
CS 532 Software Design

Instructor:

Frederick T. Sheldon

Computer Science Department
The University of Colorado at Colorado Springs

Bringing Design to Software

CS 532 Software Design Page 2
Instructor: F. T. Sheldon

AGENDA

Course Overview
--

• System architecture, software architecture and software Design

• Software design axioms and principles

Role of Software Design
--

• Nature of the design process and the software design process

• Design in the software development process

• Design qualities

• Expressing ideas about a design

Design Representations
--

• Multiple views of the same systems

• The evolution of design practice

CS 532 Software Design Page 3
Instructor: F. T. Sheldon

SOFTWARE ARCHITECTURE AND DESIGN

System architecture
--

• Highest level (proposed) system configuration including software and
hardware (requirements can be functional and/or non-functional)

• Analysis, interface (components and human)

• Concepts of operations and analysis of mission scenarios

Software architecture
--

• High level partitioning of software into subsystems and their specification

• Includes SEE/CRS (languages, standards, configuration management,
traceability, etc.)

Software Design
--

• Broadly, all phases of the Software Life Cycle prior to code

• Includes SW architecture, more narrowly, those interactive design activities
up to a detail which allows coding to commence in the target language

CS 532 Software Design Page 4
Instructor: F. T. Sheldon

WHY FOCUS ON DESIGN ... ?

Design errors are frequent
--

• 50% tractable in large systems to design error

Undetected design errors are costly
--

• New requirements emerge and cause the design to change and evolve

Initial design influences a system through its entire life cycle
--

• For Example,... Buick’s touch display console

Other Problem specific factors

CS 532 Software Design Page 5
Instructor: F. T. Sheldon

SOFTWARE CRISIS CAUSES AND CURES

Problem: (Root causes to the problems of complexity and cost . . .)
--

• Change is inevitable

• Ambiguities (attributable to natural language) in the agreed-upon specification

• New requirements uncovered later (than expected)

• Modest changes of requirements (in function, performance, etc.) often
require major expensive changes in design

• Lack of conceptual integrity1

• The SW Dev. Process is insensitive to the need to maintain intellectual control

Solutions
--

• Formal methods

• Use of information hiding and/or structured design

• Encapsulate data with operations using the ideas promoted in state-machines,
abstract data typing, objects /Ada packages and object-based designs

• Specialize abstractions for handling parallel distributed systems

• Reinforce the notion malleability (see slides on design principles)

1 Products often exhibit the absence of conceptual integrity. End users and maintainers are affected.

CS 532 Software Design Page 6
Instructor: F. T. Sheldon

WHAT IS A MODEL?

A model, like an abstraction, highlights what’s important for some

investigation and suppresses what is irrelevant/superfluous.
--

• Inherent qualities/properties of a class of things

• Unlike an abstraction a model has form (structure essential to the class) and

simplicity so as to facilitate study/analysis

• Benefits: intelligence amplifiers, detect problems and possible solutions

(trade-offs) and the structure usually suggest submits/separation of concerns

CS 532 Software Design Page 7
Instructor: F. T. Sheldon

WHAT IS A ABSTRACTION?

An abstraction is like a specification. Its a symbol (or expression) which

represents the inherent qualities/properties of a class of “things.” Not

including incidental qualities/aspects....
--

• A given abstraction always corresponds to many possible things (e.g.,
think of instances of the abstraction)

• Provides a medium for effective communication at a higher (language-
independent) level rather than at a language level where different
language paradigms contribute to loss effectiveness (e.g., a noisy low -
level means of expression)

The guidelines for abstractions
--

• Express what must he achieved & suppress details regarding how

• Balance expressiveness with precision

• Review the abstraction with concerned parties (also, sometimes a
independent review of the abstractions is highly desirable)

• Standardize the recording process helps to enforce conceptual integrity

CS 532 Software Design Page 8
Instructor: F. T. Sheldon

STIMULUS-RESPONSE MECHANISM

• Actions are atomic (instantaneous/ discrete)

• No observable intermediate states, nor is an action, once starts affected by
any external conditions

