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Learning Objective

... Establishing the presence of system defects using approaches to testing
which are geared to find program defects; test case design guidelines; program

structure analysis; interface testing (including guidelines).

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

Chapter 23

Chapter 23 Defect Testing
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Objectives

⊗ To describe approaches to testing which are geared to
find program defects

⊗ To show how test case design guidelines can be used
to design program tests

⊗ To explain the use of program structure analysis in
testing

⊗ To discuss the problems of interface testing

⊗ To suggest design guidelines for interface testing
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Topics covered

⊗ Approaches to defect testing

⊗ Black-box testing

⊗ Structural testing

⊗ Interface testing
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Defect testing

⊗ The objective of defect testing is to discover defects
in programs

⊗ A successful defect test is a test which causes a
program to behave in an anomalous way

⊗ Tests show the presence not the absence of defects
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⊗ Only exhaustive testing can show a program is free
from defects. However, exhaustive testing is
impossible

⊗ Tests should exercise a system's capabilities
rather than its components

⊗ Testing old capabilities is more important than testing
new capabilities

⊗ Testing typical situations  is more important than
boundary value cases

Testing priorities
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⊗ Test data
⊕ Inputs which have been devised to test the system

⊗ Test cases
⊕ Inputs to test the system and the predicted outputs from

these inputs if the system operates according to its
specification

Test data and test cases
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The defect testing process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports
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Defect testing approaches

Interface
testing

Functional
testing

Structural
testing

Sub-systemSystem Unit and
module

Testing
team

Development
team
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Testing effectiveness

⊗ In an experiment, black-box testing was found to be
more effective than structural testing in discovering
defects

⊗ Static code reviewing was less expensive and more
effective in discovering program faults
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Black-box testing

⊗ Approach to testing where the program is considered
as a ‘black-box’

⊗ The program test cases are based on the system
specification

⊗ Test planning can begin early in the software process
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Black-box testing

I
e

Input test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects
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Equivalence partitioning

⊗ Replace with portrait slide
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⊗ Partition system inputs and outputs into
‘equivalence sets’
⊕ If input is a 5-digit integer between 10,000 and 99,999,

⊕ equivalence partitions are <10,000, 10,000 - 99,999
and > 99,999

⊗ Choose test cases at the boundary of these
sets
⊕ 00000,   09999,   10000,   99999,   100,000

Equivalence partitioning
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Equivalence partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values
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Search routine specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;
       Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the array has at least one element
T’FIRST <= T’LAST 

Post-condition
-- the element is found and is referenced by L
( Found and T (L) = Key) 

or 
-- the element is not in the array
( not Found and

       not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key ))
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⊗ Inputs
⊕ which conform to the pre-conditions

⊕ where a pre-condition does not hold

⊕ where the key element is a member of the array

⊕ where the key element is not a member of the array

Search routine - input partitions
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Testing guidelines (arrays)

⊗ Test software with arrays which have only a single
value

⊗ Use arrays of different sizes in different tests

⊗ Derive tests so that the first, middle and last elements
of the array are accessed

⊗ Test with arrays of zero length (if allowed by
programming language)
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Search routine - input partitions

Array Element
Single value In array
Single value Not in array
More than 1 value First element in array
More than 1 value Last element in array
More than 1 value Middle element in array
More than 1 value Not in array
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Search routine - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 6
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38  25 false, ??
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⊗ Sometime called white-box testing

⊗ Derivation of test cases according to program structure

⊗ Knowledge of the program is used to identify

additional test cases

⊗ Objective is to exercise all program statements

(not all path combinations )

Structural testing
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White-box testing

Component
code

Test
outputs

Test data

DerivesTests
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Binary search (Ada)
procedure Binary_search (Key: ELEM ; T: ELEM_ARRAY ;
       Found: in out BOOLEAN ; L: in out ELEM_INDEX ) is

- Preconditions
-- T’FIRST < =T’LAST and
-- forall i: T’FIRST..T’LAST-1, T (i) <= T(i+1)

