
 Software Architecture
Perspectives on an Emerging Discipline

CS 531 SW Requirements Specification and Analysis

Chapter One Learning Objective

. . . to give an appreciation of Software Architecture as an emerging and important
facet of the upstream portion of the Software Life Cycle. As a phase that comes
after requirement elicitation/specification and before Software Design, it’s an

important tool/discipline useful to the software engineering practitioner.

Frederick T Sheldon
Assistant Professor of Computer Science

University of Colorado at Colorado Springs

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
2

Chapter One
Emerging Issues of Architectural Design

⊗ What is Software Architecture?
⊕ Structural and organizational issues about systems

• Global control, communication protocols, synchronization and
data access

• Allocation of resources (e.g., function → design elements)

• Design element composition (info hiding, coupling, cohesion)

• Physical distribution

• Scaling and performance

• Dimensions of evolutions

• Selection among design alternatives

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
3

Example Architectures

⊗ Client - Server model

⊗ Remote Procedure Call (RPC) structuring

⊗ Abstraction layering

⊗ Distributed Object Oriented approach

⊗ Pipeline - Filter framework

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
4

Architecture Patterns

⊗Collection of idioms, patterns, and styles of
software system organization that serves as
a shared, semantically rich vocabulary

⊗Example Pipelined Architecture:
⊕ Streamed transformation

⊕ Function behavior can be derived
compositionally from the behavior of
constituent filters

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
5

Frameworks for Understanding

⊗Software architecture structures sere as
frameworks for understanding the big
picture (broader issues):
⊕ System level concerns

⊕ Global flow rates, patterns of communication

⊕ Executive control structure, scalability

⊕ System evolution

⊗Properties can be fleshed out

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
6

Architecture of Software Systems

⊗Defines the system in terms of
computational components and interactions
among the components
⊕ Components are…

• Clients / Servers

• Databases

• Filters

• Layers in a hierarchy of elements/components

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
7

Software Design Levels
(See Fig. 1.1)

⊗ Architecture
⊕ Overall association of system capability with components

⊗ Code
⊕ Algorithms, data structures, language primitives, etc...

⊗ Executables
⊕ Memory maps, stacks, register allocations, ISAs

⊗ Problem is, SW is understood at the level of
⊕ Intuition

⊕ Anecdote

⊕ Folklore

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
8

One Possible Solution

⊗Improve the precision of understanding at
the SW Architecture level

⊕ Programs, modules, systems

• Rich collection of interchange representations and
protocols to connect components and system
patterns to guide the compositions

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
9

An Engineering Discipline for
Software

⊗What is engineering?

⊕ Creating cost effective solutions . . .

⊕ . . . to practical problems . . .

⊕ . . . by applying scientific knowledge . . .

⊕ . . . building things . . .

⊕ . . . in the service of mankind.

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
10

Engineering . . .
⊗Relies on codifying scientific knowledge

about a technological problem domain

⊗Provides answers for common questions
that occur in practice

⊗Engineering shares prior solutions rather
than relying on virtuoso problem solving
⊕ Enabling ordinary practitioners to create sophisticated

systems that work

⊕ SW success (diligence+hard work) and failures (poor
understanding+mismatch of problem with solution)

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
11

Current SW Practice

⊗ Knowledge about techniques that work is not
shared

⊗ Comp. Sci. has contributed some relevant theory
but practice proceeds largely independently!

⊗ Therefore,
⊕ There are fundamental problems with the use of the

term software engineer

⊗ Practitioners recognize the need for ways to share
experience with good designs

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
12

Routine and Innovative Design

⊗ Routine design involves solving familiar problems
⊕ Reusing portions of prior solutions.

⊗ Innovative design involves finding novel solutions
to unfamiliar problems.

⊗ Software in most application domains is treated
more often as original than routine...
⊕ Certainly more so than would be necessary if we

captured and organized what we already know!

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
13

Model for Evolution of an Engineering
Discipline

(Fig. 1.2)

⊗ Engineering emerges from the commercial
exploitation that supplants craft

⊗ Exploiting technology depends on . . .
⊕ Scientific engineering

⊕ Management

⊕ Marshaling of resources

⊗ Engineering must return workable solutions!
⊕ Engineering generates good problems for science and

science, after finding good problems in the needs of
practice, returns workable solutions.

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
14

Maturity of Supporting Science

⊗ Research on ADTs:
⊕ Specifications (abstract models and algebraic axioms)

⊕ Software Structure (bundling representations with
algorithms)

⊕ Language issues (protecting integrity of information not
in specifications)

⊕ Integrity constraints (invarients of data structures)

⊕ Rules for composition (declarations)

⊗ The whole field of computing is only 40 yrs0 old… many theories are
emerging in the research pipeline

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
15

Interaction Between Science and Engineering
(Figure 1.3 Codification Cycle for Science and Engineering)

⊗Models and theories
⊕ Improved practice

⊕ New problems
• Ad hoc solutions

• Novel solutions

⊗Folklore
⊕ Codification

⊕ Models and theories

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
16

Evolution of Software Engineering
(Figure 1.4 Evolution of Software Engineering)

⊗Where does current SE practice lie o the
path to engineering?
⊕ In some cases it’s a craft

⊕ Yet in others it’s a commercial practice

⊕ And, in isolated examples, one could argue that
professional engineering is taking place!