• Mechanism cycles

DOMINANT

 ⇑⇑ ⇓⇓
 ACTIVE

• Benefit : behavior specification and final results of execution output of time
ordered sequence of steps used on design

CS 532 Software Design Page 9
Instructor: F. T. Sheldon

TWO TYPES OF ABSTRACTIONS

Process: single action statements/clauses that summarize the net effect of a set of

actions which would be described by a series of statements in the target

language (page 41 & 42 of Witt for an example)

Data: represents a set of data elements and operations performed on the elements
(see page 43 of Witt). Data has two components:

• Abstract data type: template defining data and its legal outputs (e.g.,
records, create, utilize, query, delete)

• Abstract data object: a specific named instance.....

• Public: objects are visible /available to any client via to define
operation

• Private: each client holds the entire object or each invocation of a
operation requires a key (e.g., fare card/ATM card w/pin)

CS 532 Software Design Page 10
Instructor: F. T. Sheldon

 WHAT IS DESIGN?

• Software design: (1) The process of defining the software architecture, components,
modules, interfaces, test approach, and data for a software system to satisfy specified
requirements. (2) The result of the design process. (IEEE Std Def.)

• Design analysis: (1) The evaluation of a design to determine correctness with respect
to stated requirements, conformance to design standards, system efficiency, and other
criteria. (2) The evaluation of alternative design approaches.

g The fundamental problem is that designers are obliged to use current information to predict a future state
that will not come about unless their predictions are correct. The final outcome of designing has to be
assumed before the means of achieving it can be explored: The designers have to work backwards in
time from an assumed effect upon the world to the beginning of a chain of events that will bring the effect
about.

g The design process is very different from that of the “analytical” technique that lies at the root of the
scientific approach to problem-solving.

• System Architecture - totality of high-level system design HW & SW, requirements
analysis, performance predictions, communications, computer-human interface.

• Software Architecture - high-level partitioning of software into major subsystems and
the specification of such.

• Software Design - broadly it includes all phases of development, more narrowly its the
iterative design activity of decomposing and refining the software components

CS 532 Software Design Page 11
Instructor: F. T. Sheldon

 OBJECTIVES FOR THE DESIGN ACTIVITY

• A blueprint

g Specify the best solution to the problem

g Describe how the solution is to be organized

g Produce the plans necessary for software production to proceed

g Assembling sheds from standard units.

2x roof panel

2x side

1x end

1x door

1x front

1x back

2x end

2x roof panel

1x door

1x front

CS 532 Software Design Page 12
Instructor: F. T. Sheldon

PLANS PROVIDE THE DETAIL

• Main task is to produce the plans necessary for software production to proceed

g The static structure of the system, including any subprograms to be used
and their hierarchy.

g Any data objects to be used in the system.

g The algorithms to be used.

g The packaging of the system, in terms of how the components are grouped
in compilation units.

g Interactions between components, including the form these should take,
and the nature of any casual links.

CS 532 Software Design Page 13
Instructor: F. T. Sheldon

SOFTWARE PLANS: A VARIETY OF REPRESENTATIONS FORMS

• Each form provides a different form view of a system:

g The concept of tolerance (used in classical engineering) is perhaps less
important (except with respect to timing synchronization) since software
components must fit rather precisely.

g The design must model and describe. . .

1) Structure

2) Function

3) Behavior
State Transition

Diagram (STD

Entity-Relationship

Diagram (ERD)

Data-Flow

Diagram (DFD)

Design

"model"

CS 532 Software Design Page 14
Instructor: F. T. Sheldon

DESIGN AS A PROBLEM SOLVING PROCESS

• Evaluate options

• Making choices using decision criteria

• Trade-offs:

g Size

g Speed

g Ease of implementation / adaptation

g Other problem specific factors

CS 532 Software Design Page 15
Instructor: F. T. Sheldon

DESIGN AS A WICKED PROBLEM

• A problem whose form is such that a solution for one of its aspects reveals an
even more complex problem beneath.

• The design process lacks any analytical form, with one important consequence
being that there may well be a number of acceptable solutions!

