
Using Z 11–1

Schemas

Using Z

Woodcock & Davies

Using Z 11–2

Schema language

The schema language is used to structure and compose

mathematical descriptions: collating pieces of information,

encapsulating them, and naming them for re-use.

It is the second component of the Z notation, the first being

the mathematical language of logic and set theory.

Using Z 11–3

Declaration and constraint

Any mathematical description will involve declarations of

identifiers, and constraints upon them.

In a formal specification, groups of identifiers may be used to

describe compound objects or related properties. These

identifiers will often be declared—and constrained—together.

We may simplify our formal specifications by factoring out

patterns of declaration and constraint.

Using Z 11–4

Examples

Both of the following mathematical expressions involve a

declaration and a constraint:

{ a,b : N | a = 2∗ b • a , b }
∃ c : N | c ≠ 1 • c < 2

Using Z 11–5

Example

A formal specification might involve the given types

sold : Seat 7→ Customer

seating : P Seat

and the constraint

dom sold ⊆ seating

Using Z 11–6

Schemas

A schema is a pattern of declaration and constraint.

We will define schemas, and use them as declarations, as

predicates, and as sets.

Using Z 11–7

Notation

We may write schemas in horizontal form:

[declaration | constraint]

or in vertical form:

declaration

constraint

In the vertical form, we may elide the semicolons between

declarations and the conjunctions between predicates.

Using Z 11–8

Examples

[a : Z; c : PZ | c ≠∅ ∧ a ∈ c]

a : Z

c : PZ

c ≠∅
a ∈ c

Using Z 11–9

Naming schemas

We may give names to schemas, and use these names to refer

to the corresponding pattern of declaration and constraint.

The definition

Name =̂ Exp

introduces a schema name Name which is equivalent to Exp,

which must be a schema expression.

Using Z 11–10

Example

Schema =̂ [a : Z; c : PZ | c ≠∅ ∧ a ∈ c]

Schema =̂

a : Z

c : PZ

c ≠∅
a ∈ c

Using Z 11–11

Notation

We may write the second definition above as:

Schema

a : Z

c : PZ

c ≠∅
a ∈ c

Using Z 11–12

Example

BoxOffice

sold : Seat 7→ Customer

seating : P Seat

dom sold ⊆ seating

Using Z 11–13

Equivalence

Two schemas are said to be equivalent if they declare the same

set of identifiers—with the same types—and impose a logically

equivalent constraint upon them.

Using Z 11–14

Example

seating : P Seat

sold : Seat↔ Customer

dom sold ⊆ seating

sold ∈ Seat 7→ Customer

Using Z 11–15

Using schemas

We may use a schema name:

• in place of a declaration: after quantifiers, in set

comprehensions, and in lambda and mu expressions

• in place of a predicate; in this case, only the constraint

part is important

• in place of a set

Using Z 11–16

Examples

∀ Schema • a ∈ N

∃a : Z; c : PZ • Schema

Using Z 11–17

Question

What is the type of the following function?

λBoxOffice • seating \ dom sold

Using Z 11–18

Bindings

A binding is a mapping from names to values. The names are

names of identifiers; the values are values of expressions of

the appropriate type.

Using Z 11–19

Notation

The binding that associates the name of identifier x with the

value of expression e, and the name of y with the value of f

can be written

〈|x � e,y � f |〉

Using Z 11–20

Example

s == 〈|a � 2, c � {1,2,3}|〉

Using Z 11–21

Schemas as sets

A schema corresponds to a set of bindings.

Each binding in this set associates the identifiers declared in

the schema with values in such a way that the constraint part

of the schema is satisfied.

If this set is maximal within the specification, then it is said to

be a schema type.

Using Z 11–22

Example

The following bindings are associated with Schema:

〈|a � 1, c � {0,1,2}|〉
〈|a � 0, c �Z|〉
〈|a � −3, c � {−3}|〉

Using Z 11–23

Example

The following definition introduces a schema type:

SchemaType

a : Z

c : PZ

Using Z 11–24

Question

What is the type of the following set?

{ Schema | c ⊆ {0,1} }

Using Z 11–25

Characteristic binding

If Schema is the name of a schema, then we write θSchema to

denote the characteristic binding of Schema.

In this binding, each of the named identifiers is associated

with its value in the current scope.

Using Z 11–26

Example

θSchema = 〈|a � a, c � c|〉

Using Z 11–27

Question

Is there any difference between θSchema and θSchemaType?

Using Z 11–28

Characteristic tuples

Where a schema is used as part of a declaration, the

characteristic binding for that schema is used as the

corresponding part of the characteristic tuple.

Using Z 11–29

Example

{ Schema; b : Z } = { Schema; b : Z • (θSchema,b) }

Using Z 11–30

Schemas as sets (again)

When we use a schema name Schema as a set, we are referring

to the following set of bindings:

{ Schema • θSchema }

Using Z 11–31

Example

{ Schema • θSchema }

{a : Z; c : PZ | c ≠∅ ∧ a ∈ c • 〈|a � a, c � c|〉 }

Using Z 11–32

Component selection

If s is an object of schema type and x is one of the named

components in s, then s.x is the value associated with x in s.

For example, if s is the binding 〈|x � v|〉, then s.x = v .

Using Z 11–33

Example

Date

month : Month

day : 1 . . 31

month ∈ {sep,apr , jun,nov} ⇒ day ≤ 30

month = feb ⇒ day ≤ 29

Using Z 11–34

marina’s birthday : Date

marina’s birthday .month = jan

marina’s birthday .day = 28

Using Z 11–35

Schemas as declarations

When a schema name is used in place of a declaration, the

named identifiers are introduced under the given constraint.

