Propositional logic
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Propositional logic
o deals with propositions: statements that must be either true
or false
e propositions may be combined using logical connectives

e the meaning of a combination is determined by the meanings
of the propositions involved
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Atomic propositions

Atomic propositions are statements without logical connectives.

In our language, an atomic proposition will state either
o that an object is a member of a set, or
o that it is equal to another object.

We will see how to formalise these statements later.
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Examples

e jaffa cakes are biscuits

your cat is rich

your dog is good looking

e 2+2=5

tomorrow = tuesday
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Connectives

= negation (not)
conjunction (and)
disjunction (or)

implication (implies or only if)

F 4 < >

equivalence (iff or if and only if)
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Examples

— (jaffa cakes are biscuits)

your cat is rich A your dog is good looking

the map is wrong Vv you are a poor navigator

(2 +2=5) = (unemployment < 2 million)

(tomorrow = tuesday) < (today = monday)
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Truth tables

We use truth tables to give a precise meaning to our logical
connectives.

The following table (completed) would give the meaning of the
(imaginary) connective <:

plaj|p © q
t |t
t|f
f|t
|1
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Example

pAd




Question

How should we complete the following?

p | al| pva
t | t
t | f
f|t
f|f
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Question

How should we complete the following?

p | a| p=>4q
t | t
t | f
f|t
f|f
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Question

How should we complete the following?

p | a | p=aq
t | t
t | f
f|t
f|f
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Question

How should we complete the following?

p B4
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Precedence

Negation binds more closely than conjunction:

= highest
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Example

The proposition
“pPAGQVFrS gq>PpAT

is equivalent to

((mp)Ag) Vr)=(g=(pAT))
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Inference rules

To construct arguments about propositions, we use a system of
natural deduction: a collection of inference rules.

The following rule states that whenever all of the premisses hold,
then the conclusion must be true.

premisses
conclusion

name . .
[ | side condition

It may be used only when the side condition is true.
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Names

Each of our basic rules, or axioms, is associated with a particular
connective.

An introduction rule has a fresh instance of the connective within
its conclusion.

An elimination rule has an instance of the connective within one
of its premisses.
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Conjunction

and-introduction:

p d
pAdq

[ A—intro]

and-elimination:

A AN
l?_pq [A—eliml1 ] pqu [A—elim?2]



Arguments

We use a similar syntax—proof trees—to present arguments or
derivations.

A derivation shows how a conclusion may be reached from a set
of premisses.

If the set of premisses is empty—that is, if none are
required—then the conclusion is said to be a theorem.

If an argument is valid, then it is possible to justify every step in
terms of the basic rules.
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Example

The following (trivial) argument states that whenever p A g is
true, then so too is g A p:

pAdqg
anp

We can expand upon this:

AN AN
% [ A—elim?2 | P24 [ A—eliml |

[ A—Intro]

aqanp
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Assumptions

In the course of an argument, we may assume temporarily that a
particular statement is true.

Such an assumption must be allowed (and discharged) by an
appropriate inference rule.

An assumption can be used repeatedly throughout its scope.
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Presentation

In a proof tree, the scope of an assumption is a single sub-tree, or
branch, extending upwards from the rule that allows it.

The step at which an assumption (or set of assumptions) is
discharged will be numbered. This number will be used to
identify the assumption (or set of assumptions) concerned.

We write [p]l! to denote the assumption of statement p, labelled
with number 1.
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Disjunction

or-introduction:

P [ v—introl ] !

pVvdq pVvda

[ V—Intro?2 |

or-elimination:

[p1Hh [g1td
pvg r ¥

— elimli]
» [V —elim'']
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Example

If p Vv gis true, then g v p must be true also:
[1] [1]
bd [ V—Intro?2 | Kl
pvag qVvp
qVv p

[ V—introl |

[v—elim!!!]
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Example
The following argument is not valid:

(p A= qlth [ga-—pllt
pV g r ¥

[v—elim ]

“I've pressed A or B. Now, A gives me coffee and B gives me tea.
So I've got a hot drink.”



Implication

=-introduction:

[p][i]
q
p=d

[= —introll!]

=-elimination:

p=49 b
q

[=>—elim]
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Example

The statement

(pAhg=>r)=(p=>(@g@=>r))

is a theorem of our natural deduction system.
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(pAhg=>r)=(p=>((@g@=>r))
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(p A g=r]tt

(p=>(g=r))

_ [1]
Prg=>1 = (p=(g=>r) - muol
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(pAg=rH  [p]l?

q=17r
(p=>(g=r))

[=—introl?!]

_ [1]
Prg=>1 = (p=(g=>r) - muol



[pAg=rit  [p1¥ 1q]V

»
q=17r
(p=>(g=r))

[= —introl3]]

(pAhg=>r)=(p=>((@g@=>r))

[=—introl?!]

[= —introl1!]



[pAg=rit  [p1¥ 1q]V

[pAg=rit! PAQ
4
q=17r
(p=>(g=>7))

[= —introl3]]

(pAhg=>r)=(p=>((@g@=>r))

[=>—elim]

[=—introl?!]

[= —introl1!]



[pAg=rit  [p1¥ 1q]V

[p12h 1g183]
[p A g = r]t] PAQ
4
q=17r
(p=>(g=r))

[ A—intro]

[=—elim]

[= —introl3]]

[=—introl?!]

_ [1]
Prg=>1 = (p=(g=>r) - muol
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[p12h 1g183]
[p A g = r]t] PAQ
4
q=17r
(p=>(g=r))

[ A—intro]

[=—elim]

[= —introl3]]

[=—introl?!]

