Design Notebook
For
Aircraft Repair Model Simulation

CS 422 Softwar e Engineering Principles

November 8, 2000

Team X: OurColor:

Student Name
Student Name
Student Name
Student Name
Student Name
Student Name

Student Name

Version 1.5

This document describes the Aircraft Repair Model Simulation in partia fulfillment of the requirements for the Software

Engineering class at WSU. Restrictions: This document can be freely distributed as long as a reference is made to or credit is
given to project team OurColor

Abstract

On September 9, 2000, Team OurColor was established by Dr. F. Sheldon, Manager, to develop
an Aircraft Repair Model Simulation (ARMS) in support of the Earth Science Enterprise
Program. The goa of Team OurColor is to provide ARMS as a fully verified and validated
software package by December 11, 2000. ARMS will use a discrete, next-event time advance
model to simulate the aircraft repair process. The purpose of ARMS is to compare various
maintenance scheduling alternatives in order to optimize repair times and downtime costs.
Specifically, seven types of commercia aircraft will be evaluated using three different scheduling
techniques. The product will provide a graphical user interface, so the user can quickly and
easily set parameters, run the simulation, compare scheduling aternatives, and view results.
ARMS will be developed in Java using the Simlib library (provided by the customer) to perform
standard simulation tasks. ARMS will also be developed to facilitate future extensibility of
scheduling alternatives. (Correctness of data from individual Simlib function-calls and from

user-provided aircraft parameters is assumed.)

The purpose of this document is to outline the design that Team OurColor has developed for
the ARMS program described above. In compliance with IEEE standards, a function-oriented,
Structured System Analysis and Structured Design (SSA/SD) methodology was used. This
design methodology was selected to ensure that all customer requirements will be met and
verified, and that a cohesive, loosely coupled application will be developed. Based on this
design strategy, this document details the following information:

* Reguirements summary

» Context diagram

» Dataflow diagrams

* Process specifications (P-Specs)
» Structure chart

» Datadictionary

» Transaction analysis

» Transform analysis

* Test cases

Team OurColor members and their individual responsibilities are as follows:

» Student Name: Project Manager
e Student Name: Programmer
» Student Name: Designer

Student Name: Designer/Programmer

Student Name:
Student Name:
Student Name:
Student Name:
Student Name:

Software Engineer
Requirements Engineer
Test Engineer
Test Engineer
Requirements Engineer

Table of Contents

N 5
L.l Project PUrpose and GOalS. ..o 5

1.2 DESION ADDIOBCN ...ttt etestesteesteeseeesseeseesseesseesseseesssesseensesasssnssansesssesssenssenssessesssesseesseesssensesnses 6

1.3 Traceability ADDPIOBCK ...ttt et e et e ettt e et e sateeeseeesateesnseesneeesnesesnseessesesnesessesesseseareeesres 6

1.4 BaCKgroUNd. ... 7

1.5 DOCUMENE OFQANIZELIONe.eeeeeeeeeeeeeeeeeeeeeeeteeteeeeeneeseeeeseeeseeseeseeseeseesessessesseeseeneessensessessessesseeseensensessessesses 8

P REQUITEMENTS ANAIYSIS........voeeveveeeeeeeeeeteeeeteeeeteeeeteeeeteensteesensteesssesseeseessseesesensaseseseeseassseneas 8
D. 1 GraphiCal USEr INEEITACE.uuiiiiiiitiiiciiict ettt e et e eeteesabeeeseessseeeseesaseeenseesassessseessssessssessssessssesses 9

D2 SO AN MBI ACE ...ttt e e et e st e e esbeesabeeenseesabeeenseessreesnseessseenneesreenneesses 9

P.3 FUNCEONAl FEOUITEIMENES. ..ottt et e et eeeseeieseeesseeisssessseessssesssseisssessssesses 9

E.S.l Model SEVEN AITCTaft TYPES.....eiiiiiiiiiiiiiee et et e et e st eesseeesseessseessseesareeessesaasesesesins 9

D.3.2 Model Three QUEUING SCENATTOS.eeiviiiitieitieieteeiiteeeeteeiiteeessessaseseasessaseesssessssessssessasessssessssessssesens 9

P.3.3 Provide Insert and Delete CapabilitiES...........cocueieeecuuiiiiiiieeeiie et eeeeee e seee e e e eeessnes 10|

D.3.4 GENEXate FINAl REPOITccuviiiveeeiee ettt tee e teeeeteeeeteeesteeeeseeesseeeeseeessreeeneeessreesnesesnes 10

A PErfOrMANCE FEOUITEIMENEScvveiveeiee et eeeeeteeeteeteeaeeeteeeteeeteesteeeeeneesneesneesseenseenseenseesessseessessseesseesseensen 10

YL e o S T T 11

P.5.1 ULIHTZEThE SIMIID LIDTAIY ..ottt e e ee e s et e e sennneassnreessenneeessnnene 11

