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Free Types
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Data structures

We can model any data structure using sets, relations, or
functions.

Where structure is important, and where different types are
combined, a general mechanism is needed.
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Free types

The following definition introduces a new type T consisting of
elements cy, co,..,c, and elements obtained by applying functions
dq,do,..,d, to set expressions Ei, Eb, .., En:

Tu=ci|...lcm|di{{E1D) | ... | dn (En))
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Notes

e the elements cy,co,..,c, are called constants
e the functions dq,d»,..,d, are called constructors

o the set expressions Ei, Eb, .., E, may include instances of the
type being defined
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Example

The following free type definition introduces a new type
constructed using a single constant zero and a single constructor
function succ:

nat ::= zero | succ{{nat))

This type has a structure which is exactly that of the natural
numbers (where zero corresponds to 0, and succ corresponds to
the function +1).
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Question

What does this mean? What would we have to do if we wanted to
introduce the same set without a free type definition?
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Attempt 1

Zero : nat
succ : nat + nat

Vn:naten=zerovVv dm: nat e n = succm
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Attempt 2

zero : nat
succ : nat + nat

Vn:naten=zeroVv dm: nat e n = succm
{zero} Nransucc = &
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SUcCcC
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Attempt 3

zero : nat
succ : nat — nat

Vn:naten=zeroVv dm: nat e n = succm
{zero} Nransucc = &
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Attempt 4

zero : nat
succ : nat > nat

{zero} Nransucc = &
{zero} U ransucc = nat
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Conclusion

A free type definition involves:
e constants and constructed elements
e constructor functions

e closure
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Multiple constants

Colours ;= red | orange | | green | blue |

indigo | violet
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Question

Is the free type definition on the previous slide equivalent to the
following abbreviation?

Colours ==

{red, orange, , green, blue, indigo, violet}

If not, why not?
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Multiple constructors

Tree ::= leaf ((N)) | branch {{Tree x Tree))
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branch (branch (leaf 3, leaf 5), leaf 9)

branch (leaf 3, leaf 5) leaf 9

leaf 3
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Question

What can we say about the functions leaf and branch?
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Example

Degree ::= status ((0.. 3))
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Useful names for elements of Degree:

ba, msc, dphil, ma : Degree

ba = statusO
msc = status 1
dphil = status 2

ma = status 3
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The structure is preserved:

<status- Degree < Degree

V di, do : Degree o
A1 <gtatus d» < status~d; < status™ do
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Induction principle

A recursive free type definition gives rise to a corresponding
induction principle.
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The free type definition

Ti=ci|...lcm|di{E1D | ... | dn (En))

has the same effect as a basic type definition
[ T]

followed by...
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CllT

Cm: T
d1:E1>—>T

dy,:E, — T

disjoint ({c1},...,{cm},randy,...randy)
VS:PTe
{C1,...,Cm} S S A
di( E[S/T]IDu...udn( ExlS/T] )<= S=>
S=T
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Closure rule

(i EL[S/TIDU...udn( EnlS/TID) &S

S=T
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Inverse image

di( Ei[S/T])<cS
S E[S/Tledim (S
S Ve:E[S/Tleeedi (S)
Ve E[S/T]lediee S
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Predicates

S may be the characteristic set of some property P:

S == {t: T|Pt}
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Induction principle

PC1

Pcy,
Ve:E[S/T]eP(dse)

Ve:E)S/T]eP(dye)
Vt:TePt
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Example

S € nat ({zero} Usucc( nat[S/nat] ))) c S
S = nat
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Alternative form

S == {n:nat| Pn}

P zero

VY m: nat e Pm = P (succ m)

Vn:natePn
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Question

Can you suggest a suitable induction principle for Tree?
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Consistency
e not all constructions make sense; some result in a free type
with no elements

o Cartesian products, finite sequences, finite functions, and
finite power sets are guaranteed to work
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Example

The following type definition is inconsistent:

P ::= power{(P P))
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Summary

o data structures

free type definitions

constants, constructors, and closure

induction principle

consistency