• Properties:

g There is no definitive formulation of a wicked problem.

g Wicked problems have no stopping rule.

g Solutions to wicked problems are not true or false, but good or bad.

g Every wicked problem can be considered to be a symptom of another
problem.

CS 532 Software Design Page 16
Instructor: F. T. Sheldon

FOUR FUNDAMENTAL UNDERLYING AXIOMS

• The Axiom of Separation of Concerns

g A complex problem can best be solved by initially devising and intermediate
solution expressed in terms of simpler independent problems.

• The Axiom of Comprehension

g The mind cannot easily manipulate more than about seven things at a time.

• The Axiom of Translation

g Design correctness is unaffected by movement between equivalent contexts.

S T

R

S T

R

UP

Q V

Q

P

V

U

R

S T

X Y Z

Client

Server Client/Server

Client

Server

Server Server

X Y Z

• The Axiom of Transformation2

g Design correctness is unaffected by replacement of equivalent components.

2 A high-level design unit may make references to lower-level unit specifications, but how those specifications are fulfilled is
immaterial (transparent) to the higher-level design.

CS 532 Software Design Page 17
Instructor: F. T. Sheldon

FIVE PRINCIPLES OF DESIGN3

Modular Designs: can be achieved by dividing large aggregates of components
into units having loose inter-unit coupling and high internal cohesion, by
abstracting each unit’s behavior so that its collective purpose can be known, by
recording each unit’s interface so that it can be employed, and be hiding its
design.

Portable Designs: can be achieved by employing abstract context interfaces.

Malleable Designs: can be achieved with designs that model the end-user’s view
of the external environment.

Intellectual Control: can be achieved by recording designs (after developing a
design strategy) as hierarchies of increasingly detailed abstractions.

Conceptual Integrity: can be achieved by uniform application of a limited number
of design forms.

3 Taken together, these from the basis and motivation for creating and employing a uniform set of design models, capable of being
utilized throughout the architecture and design of complex systems.

CS 532 Software Design Page 18
Instructor: F. T. Sheldon

PRINCIPLE OF MODULAR DESIGNS

• Designs should be modular

1) Easily replaceable and self-contained assemblies of elementary parts which can limit the effect of
design changes

2) The high-level design (initial architecture) should be partitioned into independent activities

• Division into modular units

1) A good design is characterized by loose coupling between units & high cohesion within each unit.

2) Consider the problem in home building (pre-hung door).

• Public specification and hidden designs (Specification/Design Units)

1) Behavior - a process abstraction summarizing the data transformations that will be performed.

2) Interface - the name of the process and how it may be utilized (IN and OUT parameters)

3) The design part of an SDU encapsulates all the details of implementation required to fulfill the
specification.

Public Specification

(Interface AND Behavior)

Hidden Design and

Implementation

CS 532 Software Design Page 19
Instructor: F. T. Sheldon

ILLUSTRATION OF COHESION AND COUPLING

Cohesive, Loosely Coupled

SpecificationSpecification

SpecificationSpecification

Randomly

Coupled

CS 532 Software Design Page 20
Instructor: F. T. Sheldon

REVIEW: COHESION

• Cohesion is a measure of how closely the parts of a component relate to each
other.

1) Coincidental cohesion - unrelated parts bundled together!

2) Logical association - related components bundled together (e.g., input
and error handling).

3) Temporal cohesion - all elements are activated at a single time.

4) Procedural cohesion - elements in a component make up a single control
sequence.

5) Communication cohesion - All elements of a component operate on the
same input -> output.

6) Sequential cohesion - Output from one element in the component serves
as input for another element.

7) Functional cohesion - each component part is necessary for the execution
of a single function.

CS 532 Software Design Page 21
Instructor: F. T. Sheldon

REVIEW: COUPLING AND MAINTAINABILITY

• Coupling is a measure of the strength of component interconnections. Designers
should aim to produce strongly cohesive and weakly coupled design.

1) Tightly coupled modules use shared variables or exchange control information (common and
control coupling).

2) Loose coupling is achieved by ensuring that details of the data representation are held within a
component.