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
17

Codification Through Abstract Mechanisms
⊗ Conversion from an intuition (i.e., get the data structure

right [ADT]) to a theory involve understanding the
following:

⊕ The software structure (a representation packaged with its
primitive operators)

⊕ Specifications (mathematically expressed as abstract models or
algebraic axioms)

⊕ Language issues (modules, scope, user-defined types)

⊕ Integrity of the result (invarients of data structures and protection
from other manipulation)

⊕ Rules for combining types (declarations)

⊕ Information hiding (protection of properties not explicitly included
in specifications)

⊗ Just as good programmers recognized useful data structures in the late 60’s, good SW system designers now recognize
useful system organizations. One of these is based on the theory of abstract types. But, this is not the only way to
organize a SW system.

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
18

Building Composable Systems

⊗Flexible - high level connections between
existing systems in ways not foreseen

⊗Similar to what developers of “open”
software products have designed
⊕ Interchange representations

• PICT, RTF, SYLK and SGML, HTML

• To allow distinct products to interact by data
interchange.

• CORBA supports dynamic sharing

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
19

Large Systems ← Decompositional
Mechanisms

⊗Tractability is a problem with large systems

⊕ Breaking a system into pieces makes it possible
to reason about the overall properties by
understanding the properties of each part

⊕ MILs and IDLs have traditionally helped:
• Computational units with well-defined interfaces

• Compositional mechanism for gluing the pieces
together

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
20

MIL/IDL: What’s the nature of the glue?

⊗ The Purpose of the “glue” is to resolve
⊕ Definition / use relationships

⊕ Indicate for each use of a facility where its
corresponding definition is provided

⊗ Maps well to current programming languages.
⊕ Good for the compiler

⊕ Supports automated checks (type checking)

⊕ Formal reasoning (pre- and post- conditions)

⊗ Drawbacks of MIL/IDLs
⊕ Implementation ⇔ Interaction relationships!

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
21

Status of Software Architecture
The Bad News...

⊗ Useful architecture paradigms are typically only
understood in an idiomatic way and applied in an
ad hoc fashion

⊗ SW Architects have been unable to
⊕ exploit commonalties in system architectures

⊕ Make principled choices among design alternatives

⊕ Specialize general paradigms to specific domains

⊕ Teach their craft to others

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
22

Status of Software Architecture
The Good News...

⊗ The issues and problems are being addressed in
such areas as…
⊕ Module interface languages (MIL)

⊕ Domain specific architectures

⊕ Software reuse

⊕ Codification of organizational patterns for SW

⊕ Architecture description languages

⊕ Formal underpinnings for architectural design

⊕ Architectural design environments

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
23

A Sound Basis for SW Architecture

⊗ Benefits for both development and maintenance:
⊕ Recognize common paradigms → new systems can be

built on variations of old systems

⊕ The right architecture is crucial to development success

⊕ Detailed understanding of the SW architecture enables
the engineer to make principled choices

⊕ Fluency in software architecture notations and
paradigms → SW Engineer to communicate the new
system design

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
24

Impediment to Reuse

⊗Differences in component packaging
⊕ Differences in packaging are recognized only

informally!!

⊕ There exists no formal (or informal) guidance
that show how and when to use such packaging

⊕ It is often unclear whether components with
compatible functionality will actually be able to
interact properly

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
25

Some Open Problems

⊗Choosing the appropriate architecture for a
given problem or domain
⊕ Rules of style - dictate how to package

components.
• E.g., as procedures, objects, or filters and often

cannot be interchanged across styles!

⊕ Interfaces make incompatible assumptions
• E.g., in UNIX sort is available as a filter and a

procedure.

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
26

Open Architectures

⊗Some architectures are carefully
documented and widely disseminated
⊕ ISO’s interconnection reference model

⊕ NIST/ECMA Reference model (PCTE)
• Generic SEE framework

⊕ X-Windows (distributed Window I/F
architecture)
• Based on event triggering and callbacks

© F.T. Sheldon

Univ. of Colorado at Colorado Springs
27

To Summarize
⊗Primary considerations

⊕ Understanding architectural abstractions

⊕ Localizing and codifying the ways components
interact

⊕ Distinguish the various ways architectural
principles can be applied to
• Software system design

• Analysis

⊕ Use what good engineers have always found
useful in practice

