
CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 1

Chapter 18

Chapter 18 Software Reliability

Learning Objective
... Define the basic principles underlying software
reliability engineering (metrics, measurement, and

prediction)

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 2

Software Reliability

⊗ Categorizing and specifying the
reliability of software systems

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 3

Objectives

⊗ To discuss the problems of reliability
specification and measurement

⊗ To introduce reliability metrics and to discuss
their use in reliability specification

⊗ To describe the statistical testing process

⊗ To show how reliability predications may be
made from statistical test results

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 4

Topics covered

⊗ Definition of reliability

⊗ Reliability and efficiency

⊗ Reliability metrics

⊗ Reliability specification

⊗ Statistical testing and operational profiles

⊗ Reliability growth modeling

⊗ Reliability prediction

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 5

⊗ Probability of failure-free operation for a
specified time in a specified environment for a
given purpose

⊗ This means quite different things depending on
the system and the users of that system

⊗ Informally, reliability is a measure of how well
system users think it provides the services they
require

What is reliability?

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 6

⊗ Cannot be defined objectively
⊕ Reliability measurements which are quoted out of context are

not meaningful

⊗ Requires operational profile for its definition
⊕ The operational profile defines the expected pattern of software

usage

⊗ Must consider fault consequences
⊕ Not all faults are equally serious. System is perceived as more

unreliable if there are more serious faults

Software reliability

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 7

⊗ A failure corresponds to unexpected run-time
behavior observed by a user of the software

⊗ A fault is a static software characteristic which
causes a failure to occur

⊗ Faults need not necessarily cause failures. They
only do so if the faulty part of the software is used

⊗ If a user does not notice a failure, is it a failure?
Remember most users don’t know the software
specification

Failures and faults

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 8

Input/output mapping

I
e

Input set

OeOutput set

Program

Inputs causing
erroneous
outputs

Erroneous
outputs

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 9

Reliability improvement

⊗ Reliability is improved when software faults
which occur in the most frequently used parts of
the software are removed

⊗ Removing x% of software faults will not
necessarily lead to an x% reliability improvement

⊗ In a study, removing 60% of software defects
actually led to a 3% reliability improvement

⊗ Removing faults with serious consequences is the
most important objective

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 10

Reliability perception

Possible
inputs

User 1

User 3
User 2

Erroneous
inputs

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 11

Reliability and formal methods

⊗ The use of formal methods of development may
lead to more reliable systems as it can be proved
that the system conforms to its specification

⊗ The development of a formal specification forces
a detailed analysis of the system which discovers
anomalies and omissions in the specification

⊗ However, formal methods may not actually
improve reliability

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 12

Reliability and formal methods

⊗ The specification may not reflect the real
requirements of system users

⊗ A formal specification may hide problems
because users don’t understand it

⊗ Program proofs usually contain errors

⊗ The proof may make assumptions about the
system’s environment and use which are incorrect

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 13

Reliability and efficiency

⊗ As reliability increases system efficiency tends to
decrease

⊗ To make a system more reliable, redundant code
must be includes to carry out run-time checks,
etc. This tends to slow it down

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 14

⊗ Reliability is usually more important than
efficiency

⊗ No need to utilize hardware to fullest extent as
computers are cheap and fast

⊗ Unreliable software isn't used

⊗ Hard to improve unreliable systems

⊗ Software failure costs often far exceed system
costs

⊗ Costs of data loss are very high

Reliability and efficiency

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 15

⊗ Hardware metrics not really suitable for
software as they are based on component
failures and the need to repair or replace a
component once it has failed. The design is
assumed to be correct

⊗ Software failures are always design failures.
Often the system continues to be available in
spite of the fact that a failure has occurred.

Reliability metrics

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 16

⊗ Probability of failure on demand
⊕ This is a measure of the likelihood that the system will fail when

a service request is made

⊕ POFOD = 0.001 means 1 out of 1000 service requests result in
failure

⊕ Relevant for safety-critical or non-stop systems

⊗ Rate of fault occurrence (ROCOF)
⊕ Frequency of occurrence of unexpected behavior

⊕ ROCOF of 0.02 means 2 failures are likely in each 100
operational time units

⊕ Relevant for operating systems, transaction processing systems

Reliability metrics

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 17

Reliability metrics

⊗ Mean time to failure
⊕ Measure of the time between observed failures

⊕ MTTF of 500 means that the time between failures is 500 time
units

⊕ Relevant for systems with long transactions e.g. CAD systems

⊗ Availability
⊕ Measure of how likely the system is available for use. Takes

repair/restart time into account

⊕ Availability of 0.998 means software is available for 998 out of
1000 time units

⊕ Relevant for continuously running systems e.g. telephone
switching systems

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 18

Reliability measurement

⊗ Measure the number of system failures for a
given number of system inputs

⊕ Used to compute POFOD

⊗ Measure the time (or number of transactions)
between system failures

⊕ Used to compute ROCOF and MTTF

⊗ Measure the time to restart after failure
⊕ Used to compute AVAIL

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 19

⊗ Time units in reliability measurement must be
carefully selected. Not the same for all systems

⊗ Raw execution time (for non-stop systems)

⊗ Calendar time (for systems which have a
regular usage pattern e.g. systems which are
always run once per day)

⊗ Number of transactions (for systems which are
used on demand)

Time units

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 20

Failure consequences

⊗ Reliability measurements do NOT take the
consequences of failure into account

⊗ Transient faults may have no real consequences
but other faults may cause data loss or corruption
and loss of system service

⊗ May be necessary to identify different failure
classes and use different measurements for each
of these

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 21

⊗ Reliability requirements are only rarely
expressed in a quantitative, verifiable way.

