of this specification include data context and flow diagrams; control 

context and flow diagrams; process and control descriptions; and a Data Requirements Dictionary.  Figure A.1 

defines the graphical symbols used in the data flow and control flow diagrams, respectively. 

The data flow diagrams describe the processes, data flows, and data stores.  The data context diagram is the 

highest-level data flow diagram and represents the data flow for the entire system.   

The control flow diagrams describe processes, control signal and data condition flows, control specifications, 

and data stores.  The control signal and data condition flows are depicted using directed arcs with broken lines.  The 

control signals listed in the data dictionary may be implemented by the programmer in any form desired; or, they 

may be completely ignored and the control of the program conducted through other means.  The control signals 

simply show the logic involved in the system.  Signal flows between the control flow diagram and the control 

specification have a short bar at the end of the directed arc.  The control flow diagrams contain duplicate 

descriptions of the processes represented on the data flow diagram.  The control context diagram representing the 

most abstract control flow is similar to the data context diagram.  

The control specifications describe the control requirements of a system.  These specifications contain the 

conditions when the processes detailed in the data and control flow diagrams are activated and de-activated. 

The Data Requirements Dictionary contains definitions for data, data conditions, control signals, and group 

flows. 

Following is a list of definitions and explanations for the structured analysis diagrams: 

1.  The data and control flow names on the directed arcs in the structured analysis figures can be found in 

the Data Requirements Dictionary Part I, while the group flow names on the arcs can be found in the 

Data Requirements Dictionary Part III. 

2.  In the Process Activation Tables, the first column contains the inputs.  The second set of columns 

(separated by two vertical lines) contains the cells which indicate whether a process is to be activated 

or deactivated.  A blank cell indicates that the process is deactivated.  An integer indicates that the 

process is activated.  A process whose cell contains the integer "n" must complete before the process 

with integer "n+1" is activated.  All processes whose cells contain the same integer can be activated in 

any order.  The third set of columns, if present, represents the output values for control signals. 

3.  The meanings for the symbols used in the expressions for inputs are: 

= equal 

~= not equal 

~ logical NOT 
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& logical AND 

| logical OR 

() grouping (expression inside parentheses is evaluated first) 

 

 

 

 

Figure A.1:  GRAPHICAL SYMBOLS USED IN STRUCTURED ANALYSIS DIAGRAMS 

 

PROCESS MODULE

SOURCE OR SINK

DATA CONDITION OR  
CONTROL FLOW

CONTROL SPECIFICATION

DATA FLOW

DATA STORE
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B.  IMPLEMENTATION NOTES 
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INTERFACE 

 
Background 

For the purposes of this research experiment, each GCS implementation must function as if it were actually 

controlling a planetary lander.  In reality, each GCS implementation will be interacting with a software simulator 

(GCS_SIM) that models the behavior of a physical lander when exposed to the environmental forces of a planet. 

Due to the fact that each GCS implementation must interact with GCS_SIM as if it were connected to the 

lander hardware, there are some additional requirements that are placed on a GCS implementation that help define a 

software interface.  The software interface to the simulator replaces the physical connection to planetary lander 

hardware through the use of a simulator support utility and an additional requirement involving the organization of 

the global data stores. 

 
Simulator Support Utility 

A single simulator support utility (GCS_SIM_RENDEZVOUS) is provided to form a uniform interface 

between the GCS implementation and the simulation environment (GCS_SIM). This utility is a routine which 

simplifies the interface between the GCS implementations and the simulation of the vehicle sensing and control 

mechanisms.  This utility also includes a synchronization  mechanism for the configurations using more than one 

version of the GCS. This routine provides the following support functions:  

• Initialization for the Beginning of Terminal Descent  

• Simulator Rendezvous Synchronization 

• GCS Interface for Simulated Reads and Writes 

 
Input/Output 

The GCS_SIM_RENDEZVOUS routine simulates all of the input/output operations for each GCS 

implementation.  When using the rendezvous routine with a GCS implementation, all data needed by rendezvous is 

passed via the four global data stores and there are no additional parameters required. All information read from or 

written to each GCS implementation will be transferred through the four global data stores defined in the data 

dictionary. 
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Figure B.1:  DIAGRAM OF STORAGE AS SEEN BY GCS IMPLEMENTATIONS 
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Process 

The GCS uses the sensor input values in order to calculate control commands which are used by GCS_SIM 

to manipulate the actuators.  Since GCS_SIM handles the orbit to terminal descent portion of each trajectory, a 

rendezvous must be issued at the start of each trajectory to load initial sensor values into each GCS implementation.  