P.5.2 Develop ARMS Codein JaVal. oo 11

P.5.3 Utilize a"Middle-Pointer" AlGOrthM..........ccocveiieiieieeeeeeeceeeeeee et ee e e aereens 11

D.5.4 SUPPOIt EXEENS i Y ettt ee e it e eeteeeeteeesseesaseeeaseseseseseeesseeesesssesenseeebeseneeesssesaress 11

DYz Te AT 11
B.1 CONEEXE DIAOIAIMeveitiitiitiiteeieeiteeeteeeseeseeseessseseesseesseesseessesssessssssssnsesssesssessenssesssesssssssssessssesssssssenseessssn 12

B.2 Level 1 Data Flow Diagram and P-SPECS .o 13_’|

B.3 Level 2/3 Data Flow Diagrams and P-SPECS.............cueiuieereeireerieeeereeeteeiteeveeteesteeeseeesessessesseessesnseseesseenns 15

m [S o A A AT D T 21

B.4.1 Partitions Of the SYSIEM DDcc.cciiiuiiiiiiiiiiiiceece ettt eteeeeeteeeteebeebessaesseesseesssessessessssesseeans 21

B.4.2 1AeNtified TranNSACHIONSc.eeiviitiieiictiectieetieete et iee st esteesteereenseessesseesseeseesessessessseesssessesnssessenseenes 22

B.5 Transform Analysisand Structure Chart..........oocooviisii 24

B.6 DESION DECISION LOQTvveeeeeeeeieeeeeieeeieeeeeeeeeeetesteeteeseeneeneeneentessessesseeseeseensensessessessessessesneeneensensessessessenns 2§|
T 28|
T o A ———— 28|
APPENDI X A: Data DiCHONGIY..........ouieivieieeieiiesecsiescsiesssscsssssssssssssisssssssssessssssssssssessesssssssse: 30
APPENDI X B: ProjeCt SChEOUIE ...t seiesseeesssseessssesssssessssssesssesssssesesssees 44
APPENDI X C: Requirements Traceability MatriXccuevvieiiiiiiiiiiiiiiiiccieeccieeecieeeeveeesneeas 47
APPENDI X D: 1 deNtified TESE CASES.....cuvviiiieeiiieieeiiieiieeeeiiesseeeeesessesessssssnsessssssseeessssseeeessmseees 52
APPENDIX E: SIMIiD FIOW DIiAgramveiiieiicciie et eeeseeveseesveesenseessnseesssseessseees 55
APPENDI X F: SIMITD AP ...ttt ettt eeeet e e esteeaasssaneeeessnnneeessannnenas 57
APPENDI X G: GUI PrOUOLYDESuuuvvvuuueunniniiiuinruunuuusnssusnusssnsssnens 59
APPENDI X H: User-Provided Aircraft Parameters...........oocuveecueieeceeiieiieeieeeee e 62

Table of Figures

Houre 1. ARMS CONEXE GIBOIAIM.cvveeveeeerreeeeeeeereeeeeeseeseseesesteeeeesseseseeesesesseseeresessesesreneacs 12
Figure 2. ARMS Level 1 dataflow diagram.cceeieeeiiiiiiiiiiiiiiiiiciesiiee it 13
Figure 3. Level 2 DED exploding BUBDIE 1..........oooiiuuiiiiiiiiiiiciieeeeeee e e 16
Figure 4. Level 2 DED exploding BUBDIE 2..........ooiiiueiiiiiiiiiieeieeeee e 17
Figure 5. Level 2 DFD exploding BUBDIE 3.........veiiiiiiiiiiiciic e 18
Figure 6. Level 3DFD exploding BUubble 3.2, ... s s s e s esineeeesaneeeaas 19
Figure 7. Partitions Of the SYStemM DFD............cuvoiiiiiiiiieceece e 22
FIQUre 8. ARMS SETUCKUNE CRAITveeeeieeeieeeeeeeeeeeee ettt e et e eteeeenreeeenreeeeneeas 25
Figure 9. OUurColor ProjeCt SCNEAUIEc.vvveiiieiiiiieeii et e e e e e e e eenreeeeeaans 45
FFigure 10. Flow of control for the next-event time-advance approach..........cceeeeveevceeecnveennnee.. 56
Figure 11. INPUL SCrEEN PrOLOLYDE. ..uuveiiiiiuiiiiiiiiiiieieitieeeseeseeesssssseeesiesessssassssesssessssseessssenesessrsees 60
Figure 12. ProgreSss SCIEEN PrOLOLYIDE.iiiiueiiiiiiieiiiiiiuteississessssisssesesessssesssssssssisssssessasssssssasseees 60
FigUre 13, REDOM SCrEEN IO O Y . 1ttt ittt ittt e et ittt essesseeessisseeesiesseesesabbeesssasbsesesesreeesassreeaas 61
List of Tables
Tigble 1. OurColor tasks and dePENUENCIESoveueeenreeeeeenrenaeenes 44
Table 2. Requirements Traceability MatriX.c.vvicuiiiieiiiiiis i eeie e ebeeeebeeesnneeas 43
Table 3. Aircraft Parameter Table and corresponding value definitions.ccceveceiiciiciieeeee, 63

