
A Formal Approach to Software Design

CS 532 Software Design

Learning Objective

To give an appreciation of the strengths and limitations of FMs as an important
part of the Software Designers Repertoire. Formal descriptions can provide a
powerful aid to developing a design, especially when issues such as consistency

and verification are considered.

Frederick T Sheldon

Assistant Professor of Computer Science
University of Colorado at Colorado Springs

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

2

Budgen Chap. 14&15

Agenda

⊗ The case for rigor

⊗ Model-based strategies
⊕ Overview

⊕ VDM / VDM Process / VDM Heuristics

⊗ Property-based strategies
⊕ Overview

⊕ Algebraic Specification: representation part

⊕ Algebraic Specification: process part

⊕ Heuristics for property-based specification

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

3

Budgen Chap. 14&15

Problem
⊗ Methods and tools are needed for software

specification and design that have mathematical
underpinningÉ not just systematic

⊗ Formal methods have
⊕ Fairly simple process parts

⊕ Relatively few established design heuristics

⊕ But (in comparison) very powerful representation parts

⊗ Often termed Formal Description Techniques
FDTs

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

4

Budgen Chap. 14&15

Motivation
Why Is This An Important Problem?

Is the "Software" doing what it
is supposed to do?

Software
Validation

Software
Verification

What the "System" is supposed to do.

Software Development

What the software is
supposed to do.

Requirements
Definition

Is the system doing what it is
supposed to do?

System
Validation

System Development

System
Definition

Software
Requirements

Generation

Integration and
System Testing

Coding &
Component

Testing

Software
Design

Software
Validation

Testing

Hardware Software
Integration

System Validation
Testing

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

5

Budgen Chap. 14&15

Motivation Ð The Case for Rigor

⊗ Systematic systems for specification and design
lack a firm syntax and well-defined semantics

⊗ Need for the application of mathematical
techniques in reasoning about a design and its
properties
⊕ Verification:

¥ Seeking to remove ambiguity

¥ Enforce a greater attention to detail

¥ Verify the fidelity between design transformations and
implementation

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

6

Budgen Chap. 14&15

Roles of Formal and Systematic Description
Techniques in the SLC

⊗ SDTs are better for:
⊕ Reqs analysis (including

user interactions)

⊕ System design
(architectural decisions)

⊗ FDTs
⊕ Specify system properties

during requirements spec.

⊕ Specify the detailed form a
solution in the detailed
design

⊗ Fig. 14.1

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

7

Budgen Chap. 14&15

FDTs Uptake in Industry Limited

⊗ Conservatism of most project managers

⊗ Need for familiarity with logic / discrete math

⊗ Existing forms not universally applicable or not
suited for all problems

⊗ Limited tool support
⊗ Overselling → Unreasonably high expectations

→ Disillusionment

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

8

Budgen Chap. 14&15

Use of Formal Methods

⊗ These methods are unlikely to be widely
used in the foreseeable future. Nor are they
likely to be cost-effective for most classes
of system

⊗ The will become the normal approach to the
development of safety critical systems and
standards

⊗ This changes the expenditure profile
through the software life cycle

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

9

Budgen Chap. 14&15

Expenditure Profile Changes

Without Formal
Specification

Specification

Cost

Validation

Design and
Implementation

With Formal
Specification

Maintenance

Specification

Design and
Implementation

Validation

Maintenance

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

10

Budgen Chap. 14&15

Formal Spec Langs ProvideÉ

⊗ Notation Ð the syntactic domain

⊗ Universe of objects ÐÊthe semantic domain

⊗ Rules for stating which objects satisfy each
specification

⊗ FDTs can be grouped into 2 categories:
⊕ Model-based (e.g., VDM and Z [or Zed])

⊕ Property-based (e.g., Axiomatic or Algebraic forms)

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

11

Budgen Chap. 14&15

General Categorization of FMs

⊗ Model-based
⊕ Use structures such as

sets, functions, tuples and
sequences

⊗ Property-Based
⊕ Axiomatic forms use

procedural abstractions
based on 1st order logic

⊕ Algebraic forms model
data abstractions (axioms
in the form of equations)

⊗ Fig. 14.2

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

12

Budgen Chap. 14&15

Two Further Classifications

⊗ Visual languages
⊕ Graphic forms provide the syntactic content

⊕ Examples include Statecharts and Petri nets

⊗ Executable forms
⊕ Via an interpreter (e.g., Prolog, and PAISley)

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

13

Budgen Chap. 14&15

FMs... the Jury is Still Out

⊗ FMs combine very strong representation
parts with weak process parts
⊕ Process involves stepwise refinement

⊗ The roles and uses of design heuristics are
harder to identify

⊗ Are FMs essentially domain specific
⊕ Some problems are more readily solved via

FMs and others are not!