   Bott : ELEM_INDEX := T’FIRST ;
   Top : ELEM_INDEX := T’LAST ;
   Mid : ELEM_INDEX;
begin
   L := (T’FIRST + T’LAST ) / 2;
   Found := T( L ) = Key;
   while  Bott <= Top and not Found loop
      Mid := (Top + Bott) mod 2;
      if  T( Mid ) = Key then
        Found := true;
        L := Mid;
      elsif  T( Mid ) < Key then
        Bott := Mid + 1;
      else
        Top := Mid - 1;
      end if;

end loop;
end  Binary_search;
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Binary search (C++)
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⊗ Pre-conditions satisfied, key element in array

⊗ Pre-conditions satisfied, key element not in array

⊗ Pre-conditions unsatisfied, key element in array

⊗ Pre-conditions unsatisfied, key element not in array

⊗ Input array has a single value

⊗ Input array has an even number of values

⊗ Input array has an odd number of values

Binary Search equivalence partitions
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Binary search equivalence partitions

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundaries
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Binary search - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38  25 false, ??
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⊗ Describes the program control flow

⊗ Used as a basis for computing the cyclomatic

complexity:
⊕ Complexity = Number of edges - Number of nodes +1

Program flow graphs
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Flow graph representations

if-then-else loop-while case-of
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Binary search flow graph
1
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(if not Found then...)

(while Bott <= Top loop)

(If T (mid) = Key then...)

(if T (mid) < Key then...)
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⊗ 1, 2, 3, 4, 12, 13

⊗ 1, 2,3, 5, 6, 11, 2, 12, 13

⊗ 1, 2, 3, 5, 7, 8, 10, 11, 2, 12, 13

⊗ 1, 2, 3, 5, 7, 9, 10, 11, 2, 12, 13

⊗ Test cases should be derived so that all of these paths
are executed

⊗ A dynamic program analyzer may be used to check
that paths have been executed

Independent paths
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⊗ The number of tests to test all control statements
equals the cyclomatic complexity

⊗ Cyclomatic complexity equals number of conditions
in a program

⊗ Useful if used with care
⊕ Does not imply adequacy

⊗ Does not take into account data-driven programs

Cyclomatic complexity
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Control and data-driven programs
case A is   
  when “One” => i := 1 ; 
  when “Two” => i := 2 ; 
  when “Three” => i := 3 ; 
  when “Four” => i := 4 ;  
 when “Five” => i := 5 ; 
end case ; 

Strings: array (1..4) of STRING :=
    (“One”, “Two”, “Three”, “Four”, “Five”);
 i := 1 ; 
loop
   exit when Strings (i) = A ; 
   i := i + 1 ;
end loop ;
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⊗ Takes place when modules or sub-systems are
integrated to create larger systems

⊗ Objectives are to detect faults due to interface errors
or invalid assumptions about interfaces

⊗ Particularly important for object-oriented
development as objects are defined by their interfaces

Interface testing
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Interfaces types

⊗ Parameter interfaces
⊕ Data passed from one procedure to another

⊗ Shared memory interfaces
⊕ Block of memory is shared between procedures

⊗ Procedural interfaces
⊕ Sub-system encapsulates a set of procedures to be

called by other sub-systems

⊗ Message passing interfaces
⊕ Sub-systems request services from other sub-systems
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Interface testing

Test
cases

BA

C
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Interface errors

⊗ Interface misuse
⊕ A calling component calls another component and makes

an error in its use of its interface e.g. parameters in the
wrong order

⊗ Interface misunderstanding
⊕ A calling component embeds assumptions about the

behavior of the called component which are incorrect

⊗ Timing errors
⊕ The called and the calling component operate at different

speeds and out-of-date information is accessed
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Interface testing guidelines

⊗ Design tests so that parameters to a called procedure
are at the extreme ends of their ranges

⊗ Always test pointer parameters with null pointers

⊗ Design tests which cause the component to fail

⊗ Use stress testing in message passing systems

⊗ In shared memory systems, vary the order in which
components are activated
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Key points

⊗ Test parts of a system which are commonly used
rather than those which are rarely executed

⊗ Equivalence partitions  are sets of test cases where the
program should behave in an equivalent way

⊗ Black-box testing is based on the system specification

⊗ Structural testing identifies test cases which cause all
paths through the program to be executed
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Key points

⊗ Test coverage measures  ensure that all statements
have been executed at least once. However, it is not
possible to exercise all path combinations

⊗ Interface defects arise because of specification
misreading, misunderstanding, errors or invalid
timing assumptions