_ [1]
Prg=>1 = (p=(g=>r) - muol



Example

The following argument is not valid:

P=4d (
p

[=>—elim]

“if i’'s Wednesday, then I'm in Guildford and I'm in Guildford, so
it's Wednesday”
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Transitivity

Implication is transitive: that is,

p=4d (=T
p=r




Presentation
We write
[reason 1] —— [reason 2]
a=> b=—c
a=C c=>d
a=d

a

= b reason 1
ds = C reason 2|

= d reason 3

[reason 3]
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Equivalence

< -introduction:

pP=4d 4=PpP
p<d

| < —intro]

< -elimination:

p<=4dq
p=4d

[ < —eliml]

Zadl|
q="p

[ < —elim?2]



Question

How could we show that

Pp=4d
pANqg<=Pp

is a valid inference in our natural deduction system?



pPANq<=Pp
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pAq=Pp p=pPA(q

| & —intro]
PAN{gq<=Pp
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[p A gl

| = —introt!! ]
pANg=p p=>PAN(q

[ < —intro]
PAN(g<=Pp
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[p A gl

[p A gl

[ A—elim] |

[=—introl1]]
pPANqg=Pp p=PAN(

[ < —intro]
PAN(g<=Pp
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[p A gt [p]t?!

[p A gl

[ A—elim] |

AN
[= —introll!] prd

[= —introl?]]
pPANqg=Pp p=bPAN(g

| < —intro]
PANg<=Pp
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[p A gt [p]t?!

[1] [2]
[P A al [ A—elim] | P 1 | A—Intro]

AN
[= —introll!] prd

[= —introl?]]
pPANqg=Pp p=bPAN(g

| < —intro]
PAN{gq<=Pp



[p A gt [p]t?!

p=q [p]?

[1] [2]
[P A al [ A—elim] | P ! | A—Intro]

[=>—elim]

A
[= —introll!] pArd

[= —introl?]]
pPANqg=Pp 1 AN |

[ < —intro]
PAN{q<=Pp
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p=q [p]?

[1] [2]
[P A al [ A—elim] | P ! | A—Intro]

[=>—elim]

AN
[= —introll!] pArd

[= —introl?]]
pPANqg=Pp 1 AN |

[ < —intro]
PAN{q<=Pp
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False

In reasoning about statements involving negation, it is often
useful to consider the special proposition false, which is always
false.



Negation

false-elimination:

[ p]td]
false

[false—elim1!]

false-introduction:

p —p
false

[ false—intro]

[p][i]
false

[ false—elim2!1!]
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Example

The statement

pv—p

is a theorem of our natural deduction system.
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pv—p
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[~ (pv - p)tH]

false
pv —p

[false—elim11!]
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[~ (pv - p)tH]

false [ false—intro]

pv—p

[false—elim11!]
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[~ (pv-pIt [ p]t

[se
faTS [false—elim1!2!]

false [ false—intro]

pv—p

[false—elim11!]
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[~ (pv-pIt [ p]t

- (pv-p) I pv-p

false [ false—intro]
T [false—elim1!2!]

false [ false—intro]

pv—p

[false—elim11!]



[~ (pv-pIt [ p]t

- p

[ p]t2]
VvV —Iintro?2
[— (p Vv - p)lt] pVﬂv[ mroz]

false [ false—Intro ]
7 [false—elim1![2]]

false
pv —p

[false—elim11!]

[ false—intro]
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- (pv-p)I  [=pl2 [pls]

alse
f—.—p [false—elim113!]

[ p]t2]
- (pv-p It pv-p

false [ false—Intro ]
7 [false—elim1![2]]

false [ false—intro]

pv—p

[false—elim11!]



- (pv-p)I  [=pl2 [pls]

- (pv-=-pIY pv-p
false [ false—intro]

_'—]9 [false—elim1[3]]

[ p]t2]
- (pv-p It pv-p

false [ false—Intro ]
7 [false—elim1![2]]

false [ false—intro]

pv—p

[false—elim11!]
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= (pv-plM  [=p)& [p]3)

- (pv-p)]M pv-p [v—introl]
false [ false—intro]

—p [false—elim113!]

[—| p][z]
[~ (pv-p)! pv-p [V —intro2]

false [ false—intro]
v [false—elim1![2]]

false [ false—intro]

pvy —~p

[false—elim11!]
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- (pv-p)]M pv-p [v—introl]
false [ false—intro]

—p [false—elim113!]

[—| p][z]
[~ (pv-p)! pv-p [V —intro2]

false [ false—intro]
v [false—elim1![2]]

false [ false—intro]

pvy —~p

[false—elim11!]
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Lemmas

We may use one argument as part of another. In this case, we
might describe the subsidiary result as a lemma.
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Example

We might use the theorem

pv —p
to help expand the following argument:

- (p A Q)
pV (g




Tautologies

A proposition that is true whether its components are true or
false is said to be a tautology.

Our deduction system is complete, which means that every
tautology is a theorem.
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Question

Which of the following are tautologies?
e (pATPp)=>p
e (pvop)=>-p
e p=>(q=p)
e (p=q)=>p



Implications

If the implication
propositionl = proposition2

is a tautology, then

propositionl
proposition?2

is a valid argument.
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Example

p=(q=p)

q="p



Equivalences

If the equivalence
propositionl < proposition?2

is a tautology, then we may replace instances of propositionl in
an expression with instances of proposition?.
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Examples
contrapositive:

p=>4d < 7" 4=>7"p
de Morgan:

“(pAq) & —pVv-gqg



Summary

propositions
LA, YV, D, S
truth tables
inference rules
assumptions

tautologies