Following the first call to rendezvous, all GCS implementations will synchronize themselves by calling rendezvous 

prior to the execution of each subframe.  This rendezvous, in effect, suspends the GCS implementations until the 

other GCS implementations have processed this time step or have run out of time.120 

The calling convention for this GCS_SIM provided support utility is as follows:  

• GCS_SIM_RENDEZVOUS (requires no parameters) 

 
GCS Initialization 

During the initialization phase of each GCS trajectory (the first call to GCS_SIM_RENDEZVOUS) the 

frame counter (FRAME_COUNTER) will be updated with the starting frame number for the particular trajectory.  

Under normal circumstances, the value of the frame counter will be "1," but the programmer should not rely on 

that.121 

 

By using the interface described above, the simulator can be transparent to the implementation. 
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C.  NUMERICAL INTEGRATION INSTRUCTIONS 
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NUMERICAL INTEGRATION INSTRUCTIONS 
 

Within the Guidance Processing functional unit, the calculations of GP_VELOCITY, GP_ALTITUDE, 

and GP_ATTITUDE require the use of a highly accurate integration method.  To maintain the necessary degree 

of accuracy, three methods of numerical integration have been designated as acceptable for coding, namely 

Adams-Moulton method, Hamming's method, and the Runge-Kutta fourth-order method for simultaneous 

equations.  If the Runge-Kutta method is used, it is required that the three equations be solved as a set of 

simultaneous equations.122 

Each method is briefly described in the following paragraphs, and references to numerical analysis texts 

describing the method are provided.  Algorithms specified in either a text listed or another suitable numerical 

analysis text should be used during coding. 

 

Adams-Moulton Method 

The Adams-Moulton Method requires values from the previous four time steps to calculate the value at 

the next time step.  The Adams-Moulton method is a predictor/corrector method.  Both [14] (pp. 346-7) 

and [16] (pp. 478-81) explain the Adams-Moulton method. 

 

Hamming's Method 

The Hamming method uses a predictor/corrector method similar to that of Adams-Moulton. Hamming's 

method uses the same predictor as Milne's, but uses a much simpler corrector formula.  Milne's method 

of integration was deemed too unstable for use, but Hamming's method with the simpler corrector is 

sufficiently stable.  A description of both Hamming's method and Milne's method can be found in [14] 

(pp. 347-8).  

 

Runge-Kutta Fourth-Order Method for Simultaneous Equations123

The well-known Runge-Kutta fourth-order method for simultaneous equations requires only the 

previous two values to calculate the next value.  References can be found in many texts including:  

[15](pp. 356-60), [17] (pp. 240-6; pp. 282-5), [18] (pg. 447; pp. 471-3) 
 

During the first time step, using a numerical integration method necessitates some specification of previous 

values.  These values will be provided during initialization for the data elements provided in Table C.1. 
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TABLE C.1:  INITIAL VALUES PROVIDED FOR USE IN INTEGRATION 

 
A_ACCELERATION (1..3, 0..4) 
AR_ALTITUDE (0..4) 
GP_ALTITUDE (0..4) 
GP_ATTITUDE (1..3, 1..3, 0..4) 
GP_VELOCITY (1..3, 0..4) 
G_ROTATION (1..3, 0..4) 
K_ALT (0..4) 
K_MATRIX (1..3, 1..3, 0..4) 
TDLR_VELOCITY (1..3, 0..4) 

 

 

Note that not all integration required by the GCS specification requires the use of one of the methods listed in 

this appendix.  More specifically, in computing THETA, TE_INTEGRAL, PE_INTEGRAL, and YE_INTEGRAL, 

Euler's method provides sufficient accuracy and simplicity and should be used.  Information on Euler's method may 

be found in: [14](pp. 318-22), [15](pg. 223), and [16](pp. 462-3). 
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