1 Introduction

On September 9, 2000, Team OurColor was established by Dr. F. Sheldon, Manager, to develop
an Aircraft Repair Simulation Model (ARMS) in support of the Earth Science Enterprise
Program. This notebook details the ARMS design. This section provides an overview of the
ARMS software and outlines the remainder of the document. Specifically, Section 1.1 describes
the project purpose and goals; Section 1.2 describes the design approach; Section 1.3 describes
the traceability approach; and Section 1.4 describes the organization of the document.

1.1 Project Purpose and Goals
As requested by the client, the ARMS software will use a discrete, next-event time advance

model to simulate the aircraft repair process [1]. The purpose of ARMS is to compare various
maintenance scheduling alternatives in order to optimize repair times and downtime costs.
Specificaly, seven types of commercial aircraft will be evaluated using three different scheduling

scenarios.

The product will also provide a graphical user interface, so the user can quickly and easily
set input parameters, run the model, compare scheduling alternatives, delete and/or insert items,
and view results. ARMS will be developed in Java using the Simlib library (provided by the
customer) to perform standard simulation tasks. The ARMS application will use the user-
specified set of input parameters, a client-specified set of probabilistic aircraft parameters, and
the Simlib functions to estimate overal average daily downtime costs. ARMS will aso be

developed to facilitate future extensibility of scheduling alternatives and aircraft.

The goal of Team OurColor isto deliver afully verified and validated software package that
provides the above-mentioned functionality by December 11, 2000. To this end, Team OurColor
has employed a standard Waterfall-based software engineering strategy. The tasks associated
with this process are provided in Appendix B. This document represents the design portion of

that approach.

1.2 Design Approach
In compliance with IEEE standards [2] and industry practice [3], Team OurColor has utilized a

function-oriented, Structured System Analysis and Structured Design (SSA/SD) methodology.
This design methodology was selected to ensure that all customer requirements will be met and
verified, and that a cohesive, loosely coupled application will be developed. Reflexive of this
design strategy, the following steps were performed:

Steps 1-2: Structured systems analysis

Step 3: Transaction analysis

Step 4: Transform analysis

Step 5: Creation of master structure chart

As aresult of these steps, the following design deliverables were produced:

» Dataflow diagrams (DFDs)

» Process specifications (P-specs)
» Structure chart

» Datadictionary

o Test cases

The results of these steps are provided in Section 3 and appendices A and D. The design
was developed to address each of the project requirements identified in the Software
Specification Requirements document [4]. Particular attention was paid to the extensibility
requirement, with the goal of highly modular code that is linked to extensible data structures.
The ARMS specification requirements are included in Section 2. To support verification of these
requirements, a Requirements Traceability Matrix, which links requirements to design modules,
is provided in Appendix C. Team OurColor traceability approach is explained in more detail in
Section 1.3 below.

1.3 Traceability Approach

This section explains the approach that Team OurColor is using to verify and validate the ARMS
application requirements. The first step was to number and categorize each project requirement,
so they reflect a logical organization. This helped to ensure that no requirements were

accidentally omitted. Next, testing methods were identified for verifying each requirement. All

non-verifiable requirements were removed. A Requirements Traceability Matrix (RTM) was
then developed to provide a convenient "check-off" list. Following the Critical Design Review
(CDR) [5], the DFD modules were linked to the RTM requirement categories. This association
is reflected in the RTM provided in Appendix C. The fina step will be to test each module
against its assigned requirements. The results of this anaysis will be provided in the

forthcoming Test Report.

1.4 Background
As Simlib functions represent the core engine for ARMS event simulation, this section provides

abrief summary of the Simlib library as a background for the design.

Simlib provides generic statistical functions and internal data structures that can be used to
perform discrete, next-event time advance simulations. Simlib contains 100 lists of random
numbers (called streams) which are used in conjunction with statistical distribution functions
(e.g., exponential) to calculate event times. Each different random variable is assigned its own

Stream.

Simlib aso contains 25 lists, which can be used to store internal data. Each listisaC linked
list of double arrays. Each array contains ten double values which may be assigned by the user.
The first element in each array is, by default, the event time, and the second is the event type.
List 25 is the event list, where the calculated event times are stored. The event list is sorted in

ascending time order.

Simlib functions use a transfer array to move elements between lists. Each array to be
inserted must first be placed in the transfer array. Likewise, each array removed may be found in

the transfer array.

