
CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 1

Learning Objective

... Establishing the presence of system defects using approaches to testing
which are geared to find program defects; test case design guidelines; program

structure analysis; interface testing (including guidelines).

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

Chapter 23

Chapter 23 Defect Testing

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 2

Objectives

⊗ To describe approaches to testing which are geared to
find program defects

⊗ To show how test case design guidelines can be used
to design program tests

⊗ To explain the use of program structure analysis in
testing

⊗ To discuss the problems of interface testing

⊗ To suggest design guidelines for interface testing

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 3

Topics covered

⊗ Approaches to defect testing

⊗ Black-box testing

⊗ Structural testing

⊗ Interface testing

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 4

Defect testing

⊗ The objective of defect testing is to discover defects
in programs

⊗ A successful defect test is a test which causes a
program to behave in an anomalous way

⊗ Tests show the presence not the absence of defects

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 5

⊗ Only exhaustive testing can show a program is free
from defects. However, exhaustive testing is
impossible

⊗ Tests should exercise a system's capabilities
rather than its components

⊗ Testing old capabilities is more important than testing
new capabilities

⊗ Testing typical situations is more important than
boundary value cases

Testing priorities

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 6

⊗ Test data
⊕ Inputs which have been devised to test the system

⊗ Test cases
⊕ Inputs to test the system and the predicted outputs from

these inputs if the system operates according to its
specification

Test data and test cases

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 7

The defect testing process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 8

Defect testing approaches

Interface
testing

Functional
testing

Structural
testing

Sub-systemSystem Unit and
module

Testing
team

Development
team

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 9

Testing effectiveness

⊗ In an experiment, black-box testing was found to be
more effective than structural testing in discovering
defects

⊗ Static code reviewing was less expensive and more
effective in discovering program faults

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 10

Black-box testing

⊗ Approach to testing where the program is considered
as a ‘black-box’

⊗ The program test cases are based on the system
specification

⊗ Test planning can begin early in the software process

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 11

Black-box testing

I
e

Input test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 12

Equivalence partitioning

⊗ Replace with portrait slide

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 13

⊗ Partition system inputs and outputs into
‘equivalence sets’
⊕ If input is a 5-digit integer between 10,000 and 99,999,

⊕ equivalence partitions are <10,000, 10,000 - 99,999
and > 99,999

⊗ Choose test cases at the boundary of these
sets
⊕ 00000, 09999, 10000, 99999, 100,000

Equivalence partitioning

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 14

Equivalence partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 15

Search routine specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;
 Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the array has at least one element
T’FIRST <= T’LAST

Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)

or
-- the element is not in the array
(not Found and

 not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 16

⊗ Inputs
⊕ which conform to the pre-conditions

⊕ where a pre-condition does not hold

⊕ where the key element is a member of the array

⊕ where the key element is not a member of the array

Search routine - input partitions

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 17

Testing guidelines (arrays)

⊗ Test software with arrays which have only a single
value

⊗ Use arrays of different sizes in different tests

⊗ Derive tests so that the first, middle and last elements
of the array are accessed

⊗ Test with arrays of zero length (if allowed by
programming language)

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 18

Search routine - input partitions

Array Element
Single value In array
Single value Not in array
More than 1 value First element in array
More than 1 value Last element in array
More than 1 value Middle element in array
More than 1 value Not in array

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 19

Search routine - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 6
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 20

⊗ Sometime called white-box testing

⊗ Derivation of test cases according to program structure

⊗ Knowledge of the program is used to identify

additional test cases

⊗ Objective is to exercise all program statements

(not all path combinations)

Structural testing

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 21

White-box testing

Component
code

Test
outputs

Test data

DerivesTests

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 22

Binary search (Ada)
procedure Binary_search (Key: ELEM ; T: ELEM_ARRAY ;
 Found: in out BOOLEAN ; L: in out ELEM_INDEX) is

- Preconditions
-- T’FIRST < =T’LAST and
-- forall i: T’FIRST..T’LAST-1, T (i) <= T(i+1)

 Bott : ELEM_INDEX := T’FIRST ;
 Top : ELEM_INDEX := T’LAST ;
 Mid : ELEM_INDEX;
begin
 L := (T’FIRST + T’LAST) / 2;
 Found := T(L) = Key;
 while Bott <= Top and not Found loop
 Mid := (Top + Bott) mod 2;
 if T(Mid) = Key then
 Found := true;
 L := Mid;
 elsif T(Mid) < Key then
 Bott := Mid + 1;
 else
 Top := Mid - 1;
 end if;

end loop;
end Binary_search;