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

14

Budgen Chap. 14&15

Model-based Strategies

⊗ Reification is shown
hereÉ

⊗ Fig. 14.3

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

15

Budgen Chap. 14&15

Characteristics of Model-based
FDTs

⊗ Use a mathematical form to construct a
model of the system...
⊕ ...to reason about properties and behavior.

⊕ While the property-based forms focus on
describing the external features of the of the
system,...

⊕ Éthe Model-based approach focuses on the
mechanisms used to produce those features!

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

16

Budgen Chap. 14&15

VDM: Model-based approach

⊗ Jones emphasized mathematical rigor:
⊕ In preference to complete formality!

⊕ Intuition often used to provide correctness arguments,

⊕ Full verification applied sparingly when absolutely
necessary

⊗ VDM promotes the use of reification
through a series (sequence) of models:
⊕ Abstract to concrete through an explicit model of the

state of the system

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

17

Budgen Chap. 14&15

VDM representation

⊗ Two major components
⊕ Definition of abstract variables used to

describe the internal state of the model

⊕ Definitions of the operations and functions that
act on the variables making up the model
¥ Operations that may be available externally

⊕ Similar to traditional imperative programming
languages (e.g., Modula-2, Ada)

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

18

Budgen Chap. 14&15

VDM: Typographical Conventions
⊗ User defined OPERATIONS are printed in upper-case serif

italics

⊗ Identifiers of types are printed in serif italics

⊗ Identifiers of variables are printed in serif roman type in
declarations

⊗ Identifiers of keywords are printed in bold sanserif type

⊗ Type identifiers begin with an upper-case letter followed by a
sequence of lower-case letters

⊗ The constants of scalar types are named using upper-case serif
italic letters only

⊗ Extensions such as -set or -list are printed in a sanserif
typeface

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

19

Budgen Chap. 14&15

Data Forms

⊗ Simple types. . .
⊕ Built-ins (e.g., Int(), Nat())

⊕ Sets

⊕ Lists (sequence, tuple)

⊗ Complex types. . .
⊕ Records

⊕ Mapping (special form of function that maps
between sets)

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

20

Budgen Chap. 14&15

Operations and Functions
Standard Operators of Predicate Logic

⊗ ~ not
⊗ Λ and

⊗ V or
⊗ ≡ is equivalent to (iff)

⊗ ∀ for all (universal quantifier)

⊗ ∃ there exists (existential quantifier)

⊗ ∃ ! there exists exactly one

⊗ Let clause É allows an expression to be named

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

21

Budgen Chap. 14&15

Example VDM Specification
Figure 14.4

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

22

Budgen Chap. 14&15

Defining the System Operations
Three parts (not all are required)

⊗ ext Ð parts of the state accessed in the operation
(rd/wr)

⊗ pre Ð precondition forming a predicate condition
under which the operations are defined

⊗ post ÐÊshowing how values of variables are
modified

⊗ Also:
⊕ Invariants Ð predicates which define additional

constraints on the values that variables may assume

⊕ Comments Ð improved readability

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

23

Budgen Chap. 14&15

VDM Process
Figure 14.5

⊗ Reification and verification using proofs
⊕ Repeatedly adding more detail to to a

specification in terms ofÉ
¥ Data structures

¥ Operations (preformed on the data structures)

⊕ Until an implementation level specification has
been obtained

⊕ Scope of choice is limited at each step which
may be considered to ensure consistency

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

24

Budgen Chap. 14&15

Property-based Strategies

⊗ Algebraic specification technique
⊕ An object class or type is specified in terms of

the relationship(s) between the operations
defined on that type

⊕ Representation part:
¥ Introduction

¥ Informal description

¥ Signature

¥ Axioms

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

25

Budgen Chap. 14&15

Algebraic Specification
Introduction

⊗ Importing
⊕ A sort and its operations brings them into the

scope of the new specification

⊗ Enrichment
⊕ Allows a new sort to be defined that inherits the

operations and axioms of another specification.

