10-1

Free Types

10-2

Data structures

We can model any data structure using sets, relations, or
functions.

Where structure is important, and where different types are
combined, a general mechanism is needed.

10-3

Free types

The following definition introduces a new type T consisting of
elements cy, co,..,c, and elements obtained by applying functions
dq,do,..,d, to set expressions Ei, Eb, .., En:

Tu=ci|...lcm|di{{E1D) | ... | dn (En))

10-4

Notes

e the elements cy,co,..,c, are called constants
e the functions dq,d»,..,d, are called constructors

o the set expressions Ei, Eb, .., E, may include instances of the
type being defined

10-5

Example

The following free type definition introduces a new type
constructed using a single constant zero and a single constructor
function succ:

nat ::= zero | succ{{nat))

This type has a structure which is exactly that of the natural
numbers (where zero corresponds to 0, and succ corresponds to
the function +1).

10-6

Question

What does this mean? What would we have to do if we wanted to
introduce the same set without a free type definition?

10-7

Attempt 1

Zero : nat
succ : nat + nat

Vn:naten=zerovVv dm: nat e n = succm

10-8

‘ SUcCcC

Zero

10-9

Attempt 2

zero : nat
succ : nat + nat

Vn:naten=zeroVv dm: nat e n = succm
{zero} Nransucc = &

10-10

SUcCcC

10-11

Attempt 3

zero : nat
succ : nat — nat

Vn:naten=zeroVv dm: nat e n = succm
{zero} Nransucc = &

10-12

SUcCcC

=
O 00000

sero N~ ¥ N ¥ N ¥ N ¥ ~__ ¥ _ ¥

10-13

Attempt 4

zero : nat
succ : nat > nat

{zero} Nransucc = &
{zero} U ransucc = nat

10-14

10-15

Conclusion

A free type definition involves:
e constants and constructed elements
e constructor functions

e closure

10-16

Multiple constants

Colours ;= red | orange | | green | blue |

indigo | violet

10-17

Question

Is the free type definition on the previous slide equivalent to the
following abbreviation?

Colours ==

{red, orange, , green, blue, indigo, violet}

If not, why not?

10-18

Multiple constructors

Tree ::= leaf ((N)) | branch {{Tree x Tree))

10-19

branch (branch (leaf 3, leaf 5), leaf 9)

branch (leaf 3, leaf 5) leaf 9

leaf 3

10-20

Question

What can we say about the functions leaf and branch?

10-21

Example

Degree ::= status ((0.. 3))

10-22

Useful names for elements of Degree:

ba, msc, dphil, ma : Degree

ba = statusO
msc = status 1
dphil = status 2

ma = status 3

10-23

The structure is preserved:

<status- Degree < Degree

V di, do : Degree o
A1 <gtatus d» < status~d; < status™ do

10-24

Induction principle

A recursive free type definition gives rise to a corresponding
induction principle.

10-25

The free type definition

Ti=ci|...lcm|di{E1D | ... | dn (En))

has the same effect as a basic type definition
[T]

followed by...

10-26

CllT

Cm: T
d1:E1>—>T

dy,:E, — T

disjoint ({c1},...,{cm},randy,...randy)
VS:PTe
{C1,...,Cm} S S A
di(E[S/T]IDu...udn(ExlS/T])<= S=>
S=T

10-27

Closure rule

(i EL[S/TIDU...udn(EnlS/TID) &S

S=T

10-28

Inverse image

di(Ei[S/T])<cS
S E[S/Tledim (S
S Ve:E[S/Tleeedi (S)
Ve E[S/T]lediee S

10-29

Predicates

S may be the characteristic set of some property P:

S == {t: T|Pt}

10-30

Induction principle

PC1

Pcy,
Ve:E[S/T]eP(dse)

Ve:E)S/T]eP(dye)
Vt:TePt

10-31

Example

S € nat ({zero} Usucc(nat[S/nat]))) c S
S = nat

10-32

Alternative form

S == {n:nat| Pn}

P zero

VY m: nat e Pm = P (succ m)

Vn:natePn

10-33

Question

Can you suggest a suitable induction principle for Tree?

10-34

Consistency
e not all constructions make sense; some result in a free type
with no elements

o Cartesian products, finite sequences, finite functions, and
finite power sets are guaranteed to work

10-35

Example

The following type definition is inconsistent:

P ::= power{(P P))

10-36

Summary

o data structures

free type definitions

constants, constructors, and closure

induction principle

consistency