In addition, Simlib provides summary functions [sampst() and timest()] that can be called as
each element is added or removed from a list. These functions automatically summarize
statistical information, such as the time-average delay for each element that passed through the
list.

Simlib must first be initialized by calling its initialization routine. This sets the clock to

zero, empties al lists, and initializes all random number streams. Next, initial events may be

scheduled by calculating event times as described above and inserting them into the event list.
The Simlib timing() function is then used to receive the next event from the event list. (The
timing() function removes the next event from the event list and places it in the transfer array.)
After each event is handled, new events are scheduled and/or the sampst() and timest() functions
are called as appropriate. This cycle continues until the simulation is complete. At this time,
Simlib also provides report generator functions which return al the summary information
calculated by the sampst() and timest() functions.

A flow diagram representing a generic Simlib simulation is provided as Appendix E. In
addition, the Simlib API function prototypes are provided as Appendix F. This information was
obtained from Smulation Modeling and Analysis, 3rd Edition [6].

1.5 Document Organization

This Design Notebook is divided into five sections and six appendixes. Section 1 describes the
purpose and scope of the ARMS application and the overall design approach. Section 2
summarizes the project requirements, as provided in the Software Requirements Specification
document [4]. Section 3 details the functional and structural design. Section 4 lists the
references cited. Section 5 provides a glossary of commonly used terms and acronyms.
Appendix A presents the data dictionary. Appendix B contains the project schedule. Appendix
C provides the Requirements Traceability Matrix (RTM). Appendix D summarizes some test
cases that were identified during the transaction analysis of the design. Appendix E provides a
flowchart of the Simlib simulation process. Appendix F provides the Simlib API. Appendices G
and H provide the GUI prototypes and User-Provided Aircraft Parameters respectively.

2 Requirements Analysis

This section summarizes the requirements for the ARMS application. Specifically, it describes
external interfaces, functional requirements, performance requirements, and design constraints.
These requirements are listed in more detail in the ARMS Software Specifications Requirements
report [4].

2.1 Graphical User Interface
The ARMS application shall provide an input screen that allows users to set the random seed,

select a queuing scenario from a list of pre-defined scenarios, select the number of service

stations, and start the smulation. An example of this screen is provided in Appendix G.

The ARMS application shall provide a progress screen that allows users to view simulation
progress, pause the simulation, insert or delete items from the simulation, and increase or

decrease the speed of the ssimulation. An example of this screen is provided in Appendix G.

The ARMS application shall provide an output screen that allows users to view simulation

results. An example of this screen is provided in Appendix G.

2.2 Softwareinterface
The ARMS application shall utilize Simlib library functions to calculate probabilistic event
times, to increment the simulation clock, to store internal data, and to calculate time-averaged

summary statistics.

2.3 Functional requirements
The ARMS application shall model the aircraft repair process using a next-event time advance

simulation. As stated above, the Simlib library shall provide the probabilistic and event
scheduling mechanisms required for the simulation. This section summarizes the major

functional requirements associated with the aircraft repair model.

2.3.1 Model Seven Aircraft Types

The ARMS application shall support seven distinct aircraft types. The aircraft arrival and
departure events shall be modeled according to the aircraft-specific attributes listed in Appendix
H.

2.3.2 Model Three Queuing Scenarios
The ARMS application shall evaluate three distinct queuing scenarios and support the addition of

more scenarios in the future. Theseinitial scenarios are defined below:

Queuing Scenario 1: All waiting aircraft form asingle, first-in/first-out (FIFO) queue. All

stations (the number specified by the user) service all aircraft.

Queuing Scenario 2: Widebody and regular body aircraft wait in separate FIFO gueues.
The widebody queue is given non-preemptive priority over the
regular body queue. All stations (the number specified by the user)

service dl aircraft.

Queuing Scenario 3: Widebody and regular body aircraft wait in separate FIFO gueues.
One subset of stations service only widebody aircraft, and another
subset service only regular body aircraft. (The number of stationsin

each set is specified by the user.)

2.3.3 ProvideInsert and Delete Capabilities
The ARMS application shall allow the user to insert events into the event list. The ARMS

application shall also allow the user to delete events from the event list and to delete aircraft from

aqueue or service station.

2.3.4 Generate Final Report
The ARMS application shall caculate summary statistics using Simlib library functions.

Specifically, these statistics shall include the average delay in queue for each aircraft type; the
overal average delay in queue for all aircraft types; the time-average number of aircraft in the
wait queue(s); the time-average number of aircraft down for each aircraft type; and the total

average daily downtime cost for al aircraft added together.

The final report statistics shall reflect costs generated by aircraft prematurely removed from
the maintenance process; costs generated by manually inserting aircraft into the maintenance
process; and costs generated by all aircraft still in the maintenance process at the end of the

simulation.