⊕ Similar to the inheritance mechanism used in OO.

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

26

Budgen Chap. 14&15

Algebraic Specification
Informal Description and Signature

⊗ Informal description
⊕ Textual comments used to explain the mathematical

formalism

⊗ Signature
⊕ Define the external appearance of an object by

describing its basic properties using a set of
operations
¥ Constructor ops (create, update, add)

¥ Inspection ops (used to evaluate the attributes of the entityÕs
sort)

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

27

Budgen Chap. 14&15

Algebraic Specification
Axioms

⊗ What is an axiom
⊕ An established rule, principle or law

⊕ Defines the inspection operations in terms of the
constructor operations

⊕ The main technical problem of developing algebraic
specifications

⊗ Thus, a set of mathematical expressions are
developed that define the relationships of
operations in the signature
⊕ Constructors and Inspectors

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

28

Budgen Chap. 14&15

Algebraic Specification
Process and Heuristics

⊗ Most literature is concerned with describing the
form of a specification that its derivation

⊗ Techniques for ensuring completeness and
correctness are well established

⊗ The algebra of these specifications bear a familiar
form

⊗ Side effect: generating axioms effectively
generates guidelines for testing the
implementation . . . yes!

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

29

Budgen Chap. 14&15

Summary

⊗ Formal descriptions can provide a powerful
aid to developing a design
⊕ Consistency

⊕ Verification

⊗ Design techniques needed for the derivation
of a Formal Specification are much less
well developed
⊕ É. as opposed to mathematical techniques

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

30

Budgen Chap. 14&15

The Evolution of SW Design
Practices

⊗ Experiences from the past
⊕ Design assessment criterion

¥ Efficiency of operation, memory use or secondary
storage

⊕ Current assessment criterion include:
¥ Modularity, reuse, separation of concerns

¥ Information hiding and conceptual integrity

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

31

Budgen Chap. 14&15

Current SW Design Practices I
⊗ Identify the right set of

abstractions and their
relationships

⊗ Capture designers
experience as a set of rules
or rules of thumb
(heuristics)

⊗ How to determine when a
good solution has been
identified

⊗ No panacea in terms of a
method for all problems

Design
Process

Method-related
knowledge (including

any heuristics)
capturingthe

experiences of other
designers

Problem related knowledge
(including constraints)

Designer's own
experience

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

32

Budgen Chap. 14&15

Current SW Design Practices II

⊗ Criterion for a good design solution
⊕ Change in the problem description would require

minimal change in the design abstraction

⊗ Trends in terms of design abstractions:
⊕ Use of increasing number of viewpoints

⊕ Specialized adaptations of traditional methods
toward object oriented forms that require a
balance between . . .
¥ Function, behavior, structure and data-modeling

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

33

Budgen Chap. 14&15

Trends in SW Design Abstractions

⊗ Increasing degree of complexity in design
procedures

⊗ CASE tools encompassing a wide range of
support forms
⊕ Upper-CASE

⊕ Lower-CASE

⊗ CASE tools bind the user to themselves

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

34

Budgen Chap. 14&15

Trends in SW Design Abstractions
(continued)

⊗ CASE may actually constitute a barrier to
communication in design É which is
fundamentally a group activity

⊗ Promotes the NEAT_DIAGRAM syndrome
which can inhibit change (and possibly
drastic refinement)

University of Colorado at Colorado Springs

 F. T. Sheldon, Ph.D.

35

Budgen Chap. 14&15

Future Developments
⊗ The complexity of software is an essential property of

software (non accidental). Hence, descriptive forms that
abstract away its complexity often abstract away its
essence [Brooks, F.]

⊗ SWD Methods should look to more powerful paradigms,
instead of simpler ones. Therefore,
⊕ Need to encapsulate design expertise (like reuse)

⊕ Tools that are intelligent (I.e., domain specific, and embody
semantic knowledge to help assess the consequences of their
decisions (trade-offs)

⊗ Move away from procedural forms as the defacto software
design approach