⊗ To verify reliability metrics, an operational
profile must be specified as part of the test
plan.

⊗ Reliability is dynamic - reliability specifications
related to the source code are meaningless.

⊕ No more than N faults/1000 lines.

⊕ This is only useful for a post-delivery process analysis.

Reliability specification

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 22

Failure classification

Failure class Description
Transient Occurs only with certain inputs
Permanent Occurs with all inputs
Recoverable System can recover without operator intervention
Unrecoverable Operator intervention needed to recover from failure
Non-corrupting Failure does not corrupt system state or data
Corrupting Failure corrupts system state or data

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 23

⊗ For each sub-system, analyze the
consequences of possible system failures.

⊗ From the system failure analysis, partition
failures into appropriate classes.

⊗ For each failure class identified, set out the
reliability using an appropriate metric. Different
metrics may be used for different reliability
requirements.

Steps to a reliability specification

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 24

Bank auto-teller system

⊗ Each machine in a network is used 300 times a
day

⊗ Bank has 1000 machines

⊗ Lifetime of software release is 2 years

⊗ Each machine handles about 200, 000
transactions

⊗ About 300, 000 database transactions in total per
day

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 25

Examples of a reliability spec.

Failure class Example Reliability metric
Permanent,
non-corrupting.

The system fails to operate with
any card which is input. Software
must be restarted to correct failure.

ROCOF
1 occurrence/1000 days

Transient, non-
corrupting

The magnetic stripe data cannot be
read on an undamaged card which
is input.

POFOD
1 in 1000 transactions

Transient,
corrupting

A pattern of transactions across the
network causes database
corruption.

Unquantifiable! Should
never happen in the
lifetime of the system

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 26

Specification validation

⊗ It is impossible to empirically validate very high
reliability specifications

⊗ No database corruption means POFOD of less
than 1 in 200 million

⊗ If a transaction takes 1 second, then simulating
one day’s transactions takes 3.5 days

⊗ It would take longer than the system’s lifetime to
test it for reliability

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 27

Reliability economics

⊗ Because of very high costs of reliability
achievement, it may be more cost effective to
accept unreliability and pay for failure costs

⊗ However, this depends on social and political
factors. A reputation for unreliable products may
lose future business

⊗ Depends on system type - for business systems in
particular, modest reliability may be adequate

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 28

Costs of increasing reliability

Cost

Low Medium High Very
high

Ultra-
high

Reliability

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 29

⊗ Testing software for reliability rather than fault
detection

⊗ Test data selection should follow the predicted
usage profile for the software

⊗ Measuring the number of errors allows the
reliability of the software to be predicted

⊗ An acceptable level of reliability should be
specified and the software tested and amended
until that level of reliability is reached

Statistical testing

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 30

⊗ Determine operational profile of the software

⊗ Generate a set of test data corresponding to
this profile

⊗ Apply tests, measuring amount of execution
time between each failure

⊗ After a statistically valid number of tests have
been executed, reliability can be measured

Statistical testing procedure

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 31

Statistical testing difficulties

⊗ Uncertainty in the operational profile
⊕ This is a particular problem for new systems with no operational

history. Less of a problem for replacement systems

⊗ High costs of generating the operational profile
⊕ Costs are very dependent on what usage information is collected

by the organization which requires the profile

⊗ Statistical uncertainty when high reliability is
specified

⊕ Difficult to estimate level of confidence in operational profile

⊕ Usage pattern of software may change with time

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 32

An operational profile
Number
of inputs

Input
classes

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 33

Operational profile generation

⊗ Should be generated automatically whenever
possible

⊗ Automatic profile generation is difficult for
interactive systems

⊗ May be straightforward for ‘normal’ inputs but it
is difficult to predict ‘unlikely’ inputs and to
create test data for them

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 34

⊗ Growth model is a mathematical model of the
system reliability change as it is tested and faults
are removed

⊗ Used as a means of reliability prediction by
extrapolating from current data

⊗ Depends on the use of statistical testing to
measure the reliability of a system version

Reliability growth modeling

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 35

Equal-step reliability growth

t1 t2 t3 t4 t5

Reliability
(ROCOF)

Time

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 36

Observed reliability growth

⊗ Simple equal-step model but does not reflect
reality

⊗ Reliability does not necessarily increase with
change as the change can introduce new faults

⊗ The rate of reliability growth tends to slow down
with time as frequently occurring faults are
discovered and removed from the software

⊗ A random-growth model may be more accurate

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 37

Random-step reliability growth

t1 t2 t3 t4 t5

Time

Note different
reliability
improvements Fault repair adds new fault

and decreases reliability
(increases ROCOF)

Reliability
(ROCOF)

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 38

Growth models choice

⊗ Many different reliability growth models have
been proposed

⊗ No universally applicable growth model

⊗ Reliability should be measured and observed data
should be fitted to several models

⊗ Best-fit model should be used for reliability
prediction

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 39

Reliability prediction

Reliability

Required
reliability

Fitted reliability
model curve

Estimated
time of reliability

achievement

Time

= Measured reliability

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 40

Key points

⊗ Reliability is usually the most important dynamic
software characteristic

⊗ Professionals should aim to produce reliable
software

⊗ Reliability depends on the pattern of usage of the
software. Faulty software can be reliable

⊗ Reliability requirements should be defined
quantitatively whenever possible

CS 422 Software Engineering Principles Chapter 18

From Software Engineering by I. Sommerville, 1996. Slide 41

Key points

⊗ There are many different reliability metrics. The
metric chosen should reflect the type of system
and the application domain

⊗ Statistical testing is used for reliability
assessment. Depends on using a test data set
which reflects the use of the software

⊗ Reliability growth models may be used to predict
when a required level of reliability will be
achieved

