
CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 1

Chapter 11

Chapter 11 Model-Based Specification

Learning Objective

... Formal specification of software by
developing a mathematical model of the

system.

Frederick T Sheldon
Assistant Professor of Computer Science

University of Colorado at Colorado Springs

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 2

Objectives

⊗ To introduce an approach to formal specification
based on mathematical system models

⊗ To present some features of the Z specification
language

⊗ To illustrate the usefulness of Z by describing small
examples

⊗ To show how Z schemas may be used to develop
incremental specifications

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 3

Topics covered

⊗ Z schemas

⊗ The Z specification process

⊗ Specifying ordered collections

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 4

Model-based specification

⊗ Defines a model of a system using well-understood
mathematical entities such as sets and functions.

⊗ The state of the system is not hidden (unlike
algebraic specification).

⊗ State changes are straightforward to define.

⊗ VDM and Z are the most widely used
model-based specification languages.

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 5

Z as a specification language

⊗ Based on typed set theory

⊗ Probably now the most widely-used specification
language

⊗ Includes schemas, an effective low-level structuring
facility

⊗ Schemas are specification building blocks

⊗ Graphical presentation of schemas make Z
specifications easier to understand

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 6

Z schemas

⊗ Introduce specification entities and defines invariant
predicates over these entities

⊗ A schema includes
⊕ A name identifying the schema

⊕ A signature introducing entities and their types

⊕ A predicate part defining invariants over these entities

⊗ Schemas can be included in other schemas and may
act as type definitions

⊗ Names are local to schemas

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 7

Z schema highlighting

contents ≤ capacity

Container
contents:
capacity:

Schema name Schema signature Schema predicate

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 8

An indicator specification

light = on ⇔ reading ≤ danger_level

Indicator

light: {off, on}
reading:
danger_level:

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 9

Storage tank specification

reading = contents
capacity = 5000
danger_level = 50

Storage_tank

Container
Indicator

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 10

Full specification of a storage tank

contents ≤ capacity
light = on ⇔ reading ≤ danger_level
reading = contents
capacity = 5000
danger_level = 50

Storage_tank

contents:
capacity:
reading:
danger_level:
light: {off, on}

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 11

Z conventions

⊗ A variable name decorated with a quote mark (N‘)
represents the value of the state variable N after an
operation

⊗ A schema name decorated with a quote mark
introduces the dashed values of all names defined in
the schema

⊗ A variable name decorated with a ! represents an
output

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 12

Z conventions

⊗ A variable name decorated with a ? represents an
input

⊗ A schema name prefixed by the Greek letter Xi (Ξ)
means that the defined operation does not change the
values of state variables

⊗ A schema name prefixed by the Greek letter Delta (∆)
means that the operation changes some or all of the
state variables introduced in that schema

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 13

Operation specification

⊗ Operations may be specified incrementally as
separate schema then the schema combined to
produce the complete specification

⊗ Define the ‘normal’ operation as a schema

⊗ Define schemas for exceptional situations

⊗ Combine all schemas using the disjunction (or)
operator

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 14

A partial spec. of a fill operation

contents + amount? ≤ capacity
contents’ = contents + amount?

Fill-OK

∆ Storage_tank
amount?:

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 15

Storage tank fill operation

capacity < contents + amount?
r! = “Insufficient tank capacity – Fill cancelled”

OverFill

Ξ Storage-tank
amount?:
r!: seq CHAR

Fill

Fill-OK OverFill

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 16

The Z specification process

Define given
sets and types

Define state
variables

Define initial
state

Define
‘correct’
operations

Define
exceptional
operations

Combine
operation
schemas

Write informal
specification

Decompose
system

Specify system
components

Compose
component

specifications

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 17

Data dictionary specification

⊗ Data dictionary, introduced in Chapter 6, will be used
as an example. This is part of a CASE system and is
used to keep track of system names

⊗ Data dictionary structure
⊕ Item name

⊕ Description

⊕ Type. Assume in these examples that the allowed types
are those used in semantic data models

⊕ Creation date

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 18

Given sets

⊗ Z does not require everything to be defined at
specification time

⊗ Some entities may be ‘given’ and defined later

⊗ The first stage in the specification process is to
introduce these given sets
⊕ [NAME, DATE]

⊕ We don’t care about these representations at this stage

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 19

Type definitions

⊗ There are a number of built-in types (such as
INTEGER) in Z

⊗ Other types may be defined by enumeration
⊕ Sem_model_types = { relation, entity, attribute }

⊗ Schemas may also be used for type definition

⊗ The predicates serve as constraints on the type

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 20

Specification using functions

⊗ A function is a mapping from an input value to an
output value
⊕ SmallSquare = {1 → 1, 2 → 4, 3 → 9, 4 → 16, 5 → 2 25,

6 → 2 36, 7 → 49 }

⊗ The domain of a function is the set of inputs over
which the function has a defined result
⊕ dom SmallSquare = {1, 2, 3, 4, 5, 6, 7 }

⊗ The range of a function is the set of results which the
function can produce
⊕ rng SmallSquare = {1, 4, 9, 16, 25, 36, 49 }

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 21

The function SmallSquare

one
two
three
four
five
six

seven

1
4
9
16
25
36
49

Domain (SmallSquare) Range (SmallSquare)

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 22

Data dictionary modeling

⊗ A data dictionary may be thought of as a mapping
from a name (the key) to a value (the description in
the dictionary)

⊗ Operations are
⊕ Add. Makes a new entry in the dictionary or

replaces an existing entry

⊕ Lookup. Given a name, returns the description.