2.4 Performancerequirements

The ARMS application, after receiving acceptable input and no interruptions, shall be able to
complete a full simulation in no more than sixty (60) minutes. The ARMS application shall
operate on a computer with 10 MB of available hard drive space and 32 MB of available RAM.

10

2.5 Design constraints
This section describes customer-specified requirements that have directly impacted design

decisions.

2.5.1 Utilizethe Simlib Library
The ARMS application shall utilize, where applicable, the functions and data structures defined
in the Simlib simulation library. Specifically, Simlib list-structures shall be used to represent the

event list, wait queues, and service stations.

In addition, the ARMS application shall use Simlib “streams’ to provide the random
numbers used in probability calculations. Specifically, streams 01 — 07 shall be used for aircraft
inter-arrival times; streams 08 — 14 shall be used for engine inspection times (first or
subsequent); streams 15 — 21 shall be used for determination of (additional) needed repairs; and
streams 22 — 28 shall be used for engine repair times (first or subsequent).

2.5.2 Develop ARMS Codein Java
The ARMS application shall be developed using the Java programming language, version 1.3.
The Simlib C-library shall be compiled under a Linux operating system environment and shall be

accessed viathe Java Native Interface.

25.3 Utilizea" Middle-Pointer” Algorithm
The “middle-pointer” algorithm shall be used to insert events into the event list. Records deleted
from any list shall be placed in atransfer array.

2.5.4 Support Extensibility
The ARMS application shall support future extensibility of aircraft, queues, and service stations.

3 Design

As mentioned above in Section 1.2, Team OurColor has utilized a function-oriented, Structured
System Analysis and Structured Design (SSA/SD) methodology for the ARMS software. The
design was based on the project requirements and the next-event time advance approach
discussed in Section 1.4.

This section explains the design process in detail. Specifically, Sections 3.1-3.4 present the

11

results of the structured systems analysis (context diagram, DFDs, P-Specs), which defines the
functionality and data flows of the ARMS system. Section 3.4 describes the transaction analysis,
which identifies cooperating subsystems of the software. Section 3.5 presents the transform
analysis, which defines the structure of the system. Finally, Section 3.6 provides a design
decision log, which documents the design evolution. In addition, descriptions of all data entities

represented on the DFDs can be found in Appendix A.

3.1 Context Diagram
This section presents the context diagram for the ARMS software, shown below in Figure 1. As

the first step of the SSA/SD process, it represents the highest level of abstraction and identifies
any external interfaces. As indicated in the diagram, the ARMS software was designed with
Simlib statistical functions at the core. (Simlib library functions are explained above in Section
1.4). All user interaction occurs through the graphical user interface, including input parameters

and simulation output.

Event Logic

Simulation
Library

Amwun C

Figure 1. ARMS context diagram.

12

3.2 Leve 1 DataFlow Diagram and P-Specs

This section describes the highest level functionality of the ARMS software. As shown below in
Figure 2, three main functions are included in this diagram. First, the user input parameters must
be evaluated for validity, and the simulation input data (i.e., the queuing scenario) must be
determined. Next, the smulation must be initialized by setting the clock to zero and initializing
the service stations, queues, and arrival events. Finally, once the simulation has successfully
started, the program processes each arrival, departure, or endsim event in time order. The user
also has the option to pause the simulation during this time, or to insert or delete items from the
gueues, service stations, or event list. Once the endsim event is reached, the summary statistics

are determined and the program halts. All output is displayed to screen.

Bad Input m Configuration

Evaluate Parameters

v Input
Configuration .
Parameters Queuing
G Scenario
2.
U Internal <« ClocKlitia Initialize
Data Fvents Simulator
I System
Pause,
Insert, Delete State
T System State 3. Start Sim
Formatted Results Process
Events

Figure 2. ARMS Level 1 dataflow diagram.

13

Level 1 P-Specs, which further explain the top-level DFD bubbles in pseudocode, are
provided below:

1. Evaluate Input
[* Customer presses “start” button */
1.1 Load selected queuing scenario
1.1.1 Set information about service stations
1.1.2 Set information about aircraft
1.1.2 Set information about queues
1.2 Evaluate number of service stations
1.2.1 If number of service stations entered isinvalid for
scenario, re-prompt for input
1.3 Evaluate random seed
1.3.1 If random seed not a number or blank,
Use default random seed
2. Initialize Simulator
[* Customer presses “start” button and input dataisvalid */
2.1 Initialize Simlib
2.1.1 Initialize random number streams
2.1.2 Initialize event List
2.1.3 Set system clock to O
2.2 Initialize delay time to default value of one second.
2.3 Initialize pause flag to default value of true.
3. Process Events (infinite loop)