3) Component interface with other components through a parameter list.

4) If shared information is necessary, the sharing should be limited to those components which
need access to the information.

5) Globally accessible information should be avoided when ever possible.

• Maintainability is an important design quality attribute. Maximizing cohesion
and minimizing the coupling between modules / components makes them easier
to change. Understandability and adapatability are also enhanced in this way.

CS 532 Software Design Page 22
Instructor: F. T. Sheldon

 PRINCIPLE OF PORTABLE DESIGNS

• Designs should be portable

1) Capable of reuse in different operational environments

• Design correctness is unaffected by movement into an equivalent context 4

1) We are concerned about the portability of modular software and software whose internal design is
isolated and therefore by its very nature unaffected by the move.

• Employing abstract context interfaces:

1) If the SDU’s input and output interfaces are specified abstractly (Ia and Oa), then mappings can be
implemented between the SDU and the concrete input and output (Ic and Oc) available from the
usable new context.

2) Construct the design defensively, in a way that facilitates a later mapping between the interface
requirements of the design and the actual interface available from, and usable by, some unknown new
context.

Interface Specification: Ia, Oa

Behavior Specification: Ia Oa

Hidden Design and

Implementation

Input

Mapping

Ic Ia

Specification/Design unit

Output

Mapping

Oa Oc

4 This principle is a direct consequence of the Axiom of Translation.

CS 532 Software Design Page 23
Instructor: F. T. Sheldon

PRINCIPLE OF MALLEABLE DESIGNS

• This principle describes a way to increase the likelihood that a design can absorb
changes in user requirements with minimal impacts.

• Malleable refers to the ability of a design to accommodate changes to behavior
requirements

• Elements in our designs must correspond to elements in the end-user’s view of
the world.

1) Modularity ensures only that if the behavior and interface specifications of a unit remain unchanged,
then the unit can be replaced. This protects the bulk of the system design from changes in the
representation of the systems input and output.

2) If behavior requirements change, then modularity alone does not provide a sufficient shield against
change.

• Modeling the user’s world

1) Thus, we maximize the dependencies on stable requirements and minimize the dependencies on
unstable ones. This is the starting point for organizing the design.

2) The uncertainties in a design should be encapsulated, both during design and over its useful lifetime,
so that they may readily be changed as requirements are eventually firmed up or are altered by
circumstance.

CS 532 Software Design Page 24
Instructor: F. T. Sheldon

PRINCIPLE OF INTELLECTUAL CONTROL

• Design process should be under intellectual control

1) Parts must interrelate

2) Rationale and criticality of design choices should be understood

3) Effect of proposed changes must be understood

4) The design should exhibit correctness prior to implementation

• The need for hierarchy to support comprehension

1) The root SDU of an evolving design contains the root specification (Specification A) and the
corresponding high level design (Design A) which in turn is expressed in terms of lower-level
specifications.

Design A

Specification A

Design A.1

Specification A.1

Future

Design

Future

Design

Specification A.2

Design A.2

Future

Design

Future

Design

...

Design A

Specification A

Specification A.2

Future

Design
Future

Design

Specification A.1

...

CS 532 Software Design Page 25
Instructor: F. T. Sheldon

PRINCIPLE OF INTELLECTUAL CONTROL

• The need to record specifications with designs 5

g Design units always have two components: the summary or specification and the design itself.

g The hierarchical structure of the presentation is obvious from the indentation style and the
BEGIN/END delimiters

[Get to work in the AM] =
 BEGIN
 [Get ready to Leave house] =
 BEGIN
 Wake up and get out of bed;
 Shower, brush teeth, comb hair, ...;
 Dress for work;
 Eat breakfast;
 END
 [Drive to work] =
 BEGIN
 Drive to freeway
 Drive to work exit;
 Drive to parking;
 Park and enter building;
 END
 [Go to the office] =
 BEGIN
 Get elevator;
 Ride elevator to office floor;
 Walk to office;
 END
END

5 Notice that (theoretically) the designer was able to focus solely on what was needed to complete the design of the root, and set aside
temporarily the question of how each of the three components would be expanded.