⊕ Delete. Deletes an entry from the dictionary

⊕ Replace. Replaces the information associated with an
entry

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 23

Data dictionary entry

#description ≤ 2000

DataDictionaryEntry

entry: NAME
desc: seq char
type: Sem_model_types
creation_date: DATE

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 24

Data dictionary as a function

DataDictionary

DataDictionaryEntry
ddict: NAME→ {DataDictionaryEntry}

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 25

Data dictionary - initial state

ddict’ = Ø

Init-DataDictionary

DataDictionary’

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 26

Add and lookup operations

name? ∉ dom ddict
ddict’ = ddict ∪ {name? → entry?}

Add_OK

∆ DataDictionary
name?: NAME
entry?: DataDictionaryEntry

name? ∈ dom ddict
entry! = ddict (name?)

Lookup_OK

Ξ DataDictionary
name?: NAME
entry!: DataDictionaryEntry

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 27

Add and lookup operations

name? ∈ dom ddict
error! = “Name already in dictionary”

Add_Error

Ξ DataDictionary
name?: NAME
error!: seq char

name? ∉ dom ddict
error! = “Name not in dictionary”

Lookup_Error

Ξ DataDictionary
name?: NAME
error!: seq char

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 28

Function over-riding operator

⊗ ReplaceEntry uses the function overriding operator
(written ⊕). This adds a new entry or replaces an
existing entry.
⊕ phone = { Ian → 3390, Ray → 3392, Steve → 3427}

⊕ The domain of phone is {Ian, Ray, Steve} and the range
is {3390, 3392, 3427}.

⊕ newphone = {Steve → 3386, Ron → 3427}

⊕ phone ⊕ newphone = { Ian → 3390, Ray → 3392, Steve
 → 3386, Ron → 3427}

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 29

Replace operation

name? ∈ dom ddict
ddict’ ⊕ {name? → entry?}

Replace_OK

∆ DataDictionary
name?: NAME
entry?: DataDictionaryEntry

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 30

Deleting an entry

⊗ Uses the domain subtraction operator (written
) which, given a name, removes that name

from the domain of the function

⊕ phone = { Ian → 3390, Ray → 3392, Steve → 3427}

⊕ {Ian} phone
⊕ {Ray → 3392, Steve → 3427}

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 31

Delete entry

name? ∈ dom ddict
ddict’ = {name?} ddict

Delete_OK

∆ DataDictionary
name?: NAME

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 32

Specifying ordered collections

⊗ Specification using functions does not allow ordering
to be specified

⊗ Sequences are used for specifying ordered
collections

⊗ A sequence is a mapping from consecutive integers
to associated values

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 33

A Z sequence

1
2
3
4
5
6
7

1
4
9
16
25
36
49

Domain (SqSeq) Range (SqSeq)

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 34

Data dictionary extract operation

⊗ The Extract operation extracts from the data
dictionary all those entries whose type is the same as
the type input to the operation

⊗ The extracted list is presented in alphabetical order

⊗ A sequence is used to specify the ordered output of
Extract

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 35

The Extract operation

∀n : dom ddict • ddict(n). type = in_type? ⇒ ddict (n) ∈ rng rep!
∀i : 1 ≤ i ≤ #rep! • rep! (i).type = in_type?
∀i : 1 ≤ i ≤ #rep! • rep! (i) ∈ rng ddict
∀i , j: dom rep! • (i < j) ⇒ rep. name(i) < NAME rep.name (j)

Extract

DataDictionary
rep!: seq {DataDictionaryEntry}
in_type?: Sem_model_types

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 36

Extract predicate

⊗ For all entries in the data dictionary whose type is
in_type?, there is an entry in the output sequence

⊗ The type of all members of the output sequence is
in_type?

⊗ All members of the output sequence are members of
the range of ddict

⊗ The output sequence is ordered

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 37

Data dictionary specification

The_Data_Dictionary

DataDictionary
Init-DataDictionary
Add
Lookup
Delete
Replace
Extract

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 38

Key points

⊗ Model-based specification relies on building a system
model using well-understood mathematical entities

⊗ Z specifications are made up of mathematical model
of the system state and a definition of operations on
that state

⊗ A Z specification is presented as a number of
schemas

⊗ Schemas may be combined to make new schemas

CS 422 Software Engineering Principles Chapter 11

From Software Engineering by I. Sommerville, 1996. Slide 39

Key points

⊗ Operations are specified by defining their effect on
the system state. Operations may be specified
incrementally then different schemas combined to
complete the specification

⊗ Z functions are a set of pairs where the domain of the
function is the set of valid inputs. The range is the set
of associated outputs. A sequence is a special type of
function whose domain is the consecutive integers

