
CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 1

Chapter 21

Chapter 21 Safety-Critical Software

Learning Objective

…. Developing software which should never
compromise the overall safety of a system.

Frederick T Sheldon
Assistant Professor of Computer Science

Washington State University

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 2

Objectives

⊗ To introduce the concept of safety-critical
software

⊗ To describe the safety-critical system
development process

⊗ To introduce methods of process and product
safety assurance

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 3

Topics covered

⊗ Definitions of safety-critical system
terminology

⊗ An insulin pump example

⊗ Safety specification

⊗ Hazard analysis

⊗ Risk assessment and reduction

⊗ Safety assurance

⊗ Hazard logs

⊗ Safety proofs

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 4

⊗ Systems whose failure can threaten human life
or cause serious environmental damage

⊗ Increasingly important as computers replace
simpler, hard-wired control systems

⊗ Hardware safety is often based on the physical
properties of the hardware. Comparable
techniques cannot be used with software

Safety-critical systems

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 5

⊗ Primary safety-critical systems
⊕ Embedded software systems whose failure can cause

the associated hardware to fail and directly threaten
people.

⊗ Secondary safety-critical systems
⊕ Systems whose failure results in faults in other systems

which can threaten people

⊗ Discussion here focuses on primary safety-
critical systems
⊕ Secondary safety-critical systems can only be

considered on a one-off basis

Safety criticality

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 6

⊗ Mishap (or accident)
⊕ An unplanned event or event sequence which results in human

death or injury. It may be more generally defined as covering
damage to property or the environment

⊗ Damage
⊕ A measure of the loss resulting from a mishap

⊗ Hazard
⊕ A condition with potential for causing or contributing to a mishap

⊗ Hazard severity
⊕ An assessment of the worst possible damage which could result

from a particular hazard

Definitions

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 7

⊗ Hazard probability
⊕ The probability of the events occurring which create a

hazard

⊗ Risk
⊕ This is a complex concept which is related to the hazard

severity, the hazard probability and the probability that
the hazard will result in a mishap.

⊕ It is a measure of the probability that the system will
behave in a way which threatens humans. The objective
of all safety systems is to minimize risk.

Definitions

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 8

⊗ The number of faults which can cause safety-
related failures is usually a small subset of the
total number of faults which may exist in a
system

⊗ Safety achievement should ensure that either
these faults cannot occur or, if they do occur,
they cannot result in a mishap

⊗ Should also ensure that correct functioning of
the system does not cause a mishap

Safety achievement

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 9

⊗ Not the same thing

⊗ Reliability is concerned with conformance to
a given specification and delivery of service

⊗ Safety is concerned with ensuring system
cannot cause damage irrespective of whether
or not it conforms to its specification

Safety and reliability

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 10

⊗ Specification errors
⊕ If the system specification is incorrect then the system

can behave as specified but still cause an accident

⊗ Hardware failures generating spurious inputs
⊕ Hard to anticipate in the specification

⊗ Context-sensitive commands i.e. issuing the
right command at the wrong time
⊕ Often the result of operator error

Unsafe reliable systems

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 11

Accident occurrence

⊗ System design should always be based around the
notion that no single point of failure can compromise
system safety

⊗ However, accidents usually arise because of several
simultaneous failures rather than a failure of a single
part of the system

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 12

Software control

⊗ Adds complexity so hence may decrease overall
system safety

⊗ BUT also allows a larger number of system
parameters to be monitored, allows the use of
inherently reliable electronic equipment and can be
used to provide sophisticated safety interlocks

⊗ Therefore, software control may improve overall
system safety even when occasional software failures
occur

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 13

Insulin delivery

⊗ Simple example of a safety-critical system. Most
medical systems are safety-critical

⊗ People with diabetes cannot make their own insulin
(used to metabolize sugar). It must be delivered
externally

⊗ Delivers a dose of insulin (required by diabetics)
depending on the value of a blood sugar sensor

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 14

Insulin delivery system

Insulin
requirement
computation

Blood sugar
analysis

Blood sugar
sensor

Insulin
delivery
controller

Insulin
pump

Blood

Blood
parameters

Blood sugar
level

Insulin

Pump control
commands

Insulin
requirement

⊗ Data flow model of software-controlled insulin
pump

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 15

Safety specification

⊗ The safety requirements of a system should be
separately specified

⊗ These requirements should be based on an analysis
of the possible hazards and risks