CS 532 Software Design Page 26
Instructor: F. T. Sheldon

PRINCIPLE OF INTELLECTUAL CONTROL (CONTINUED)

• The need to verify equivalence

g The replacement of specifications by designs is a very error-prone activity in software development.
Must arrive at a reasonable conviction that the design and specification are equivalent.

• The need for strategy: Planning to levels of quiescence

g Hierarchical recording of designs facilitates comprehension, and should be stubbornly adhered to

g A practical approach to the balance between thinking and recording is to delay recording until the
design ideas stabilize at some level of quiescence ...

...

...

...

...... ...

...... ...

...

Level 1

Level 2

CS 532 Software Design Page 27
Instructor: F. T. Sheldon

PRINCIPLE OF CONCEPTUAL INTEGRITY

• This principle describes the basis for our ability to distinguish order from chaos

1) Conceptual integrity is the most important consideration in system design. It is better to have a
system omit certain anomalous features and improvements, than to have one that contains many
good but independent and uncoordinated ideas.

2) Every part must reflect the same philosophies and the same balancing of desiderata. Every part
must even use the same techniques in syntax and analogous notions in semantics. Ease of use,
then, dictates unity of design and conceptual integrity.

• Requires a shared vision

1) Designer(s) must be interchangeable in their ability to add details once the “vision” has been
articulated.

2) The “vision” should be one that balances capabilities supplied to users with ease of use and
maintainability of those capabilities

3) The “vision” should be one that balances the design concept with the implementation, testing
and tool building associated with its construction.

• Design models are the principal contributor to conceptual integrity

1) Other design forms (representation forms) play a role such as standards and common
approaches for addressing common design situations

• How can we ensure uniform application of the models, standards, and approaches?6

6 a) Products exhibit harmony, symmetry and predictability; b) The system should appear to reflect the mind of a single person and
to faithfully adhere to a single concept; c) There should be no surprises for its user or its maintainer; d) Knowledge gained in one use
or change should be immediately transferable to the next

CS 532 Software Design Page 28
Instructor: F. T. Sheldon

SOFTWARE DESIGN ABSTRACTIONS AND MODELS

• Abstraction

g A symbol (often an expression) that represents the inherent qualities or properties
of a class of things, rather than those qualities of the things deemed incidental for
some given purpose.

• Process abstraction

g Ideally are single-action statements or single-action clauses that summarize the net
effect of a set of actions which can only be described by a series of statements in
the target language.

• Data abstraction

g Represent a set of data elements and operations that can be performed on those
elements, neither of which are available in the target language.

• Model

g Like an abstraction, highlights what’s important for some investigation and
suppresses what is irrelevant.

CS 532 Software Design Page 29
Instructor: F. T. Sheldon

MODELS ASSIST FINDING DESIGN SOLUTIONS

• Intelligence amplifiers

g Tools that help the understanding based on analysis and documentation. By
constructing the model the new and unknown can be compared with old and
familiar to similarities and differences.

• Help identify problem areas

g The existence of problems becomes clear as well as possible solutions. Because
models can be analyzed in some meaningful way, often yielding quantitative
results, we can use them to predict problem areas and propose rules for problem
avoidance; as well as hypothesize alternate solutions to trade-off the costs and
benefits.

• Help in defining and capturing structure

g Models suggest components to be included in designs, so the designs need not be
reinvented each time.

CS 532 Software Design Page 30
Instructor: F. T. Sheldon

THE SOFTWARE DESIGN PROCESS

• Building models
g A design method provides the necessary set of transformations that lead from the initial

model to a detailed description of the eventual solution corresponding to a particular
model.

• Structuring the design process
g Representation part provides a set of descriptive forms used for building models of the

problem.
g Process part describes transformations between representation forms.
g Set of heuristics guide the activities defined in the process part for specific classes of

problems.

• Constraints upon the design process
g Problem specific and includes such things as hardware / platform, OS and programming

language.
g Process part describes transformations between representation forms.

• Recording design decisions
g Needed for maintenance and quality assurance.