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 23

Binary search (C++)

⊗ Replace with portrait slide

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 24

⊗ Pre-conditions satisfied, key element in array

⊗ Pre-conditions satisfied, key element not in array

⊗ Pre-conditions unsatisfied, key element in array

⊗ Pre-conditions unsatisfied, key element not in array

⊗ Input array has a single value

⊗ Input array has an even number of values

⊗ Input array has an odd number of values

Binary Search equivalence partitions

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 25

Binary search equivalence partitions

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundaries

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 26

Binary search - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 27

⊗ Describes the program control flow

⊗ Used as a basis for computing the cyclomatic

complexity:
⊕ Complexity = Number of edges - Number of nodes +1

Program flow graphs

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 28

Flow graph representations

if-then-else loop-while case-of

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 29

Binary search flow graph
1

2

3

54

76

98

10

1112

13

(if not Found then...)

(while Bott <= Top loop)

(If T (mid) = Key then...)

(if T (mid) < Key then...)

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 30

⊗ 1, 2, 3, 4, 12, 13

⊗ 1, 2,3, 5, 6, 11, 2, 12, 13

⊗ 1, 2, 3, 5, 7, 8, 10, 11, 2, 12, 13

⊗ 1, 2, 3, 5, 7, 9, 10, 11, 2, 12, 13

⊗ Test cases should be derived so that all of these paths
are executed

⊗ A dynamic program analyzer may be used to check
that paths have been executed

Independent paths

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 31

⊗ The number of tests to test all control statements
equals the cyclomatic complexity

⊗ Cyclomatic complexity equals number of conditions
in a program

⊗ Useful if used with care
⊕ Does not imply adequacy

⊗ Does not take into account data-driven programs

Cyclomatic complexity

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 32

Control and data-driven programs
case A is
 when “One” => i := 1 ;
 when “Two” => i := 2 ;
 when “Three” => i := 3 ;
 when “Four” => i := 4 ;
 when “Five” => i := 5 ;
end case ;

Strings: array (1..4) of STRING :=
 (“One”, “Two”, “Three”, “Four”, “Five”);
 i := 1 ;
loop
 exit when Strings (i) = A ;
 i := i + 1 ;
end loop ;

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 33

⊗ Takes place when modules or sub-systems are
integrated to create larger systems

⊗ Objectives are to detect faults due to interface errors
or invalid assumptions about interfaces

⊗ Particularly important for object-oriented
development as objects are defined by their interfaces

Interface testing

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 34

Interfaces types

⊗ Parameter interfaces
⊕ Data passed from one procedure to another

⊗ Shared memory interfaces
⊕ Block of memory is shared between procedures

⊗ Procedural interfaces
⊕ Sub-system encapsulates a set of procedures to be

called by other sub-systems

⊗ Message passing interfaces
⊕ Sub-systems request services from other sub-systems

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 35

Interface testing

Test
cases

BA

C

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 36

Interface errors

⊗ Interface misuse
⊕ A calling component calls another component and makes

an error in its use of its interface e.g. parameters in the
wrong order

⊗ Interface misunderstanding
⊕ A calling component embeds assumptions about the

behavior of the called component which are incorrect

⊗ Timing errors
⊕ The called and the calling component operate at different

speeds and out-of-date information is accessed

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 37

Interface testing guidelines

⊗ Design tests so that parameters to a called procedure
are at the extreme ends of their ranges

⊗ Always test pointer parameters with null pointers

⊗ Design tests which cause the component to fail

⊗ Use stress testing in message passing systems

⊗ In shared memory systems, vary the order in which
components are activated

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 38

Key points

⊗ Test parts of a system which are commonly used
rather than those which are rarely executed

⊗ Equivalence partitions are sets of test cases where the
program should behave in an equivalent way

⊗ Black-box testing is based on the system specification

⊗ Structural testing identifies test cases which cause all
paths through the program to be executed

CS 422 Software Engineering Principles Chapter 23

From Software Engineering by I. Sommerville, 1996. Slide 39

Key points

⊗ Test coverage measures ensure that all statements
have been executed at least once. However, it is not
possible to exercise all path combinations

⊗ Interface defects arise because of specification
misreading, misunderstanding, errors or invalid
timing assumptions