I* Always occurs after system isinitialized */

14

3.1 If “pause” modeis activated, process
external events
3.1.1 If delete selected, process delete
3.1.2 If insert selected, processinsert
3.2 Else, processinternal events
3.2.1 Get next event from event list (via Simlib transfer array)
3.2.2 If arrive, process arrival
3.2.3 If depart, process departure
3.2.4 If endsim, process endsim
3.2.5 Wait the delay time
3.3 Update progress GUI
3.3.1 Print event list
3.3.2 Print queuelists
3.3.3 Print service station lists

3.3.4 Print current ssimulation time

3.3 Level 2/3 Data Flow Diagrams and P-Specs
This section provides a more detailed look at Bubbles 1-3 from the high level DFD. Figure 3

below explodes Bubble 1. As indicated in this figure, the Evaluate Input bubble entails: 1)
initializing the queuing scenario (an internal data store which describes the queues, service
stations, and aircraft being used in the ssimulation); 2) verifying the user-specified number of bays
(i.e.,, making sure it is appropriate for the selected queuing scenario); and 3) selecting a random

seed (adefault valueis used if noneis entered by the user).

15

1.1
Load
Queuing
Scenario

Stored Queuing
Information

Selection
ID

Information Aircraft,
Stations, Queue

Stations /1—\ QS

“ Queuing
U _ Invalid (#Efvgluqte 5 Scenario (QS) > QS
= Input w # Stations 7y
I Aircraft
Parameters

1.3
Evaluate
Random
Seed

Stored Aircraft
Parameters

Random
Seed

Random Seed

Figure 3. Level 2 DFD exploding Bubble 1.

Figure 4 below explodes Bubble 2. As indicated in this figure, the Initialize Simulator
bubble entails: 1) initializing the Simlib library (including the clock and its internal data stores);
2) initidlizing the delay time (the internal "throttle" value that controls the speed of the
simulation; and 3) initializing the pause flag to true (i.e., the simulation will start in paused

mode).

16

All Arrival Events

2.1
Initialize
Simlib

Queuing QS
Scenario (QS)

Random
Seed

Random Seed

Clock Internal
=Day0 Data
A
2.2
Initialize . Pause Flag
Del Delay Time = True
Sy =1 second

Time

2.3
Initialize
Pause
Flag

Figure 4. Level 2 DFD exploding Bubble 2.

Figure 5 below explodes Bubble 3. Asindicated in this figure, the Process Events bubble
entails: 1) processing external events (i.e., Insert or Delete, as requested by the user via the
Progress GUI); 2) processing internal events (i.e., Arrival, Departure, or Endsim, as issued by
Simlib); and 3) updating the GUI with the current state of the system. Note that the user will
only be allowed to insert or delete items when the system is in paused mode. Otherwise, the

internal events cycle will be processed automatically, with no user intervention.

17

3.1
Insert &
Delete

True

1

Q

Q
v

Resume
=False

Event List
List ID

\

3.2 _ Delay Time
G L Formatted Process) Clock, QS Internal
- Results Internal CurrentEvent . Data
U Events System State ~
QS
Clock
I System State
P System @
- State Update
GUI Delay Time
(Throttle)

Figure 5. Level 2 DFD exploding Bubble 3

Because the processing of internal events (which loops indefinitely until Endsim occurs)
represents the main engine of the ARMS software, Bubble 3.2 has been further exploded into a
level 3 DFD (Figure 6 below). This DFD shows how the throttle value is used to delay the

simulation progress and how the Endsim event results in the output statistics being displayed to

screen.

18

A

Next Even| CurrentTime Internal
Data

>
A A

Departure

End Arrival

2

Arrive

A

Formatted
Results

Queue Logic;
Contents of Service Stations
and Queues; Summary Statistics

3.24
End Sim

A

Figure 6. Level 3 DFD exploding Bubble 3.2
Also because of the importance of the event processing (Insert, Delete, Arrive, Depart,
Endsim), these functions are explained in more detail in the P-Specs below.

311 Process Delete

I* Occurs if user selects pause, then delete option */

3.1.1.1 Find selected event from list using middle pointer

algorithm.

3.1.1.2 Delete event from list

3.1.1.3If deleting from bay, force aircraft departure.

3.1.1.4 If deleting from queue, update statistics.

3.1.2 Process I nsert

19

[* Occurs if user selects pause, then insert option */
3.1.2.1 Find location to insert in event list using middle
pointer algorithm.
3.1.2.2 Insert event into event list.
322 Process Arrival
[* Occursif first event in event list isan arrival */

3.2.2.11f any service stations that can take this aircraft are empty, move aircraft into

station and schedule next departure time.

3.2.2.2 Else, move aircraft into least filled queue that will accept it and update queue
statistics.

3.2.3 Process Departure
[* Occursif first event in event list is adeparture */

3.2.3.1 Remove aircraft from appropriate station list and update service station statistics.
(Ignore departure if no such aircraft in that station.)