• Designing with others
g How to split the design task among the team and integrate the individual contributions

to the design.

CS 532 Software Design Page 31
Instructor: F. T. Sheldon

DESIGN IN THE SOFTWARE DEVELOPMENT PROCESS

• A context for design
The software process model addresses the software project questions

• What should we do next?
• How long should we continue to do it?

• Economic factors

1

2

5

10

20

50

100

200

1000

500

Larger software project

IBM-SSD

GTE

80%

20%

Median (TRW survey)

SAFEGUARD

Smaller software projects

(Boehm 1980)

Design

Acceptance

test

ImplementationRequirements

and specifications

Maintenance

Phase in which fault detected and corrected

Integration

l

l

l

l

l

l

l

R
el

at
iv

e
co

st
 to

 fi
x

fa
ul

t

• Software production models and their influence

• Prototyping roles and forms

CS 532 Software Design Page 32
Instructor: F. T. Sheldon

DESIGN QUALITIES

• The quality concept
Software quality concepts are concerned with assessing both the static structure and the

dynamic behavior of the eventual system.

• Assessing design quality
Ultimate goal is of quality must be that of fitness for purpose, although the criteria for

determining whether this is achieved will be both problem-dependent and domain

dependent.

• Quality attributes of the design product
While the use of abstraction is an important tool for the designer, it makes it difficult to

make any direct product measurements during the design process.

• Assessing the design process
Technical design reviews can provide a valuable means of obtaining and using domain

knowledge to aid with assessing the design product as well as method knowledge to aid

with assessing the design process.

CS 532 Software Design Page 33
Instructor: F. T. Sheldon

EXPRESSING IDEAS ABOUT DESIGN

• Representing abstract ideas
The roles of representation in capturing, explaining and checking design information.

• Capturing the designer’s ideas for a solution
• Explaining the designer’s ideas to others (customers, implementors and managers).
• Checking for consistency and completeness in a solution.

• Design viewpoints for software
A means of capturing a particular set of design attributes, and as projected through the use
of a representation

• Forms of notation
The principal classes of direct design viewpoint – the structural, behavioral, functional and
data-modeling forms.

Structural

viewpoint

Functional

viewpoint

Behavioural
viewpoint

Internal

design
model

Data-modelling

viewpoint

CS 532 Software Design Page 34
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

• The Data-Flow Diagram

• The Entity-Relationship Diagram

• The Structure Chart

• The Structure Graph

• The Jackson Structure Diagram

• Pseudocode

• The State Transition Diagram

• The State Chart

• The Petri net

CS 532 Software Design Page 35
Instructor: F. T. Sheldon

SELECTING THE CORRECT DESIGN REPRESENTATION

• Form Includes textual, diagramatical and mathematical forms of notation.

• Viewpoint Structural, behavioral, functional and data-modeling viewpoints.

• Use In terms of the form’s role during the phases of design, the type of problem domain in

which it might be appropriate, and the extent to which it is used.

Representation form Viewpoints Design attributes
Data-Flow Diagram Functional Information flow, dependency of operation

on other operations, relation with data stores
Entity-Relationship
Diagram

Data modeling Static relationships between design
entities

Structure Chart Functional and
structural

Invocation hierarchy between procedures,
decomposition into procedures

Structure Graph Structural Packaging (information-hiding), uses
relationship, concurrency

Structure Diagram Functional
data modeling,
behavioral

Algorithm form
Sequence of data components
Sequencing of actions

Pseudocode Functional Algorithm form

State Transition
Diagram

Functional State-machine model of an entity

StateChart Behavioral System-wide state model, including
parallelism (orthogonality), hierarchy and
abstraction

Petri Net Graph Behavioral Interaction between parallel threads

CS 532 Software Design Page 36
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

The Data-Flow Diagram

Access

permissions

Network

directory

Customer's

card details

2

Return

transaction

and end

session

Rejection

message

Access

map

Access

authorization
Selection

of options

Personal

identification

number (PIN)