⊗ Safety requirements usually apply to the system as a
whole rather than to individual sub-systems

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 16

Safety requirements
specification

Functional
requirements
specification

Safety-integrity
requirements
specification

Hazard
analysis

Risk
assessment

Designation of
safety-critical systems

Validation
planning

Design and
implementation

Verification

Safety
validation

Operation and
maintenance

The safety
life-cycle

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 17

Safety processes
⊗ Hazard and risk analysis

⊕ Assess the hazards and the risks of damage associated with
the system

⊗ Safety requirements specification
⊕ Specify a set of safety requirements which apply to the

system

⊗ Designation of safety-critical systems
⊕ Identify the sub-systems whose incorrect operation may

compromise system safety

⊗ Safety validation
⊕ Check the overall system safety

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 18

⊗ Identification of hazards which can arise

⊗ Structured into various classes of hazard
analysis and carried out throughout software
process

⊗ A risk analysis should be carried out and
documented for each identified hazard

Hazard analysis

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 19

Hazard analysis stages

⊗ Hazard identification
⊕ Identify potential hazards which may arise

⊗ Hazard classification
⊕ Assess the risk associated with each hazard

⊗ Hazard decomposition
⊕ Decompose hazards to discover their potential root

causes

⊗ Safety specification
⊕ Define how each hazard must be taken into account

when the system is designed

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 20

Structured hazard analysis
⊗ For large systems, hazard analysis must be

structured
⊕ Preliminary hazard analysis Assess the principal hazards

for the system in its operating environment

⊕ Sub-system hazard analysis Assess hazards for each
safety-critical sub-system

⊕ System hazard analysis Assess hazards which result from
sub-system interaction

⊕ Software hazard analysis Assess hazards related to
incorrect software function

⊕ Operational hazard analysis Assess hazards resulting
from incorrect system use

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 21

⊗ insulin overdose or -

⊗ power failure

⊗ machine interferes electrically with other medical
equipment such as a heart pacemaker

⊗ parts of machine break off in patient’s body

⊗ poor sensor/actuator contact

⊗ infection caused by introduction of machine

⊗ allergic reaction to the materials or insulin used in
the machine

Insulin system hazards

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 22

⊗ Method of hazard analysis which starts with an
identified fault and works backward to the causes of
the fault.

⊗ Can be used at all stages of hazard analysis from
preliminary analysis through to detailed
software checking

⊗ Top-down hazard analysis method. May be
combined with bottom-up methods which start with
system failures and lead to hazards

Fault-tree analysis

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 23

Fault- tree analysis

⊗ Identify hazard

⊗ Identify potential causes of the hazard. Usually there
will be a number of alternative causes. Link these on
the fault-tree with ‘or’ or ‘and’ symbols

⊗ Continue process until root causes are identified

⊗ A design objective should be that no single cause can
result in a hazard. That is, ‘or’s should be replaced by
‘and’s wherever possible

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 24

Insulin dose error

Incorrect
sugar level
measured

Incorrect
insulin dose
administered

or

Correct dose
delivered at
wrong time

Sensor
failure

or

Sugar
computation

error

Timer
failure

Pump signals
incorrect

or

Insulin
computation

incorrect

Delivery
system
failure

Arithmetic
error

or

Algorithm
error

Arithmetic
error

or

Algorithm
error

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 25

Risk assessment

⊗ Assesses hazard severity, hazard probability and
accident probability

⊗ Outcome of risk assessment is a statement of
acceptability

⊕ Intolerable. Must never arise or result in an accident

⊕ As low as reasonably practical(ALARP) Must minimize
possibility of hazard given cost and schedule constraints

⊕ Acceptable. Consequences of hazard are acceptable and no
extra costs should be incurred to reduce hazard probability

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 26

Levels of risk

Unacceptable region
risk cannot be tolerated

Risk tolerated only if
risk reduction is impractical

or grossly expensive

Acceptable
region

Negligible risk

ALARP
region

⊗ Width of
triangle is
proportional
to the cost of
dealing with
the hazard

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 27

Risk acceptability

⊗ The acceptability of a risk is determined by
human, social and political considerations