3.2.3.2 Choose next aircraft from appropriate queue, move aircraft into station, and

schedule next departure time.
3.24 Process Endsim
/* Occursif first event in event list is endsim*/

3.2.4.1 For each bay, update statistics for that service station (assuming aircraft have just
departed).

3.2.4.2 Generate Simlib summary data (average time spent in queue, average downtime,
etc.).

3.2.4.3 Calculate average downtime costs for all aircraft types.
3.2.4.4 Display results on output GUI.

3.2.4.5 Exit application.

20

3.4 Transaction Analysis

The purpose of the transaction analysisisto break down the system into a network of cooperating
subsystems. This helps to identify test cases that will verify different parts of the system. It also
leads to the transform analysis step, where structure is applied to each subsystem partition.
Section 3.4.1 presents the subsystem partitions for the ARMS design, and Section 3.4.2 lists the

identified transactions.

3.4.1 Partitions of the System DFD

To partition the system, the five DFDs presented above were first combined into one master
DFD. Then transactions (identified in Section 3.4.2) were used to separate the cooperating
subsystems. This partitioning is shown below in Figure 7. Note that because of the relative
simplicity of the ARMS design, the DFD bubbles were naturaly placed in a somewhat
hierarchical order during the transaction analysis step. Also note that in most cases, the ARMS
application will perform as a single subsystem, traversing each node in the DFD (the same
process will occur no matter which queuing scenario is selected). Only in the cases of: 1) invalid
input or 2) the user requests an insert or delete event, will additional bubbles of the DFD be

activated. These transactions are reflected in the system partitioning of Figure 7.

21

QS1,2,0r3

Figure 7. Partitions of the system DFD

3.4.2 Identified Transactions
This section presents transactions intended to trigger al possible flow paths of the ARMS

system. Each transaction isidentified by the following five items, as defined in Budgen [3]:

» Theevent in the systems environment that causes the transaction to occur.
» Thestimulusthat is applied to the system to inform it about the event.

» Theactivity that is performed by the system as aresult of the stimulus.

» Theresponse that this generates in terms of output from the system.

» The effect that this has upon the environment.

Transaction 1:

Event: Running stored Queuing Scenario #1 (QS1).

Stimulus: User selects QS1, enters avalid number of service stations, and presses start.

22

Activity: ARMS runs to completion using the logic defined by QS1.
Response: Results are displayed to output GUI.
Effect: Verifying the description and logic associated with QS1.

Transaction 2:

Event: Running stored Queuing Scenario #2 (QS2).

Stimulus: User selects QS2, enters avalid number of service stations, and presses start.
Activity: ARMS runs to completion using the logic defined by QS2.

Response: Results are displayed to output GUI.

Effect: Verifying the description and logic associated with QS2.

Transaction 3:

Event: Running stored Queuing Scenario #3 (QS3).

Stimulus. User selects QS3, enters valid numbers of service stations, and presses start.
Activity: ARMS runs to completion using the logic defined by QS3.

Response: Results are displayed to output GUI.

Effect: Verifying the description and logic associated with QS3.

Transaction 4:

Event: Running stored Queuing Scenario #3.

Stimulus. User selects QS3, enters invalid numbers of service stations, and presses start.
Activity: ARMS prompts user for re-entry until valid parameters are entered.

Response: Error message is displayed to GUI.

Effect: Verifying the error checking of input parameters.

Transaction 5:

Event: Running stored Queuing Scenario #2.

23

Stimulus: User presses Pause button on progress GUI, presses button to Delete an aircraft

from the queue, and presses Resume.
Activity: ARMS deletes that aircraft from the selected queue and then runs to completion.
Response: Progress GUI shows that the aircraft has been removed from the queue.
Effect: Verifying the Delete function.

Transaction 6:

Event: Running stored Queuing Scenario #1.

Stimulus: User presses Pause button on progress GUI, presses button to Insert an event to

the event list, and presses Resume.

Activity: ARMS prompts the user for a description of the event, inserts the event to the

event list, and then runs to completion.
Response: Progress GUI shows that the event has been inserted into the event list.

Effect: Verifying the Insert function.

3.5 Transform Analysisand Structure Chart

The transform analysis marks the fina phase of the SSA/SD design process. During the
transform analysis, the subsystem DFDs determined in the Transaction Anaysis are each
arranged in a hierarchical structure chart, and then al subsystems are combined into one

hierarchical structure chart that reflects the entire system.

Given the relative simplicity of the ARMS design, each DFD flows right into the next
without overlap; so a hierarchical progression emerged naturally from the DFDs of Sections 3.2
and 3.3. Similarly, given the small number of cooperating subsystems, combining al the
structure charts into one master chart was a relatively straightforward task. As a result, the
intermediate step of producing a non-hierarchical DFD with central transform (NHDFD) was not
necessary. Figure 8 below represents the overall structure of the ARMS system, showing control
flow between modules. Note that the GUI components are not reflected in this chart. Thisis

because they represent only an interface for providing datato or receiving data from the system.