Customer

4

Validate

transaction

Transaction

request

Rejection

message

3

Obtain

details of

transaction

1

Validate

customer

access

1.1

Read

details

from card

1.2

Check expiry

date and

bank group

Customer's

card details

Network

directory

1.3

Request PIN

and check, max.

three

attempts

Cannot

read card

Card data

Invalid

card

Invalid PIN

Access

Authorization

Access

map

Card

validation

data

Personal

identification

number (PIN)

Encoded

PIN

CS 532 Software Design Page 37
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

The Entity-Relationship Diagram
Design

"model"

aircraft type

lenght

runway

aircraft

callsign

flight no.

location

max.size

landing

stack

airport

position

orientation

belongs

to

holds

queue

for

held

in

takes

off from
land

on

1

n

n

1

n n

1

1

CS 532 Software Design Page 38
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

The Structure Chart

print

string

program

main body

insert

node

create

new node

read next

 token

traverse

tree

get next

 element

match

node

add

element

to tree

element

status

elementelement.
node

element

element

elemen
t

string

string

nodetoken

print

string

program

main body

insert

node

create

new node

read next

 token

traverse

tree

get next

 element

match

node

add

element

to tree

CS 532 Software Design Page 39
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

The Structure Graph

B

A

check

entry

insert

Symbol-table

random

number

generator

symbol

table

open

(a)

(b)
done

read

File-Access
insert

check

entry

A

B

new

value

producer

consumer

(a)

(b)

CS 532 Software Design Page 40
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

The Jackson Structure Diagram

print details

of transaction

print page

header

print amount

transferred
print date

print a/c

transactions

print page

summary

print page

body

print

pages

print bank

statement

print in

credit column

print in

debit column

*

°°

*

°°

CS 532 Software Design Page 41
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

Pseudocode

boil water;

pour some water into teapot;

empty teapot;

REPEAT

 place spoonful of tea in pot

UNTIL enough tea for no. of drinkers;

REPEAT

 pour water

UNTIL enough water for no. of drinkers;

INITIALIZE line buffer;

READ first character from keyboard;

WHILE not the end of line DO

 IF character is terminator of a word

 THEN

 mark end of word in buffer;

 SKIP any trailing word separators

 ELSE

 copy character to buffer

 END IF ;

 READ next character;

END WHILE;

CS 532 Software Design Page 42
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

The State Transition Diagram

in flight

landing approach

on ground

on runway

stacked
select path;

adjust flaps;

lower undercarriage

select path;

adjust flaps;

lower undercarriage

CLEARED TO LAND

PARKCLEARED TO LAND
CLEARED FOR TAKEOFF

TOUCH DOWN

CLEARED TO LAND

lift undercarriage ;

select couse ;

climb to set height

ABORT LANDING

TAKE OFF

reverse engine thrust ;

brake

position on runway;

open throttleslanding approach

climb to

set height

taxi to stance

STACK
join at set

height

CS 532 Software Design Page 43
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

The State Chart

i n f l i ght

s t ack ed

l andi ng

appr oach

t ouch dow n

t akeof f

par ked
on gr ound

taxiing

c r u i s i ng

M ai n m em or y

Ex ecut i ng

i ns t r uc t i on

Fet c hi ng

i ns t r uc t i on

Ins t r uc t i on

c om pl et ed

Ins t r uc t i on

av ai l ab l e

Cent r a l pr oc es sor un i t

M em or y

r ead- cy c l e

Wai t i ng f or

a r eques t

m em or y

w r i t e- cy c l e

Get (addr ess)

Put (addr es s)

Dat a

w r i t t en

Dat a

r ead

Get (addr ess) Put (addr ess)

CS 532 Software Design Page 44
Instructor: F. T. Sheldon

SOME DESIGN REPRESENTATIONS

The Petri Net

trequest

trequest

tstart

tend

tend

prequesting

paccessing

rbusy

ridle

pactive

p = is a process
r = is a resource
t = time of state change

t1end

p1active

t1request

p1accessing

p1requesting

t1start

ridle

t2start

t2end

p2active

t2request

p2requesting

p2accessing

rbusy

One of the classical problems in computer science is the orderly access to a shared resource. This

may result because a CPU must address a memory location, or a packet must be processed by a

protocol. Lets consider the individual states of the resource and of its user separately. The

resource can be in either an idle or a busy condition (alternately). Merge the two nets shown below

via superposition of the appropriate transitions.