Using Z 11–36

Example

∃Date • day = 31

∃day : 1 . . 31; month : Month |
(month ∈ {sep,apr , jun,nov} ⇒ day ≤ 30) ∧

month = feb ⇒ day ≤ 29 •
day = 31

Using Z 11–37

Question

What are the elements of the following set?

{Date | day = 31 • month }

Using Z 11–38

Question

What are the elements of the following set?

{d : Date | d.day = 31 • d.month }

Using Z 11–39

Schemas as predicates

When a schema name is used in place of a predicate, a

statement is made about the identifiers declared in the schema.

This statement is logically equivalent to the constraint

information in the whole of the schema.

Using Z 11–40

Example

∀day : Z; month : Month • Date ⇒ day ≤ 31

∀day : Z; month : Month •
(day ∈ 1 . . 31 ∧
(month ∈ {sep,apr , jun,nov} ⇒ day ≤ 30) ∧
month = feb ⇒ day ≤ 29)⇒

day ≤ 31

Using Z 11–41

Normalisation

A schema in which there is no constraint information in the

declaration part is said to be in normal form.

It is sometimes useful to replace a schema with an equivalent

schema in normal form.

Using Z 11–42

Example

NormalDate

month : Month

day : Z

day ∈ 1 . . 31

month ∈ {sep,apr , jun,nov} ⇒ day ≤ 30

month = feb ⇒ day ≤ 29

Using Z 11–43

Note

The declaration part of a normalised schema is that of a

schema type.

DateType

month : Month

day : Z

Using Z 11–44

Question

If we define

NotDate

month : Month

day : 1 . . 31

¬ ((month ∈ {sep,apr , jun,nov} ⇒ day ≤ 30) ∧
(month = feb ⇒ day ≤ 29))

is the following statement true or false?

∀DateType | ¬ Date • NotDate

Using Z 11–45

Renaming

If old is one of the identifiers declared in Schema, then the

schema Schema[new/old] is the schema that

• declares new instead of old

• imposes the same constraint upon new as it did upon old

Using Z 11–46

Example

The schema Date[dd/day ,mm/month] is equivalent to

mm : Month

dd : 1 . . 31

mm ∈ {sep,apr , jun,nov} ⇒ dd ≤ 30

mm = feb ⇒ dd ≤ 29

Using Z 11–47

Decoration

If Schema is a schema, then Schema′ is the schema that

declares the same identifiers as Schema, and imposes the

same constraint, except that every identifier is decorated with

a prime symbol (′).

Using Z 11–48

Example

Schema′ is equivalent to

a′ : Z

c′ : PZ

c′ ≠∅
a′ ∈ c′

Using Z 11–49

Example

BoxOffice′ is equivalent to

seating′ : P Seat

sold′ : Seat 7→ Customer

dom sold′ ⊆ seating′

Using Z 11–50

Equality of bindings

Two bindings are equal if they map the same identifiers to

equal values.

〈|x � v|〉 = 〈|x � w|〉 a v = w

Using Z 11–51

Decoration of characteristic bindings

If b is a characteristic binding, then b′ is a binding in which the

same names are associated with primed values.

〈|x � x|〉′ = 〈|x � x′|〉

Binding decoration binds more loosely than θ:

θSchema′ = (θSchema)′

Using Z 11–52

Example

The decorated binding θSchema′ is

〈|a � a′, c � c′|〉

The characteristic binding θ(Schema′) is

〈|a′� a′, c′� c′|〉

Using Z 11–53

Decoration and schema types

Decoration does not change the type of a binding: θSchema′ is

an object of schema type Schema.

The declaration Schema′ may be used to introduce θSchema′:
it declares every variable in the decorated binding.

Using Z 11–54

Example

The declaration Schema; Schema′ may be used to introduce

two objects of schema type Schema:

〈|a � a, c � c|〉 and 〈|a � a′, c � c′|〉

Using Z 11–55

Question

Is the following proposition true or false?

∀a′ : Z; c′ : PZ •
θSchema′ ∈ Schema

Using Z 11–56

Quantification over schema types

We will sometimes encounter quantified expressions in which

the components of the declaration schema do not appear; a

characteristic binding is used instead.

Where this is the case, we may avoid unnecessary expansion by

reasoning at the level of schemas and bindings.

Using Z 11–57

Substitution of bindings

A pair of bindings from the same schema type may be used to

specify a renaming; the effect is that of a partial decoration.

The substituted schema

SchemaA[θSchemaB′/θSchemaB]

may be obtained from SchemaA by decorating the identifiers

that appear in θSchemaB.

Using Z 11–58

Example

Suppose that NewSchema is defined by

NewSchema

a : Z

b : Z

c : PZ

b 6∈ c

Using Z 11–59

NewSchema[θSchema′/θSchema] is equivalent to

a′ : Z

b : Z

c′ : PZ

b 6∈ c′

Using Z 11–60

Universal introduction

dθS ∈ Se[i]
...

P

∀ S • P
[∀−intro[i]]

Provided that θS is not free in the other assumptions.

Using Z 11–61

Universal elimination

θS ′ ∈ S ∀ S • P
P[θS ′/θS]

[∀−elim]

Using Z 11–62

Existential introduction

θS ′ ∈ S P[θS ′/θS]
∃ S • P

[∃−intro]

Using Z 11–63

Existential elimination

∃ S • P

dθS ∈ Se[i]
dPe[i]

...

Q

Q
[∃−elim[i]]

Provided that θS is not free in the other assumptions and that

θS is not free in Q .

Using Z 11–64

Summary

• schema language

• schemas as sets

• schemas as declarations

• schemas as predicates

• decoration

• schema types