⊗ In most societies, the boundaries between the
regions are pushed upwards with time i.e.
society is less willing to accept risk

⊕ For example, the costs of cleaning up pollution may be
less than the costs of preventing it but this may not be
socially acceptable

⊗ Risk assessment is subjective
⊕ Risks are identified as probable, unlikely, etc. This

depends on who is making the assessment

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 28

Risk analysis example

Identified
hazard

Hazard
probability

Hazard
severity

Estimated
risk

Acceptability

Insulin overdose Medium High High Intolerable
Insulin
underdose

Medium Low Low Acceptable

Power failure High Low Low Acceptable
Machine
incorrectly fitted

High High High Intolerable

Machine breaks
in patient

Low High Medium ALARP

Machine causes
infection

Medium Medium Medium ALARP

Electrical
interference

Low High Medium ALARP

Allergic reaction Low Low Low Acceptable

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 29

Risk reduction

⊗ System should be specified so that hazards do not
arise or result in an accident

⊗ Hazard avoidance
⊕ The system should be designed so that the hazard can never arise

during correct system operation

⊗ Hazard probability reduction
⊕ The system should be designed so that the probability of a hazard

arising is minimized

⊗ Accident prevention
⊕ If the hazard arises, there should be mechanisms built into the

system to prevent an accident

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 30

Insulin delivery system

⊗ Safe state is a shutdown state where no insulin is
delivered

⊕ If hazard arises,shutting down the system will prevent an accident

⊗ Software may be included to detect and prevent
hazards such as power failure

⊗ Consider only hazards arising from software
failure

⊕ Arithmetic error: insulin dose is computed incorrectly because of
some failure of the computer arithmetic

⊕ Algorithmic error: dose computation algorithm is incorrect

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 31

⊗ Use language exception handling mechanisms to
trap errors as they arise

⊗ Use explicit error checks for all errors which are
identified

⊗ Avoid error-prone arithmetic operations (multiply
and divide). Replace with add and subtract

⊗ Never use floating-point numbers

⊗ Shut down system if error detected (safe state)

Arithmetic errors

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 32

⊗ Harder to detect. System should always err on the
side of safety

⊗ Use reasonableness checks for the dose delivered
based on previous dose and rate of dose change

⊗ Set maximum delivery level in any specified time
period

⊗ If computed dose is very high, medical intervention
may be necessary anyway because the patient may
be ill

Algorithmic errors

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 33

Safety assurance

⊗ Avoid safety problems by using ‘safe’ design
techniques

⊗ Ensure that the software process has appropriate
safety reviews and checks

⊗ Apply explicit safety assurance techniques to the
developed software

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 34

⊗ Make software as simple as possible

⊗ Use simple techniques for software development
avoiding error-prone constructs such as pointers and
recursion

⊗ Use information hiding to localize the effect of any
data corruption

⊗ Make appropriate use of fault-tolerant techniques but
do not be seduced into thinking that fault-tolerant
software is necessarily safe

Design principles for safe software

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 35

Formal methods and safety

⊗ Formal methods are mandated in Britain for the
development of some types of safety-critical
software

⊗ Formal specification and proof increases confidence
that a system meets its specification

⊗ Formal specifications require specialized notations
so domain experts cannot check for specification
incompleteness

⊗ The cost-effectiveness of formal methods is
unknown

⊗ Use of formal methods for safety-critical software
development is likely to increase

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 36

⊗ The software process should be designed to include
the collection of safety-related information and
should include safety reviews

⊕ Hazard logging and monitoring

⊕ Explicit identification of project safety engineers

⊕ Safety reviews

⊕ Safety certification

⊕ Detailed configuration management to ensure that the delivered
system is the one which has been checked for safety

⊗ The hazard log tracks the documentation and
management of hazards

Process assurance

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 37

Hazard Log. Page 4: Printed 21.12.90

Identified Hazard: Insulin overdose delivered to patient

Identified by: Jane Williams

Criticality Class: 1

Identified Risk: Moderate

Fault tree identified: YES Date: 10.11.90 Location: Hazard Log, Page 5

Fault tree creator: Jane Williams and Bill Smith

Fault tree checked: YES Date: 20.11.90 Checker: James Brown

System design safety requirements:

1. Incorporate self-testing software for sensor system, clock and delivery
system. This should be executed at least once per minute and should cause an
audible warning to be emitted if a fault is discovered. If a fault is discovered, no
further insulin deliveries should be made until the system has been reset.