CS 532 Software Design Page 45
Instructor: F. T. Sheldon

MULTIPLE VIEWS OF THE SAME SYSTEM

Train / Gate Railroad Crossing

Approaching

p2

p3

p1

p4

p8

p9

p7

Open

p10

p5

p6

Tg?departed

Tg?approching

Train GateSynchronization

Tg!approaching

At Intersection

Tg!departed

Close

Approaching

p2

p3

p1

p4

p8

p9

p7

Open

p10

p5

p6

Tg?departed

Tg?approching

Train GateSynchronization

Tg!approaching

At Intersection

Tg!departed

Close

Tg!approach

ing

At

Intersection

Movement Departed Approaching

Train
entity

Visit

crossing

*

Tg!departed

Tg!approaching Tg!departed

Closed

Open

CS 532 Software Design Page 46
Instructor: F. T. Sheldon

MULTIPLE VIEWS OF THE SAME SYSTEM

Vending Machine

Buttons

Change

Dispensor

Candy

Dispensor

Display

Profits

Selector

switch

Tabulate

VMC

CTL

MaintKey slot

Coin slot

Tabulate

Change

Change

Collection
Candy

Profit

Collection

I

I

I

I
IOR

* Also could

have arrow

from maint

to VMC CTL

MASCOT 2 of the VMC

Tabulate

Display msg: Thank You

and dispense candy

Desel ec t

Key ex t r ac t Key i ns er t

Sel ec t

Ov er am ount

Cor r ec t am ount

Display msg: Thank You
and dispense candy and
change

Under am ount

Display msg:

AMOUNT NEEDED IS: $XX

Maintenance

Ret r i ev e
c andy (and

c hange)

Depos i t
co i n(s)

Vending Machine

Idle

Sel ec t

S el ec t

S el ec t

CS 532 Software Design Page 47
Instructor: F. T. Sheldon

MULTIPLE VIEWS OF THE SAME SYSTEM

Vending Machine (continued)

S/ M/ L

.0 5

.1 0

.0 5

.1 0

L
S

C
O

U
M

U

C

U

M / L

S

$.10 $.15

$.05St ar t

U = Under amount S = Select small candy

C = Correct amount M = Select medium candy

O = Over amount L = Select large candy

Tabulate

St ar t U

C

O

O

O

O

O

C

C

C

C

1 0 ¢

.0 5.0 5

.0 5

.0 5.0 5

1 5 ¢ 2 0 ¢ 2 5 ¢

2 5 ¢

1 5 ¢1 0 ¢5 ¢

2 0 ¢ 3 0 ¢ 3 5 ¢

UU

S/ M/ LS

S/ M

M/ L
S/ M

S/ M/ L

S/ M/ L

U

M

S

L

L

.0 5

.0 5

.1 0

.1 0.1 0.1 0 .1 0

.1 0.1 0.1 0

S/ M/ L M/ L S

M

M

L

S

S

CS 532 Software Design Page 48
Instructor: F. T. Sheldon

THE EVOLUTION OF DESIGN PRACTICES

Conclusions

• The software design process is intrinsically a complex undertaking by its nature.

• The complexity forces limitations for any design method.

• Procedures and notations can vary widely between different methods. The
selection of a particular method will be based on numerous factors
(organizational constraints, domain of specialized application (e.g., real-time
systems).

• Formal descriptions can provide a very powerful aid to developing design
especially when issues such as consistency and verification are considered in
terms of safety (or ultra-cost) critical systems. There is evidence for increasing
use of such methods for the development of high-integrity systems (or those parts
of such)

• Future methods may need to move away from procedural forms to achieve any
significant step forward.

CS 532 Software Design Page 49
Instructor: F. T. Sheldon

TITLE

•
--

•

•

•
--

•

•

•

•

•
--

•

•