2. Incorporate a patient override facility so that the patient may modify the dose
to be delivered by manual intervention. However, a limit should be set on the
dose administered by the patient. This limit should be set by medical staff when
the system is installed.

3. ...

System: Insulin Delivery System
Safety Engineer: James Brown Log version: 1.3

File: Insulin System/Safety/HLog

Hazard
log
entry

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 38

Safety reviews

⊗ Review for correct intended function

⊗ Review for maintainable, understandable
structure

⊗ Review to verify algorithm and data structure
design against specification

⊗ Review to check code consistency with algorithm
and data structure design

⊗ Review adequacy of system testing

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 39

Safety proofs

⊗ Safety proofs are intended to show that the
system cannot reach in unsafe state

⊗ Weaker than correctness proofs which must
show that the system code conforms to its
specification

⊗ Generally based on proof by contradiction
⊕ Assume that an unsafe state can be reached

⊕ Show that this is contradicted by the program code

⊗ May be displayed graphically

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 40

Insulin delivery code
-- The insulin dose to be delivered is a function of
-- blood sugar level, the previous dose delivered and
-- the time of delivery of the previous dose
Insulin_dose := Compute_insulin (Blood_sugar_level,
 Previous_dose, Previous_time) ;
-- if statement 1
if Insulin_dose > Previous_dose + Previous_dose then

Insulin_dose := Previous_dose + Previous_dose ;
end if ;
-- Don’t administer very small doses
-- if statement 2
if Insulin_dose < Minimum_dose then
 Insulin_dose := 0 ;
-- Don’t deliver more than maximum dose
elsif Insulin_dose > Maximum_dose then
 Insulin_dose := Maximum_dose ;
end if ;
-- root of fault tree
-- if statement 3
if Insulin_dose > 0 then
 Administer_insulin (Insulin_dose) ;
end if ;

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 41

Insulin_dose = 0

Insulin_dose := 0

if statement 2
then part
executed

Insulin_dose =
Maximum_dose

Insulin_dose :=
Maximum_dose

if statement 2
elsif part
executed

if statement 2
not executed

Insulin_dose >= Minimum_dose and
Insulin_dose <= Maximum_dose

or

Insulin_dose >
Maximum_dose

Administer
insulin

Contradiction

Contradiction Contradiction

Pre-condition
for unsafe state

Overdose
administeredInformal safety

proof

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 42

Safety assertions

⊗ Predicates included in the program indicating
conditions which should hold at that point

⊗ May be based on pre-computed limits e.g. number
of insulin pump increments in maximum dose

⊗ Used in formal program inspections or may be
pre-processed into safety checks

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 43

Safety assertions

procedure Administer_insulin (Insulin_dose: DOSE) is
Insulin_increments: NATURAL ;

begin
--* assert Insulin_dose <= Maximum_dose
Insulin_increments := Compute_requirement (Insulin_dose) ;
--* assert Insulin_increments <= Maximum_increments
for i in range 1..Insulin_increments loop

 Generate_pump_signal ;
--* assert i <= Maximum_increments ;

end loop ;
end Administer_insulin ;

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 44

Key points

⊗ Safety is a system property

⊗ Hardware safety methods are not completely
applicable to safety-critical software

⊗ Software control can improve safety by providing
more checking and interlocks

⊗ The development process for safety-critical
software is important

⊗ Hazard analysis is a key part of the safety
specification process

CS 442 Software Engineering Principles Chapter 21

From Software Engineering by I. Sommerville, 1996. Slide 45

Key points

⊗ Risk analysis involves assessing the probability of
hazards, their severity and the probability that they
will result in an accident

⊗ Design strategies may be used for hazard
avoidance, hazard probability reduction and
accident avoidance

⊗ Safety assurance depends on professional skills

⊗ Safety proofs may be used as part of product safety
assurance