24

Main

Evaluate Initialize Process

Input Simulator Events
v \4 >/ \ /\ \
Load Evaluate #|| Evaluate)) Process Process Update
Queuing || of Service|| Random Init. Init. External Internal || Progress
Scenario Stations Seed Simlib Flags Events Events GUI
SN —
| Del Get Arri D Endsi Wait
nsert elete Event rrive epart ndsim Delay
Schedule Next Display
Departure Results

Figure 8. ARMS structure chart

3.6 Design Decision Log
This section documents the evolution of the ARMS design. Significant decisions or events that

have impacted the design are listed below. Decisions are generally categorized on a week-by-
week basis.

Date Decisions

9/8 — Decided team member roles and responsibilities.
Selected Java as the programming language for ARM S devel opment.
9/16 — Started to understand the problem description.
— Decided on an input screen for selecting max number of service stations and
gueuing style.
— Decided to vary the number of stations for the user in a multi-run simulation

and select the optimal number of bays for him.

25

Date Decisions

— Decided to superimpose the results of the various runs using multi-colored

line graphs.
— Decided to have input and output screens, but no progress screen.

9/22 — Decided to add a progress screen that shows contents of event list, queues, and

service stations.
— Decided progress screen will not be a moving process flow diagram.
— Decided to allow insert/del ete capabilities only for the event list.

— Decided to indirectly handle insert/delete using an "edit" button for the event
list.

— Decided to not show the details of the repair cycle inside a service station --
only to show when an aircraft enters and leaves the station (although the repair

cycle will be used to calculate the departure time).

—Decided to base the simulation engine on Simlib's internal process. 1)
initialize, 2) cycle through events in time-order, adding new events where

appropriate, and 3) generate summary report.

9/30 —Learned how to call C functions from Java using the Java Native Interface.

Identified Simlib extensions required for thisto work.
— Decided to call Simlib C code from Javainstead of porting it to Java.

— Decided to add a"throttle" value to the progress screen so user can increase or

decrease the simulation speed.

— Decided to add a random seed input parameter to the input screen and to use a

default value if noneis entered.

10/7 — Decided to add a "delete” button for the queues and service stations on the
progress screen, but still kept the "edit" button for the event list.

26

Date Decisions

— Decided how to implement the "middle-pointer” algorithm for inserting to

Simlib lists. Identified Simlib extensions needed for thisto work.

10/14 — Decided to remove "edit" button from the progress screen's event list (as this
was confusing). Instead, the event list will have an "insert" and "delete"
button, consistent with the "delete" buttons on the queue and service station

lists. The"insert" button will trigger small box to prompt for event details.

— Decided that the user will have the power to insert or delete any event, but

ARMS will not check for illogical uses of events.

—Decided that extra departure events (if inserted illogically) will just be
ignored.

— Decided that any aircraft still in a service station when the simulation ends

will be included in the summary statistics.

— Decided that deleting an aircraft from a service station will force the departure

of that aircraft.

— Decided to add extensibility to the ARMS code. The input screen will have a
placeholder button for future functionality. Eventually, user will be able add

and describe new aircraft, service stations, or queues.

— Decided to schedule all arrival events up front in the initialization routine,
instead of scheduling the next arrival after each arrival is removed from the

event list.

10/24 —Decided to implement extensibility using a "Queuing Scenario” (QS) data
structure. This structure holds all the information about the aircraft, queues,
and service stations in the ssimulation. It includes information such as what
aircraft a queue will accept, what queues get higher priority, and what aircraft
a service station will accept. This allows all scheduling decisions to be based

on this structure alone. Asaresult, all decisions are based on "extensible"

27

Date Decisions

parameters that can easily be changed. In addition, only one piece of logic is
required for any queuing scenario, instead of one function for each queuing

scenario, as was initially thought.

10/30 —Decided to save adl QS data in a Java-formatted file, which is easier to read
into the simulation. As a result, new queuing scenarios can only be added via

the GUI input screen.

References

. Sheldon, F.T., "Project Requirements, CS422 Software Engineering Principles’
http://www.eecs.wsu.edu/~sheldon/cs422.html| Fall 2000.

|[EEE-SA Standards Board, |EEE Guide to Software Design Descriptions. |IEEE Std 1016.1-
1993. USA, March 18, 1998.

. Budgen, David, Software Design. Addison-Wesley 1994.

. Team OurColor, "Software Requirement Specifications for Aircraft Repair Modeling

Simulation - Final Draft" October, , 2000.

. Team OurColor "Critical Design Review for Aircraft Repair Modeling Simulation.” October

25, 2000.

. Law, Averill M. and David Kelton, Simulation Modeling and Analysis, 3rd Edition. New
Y ork: McGraw-Hill Companies, October 1999

5 Glossary
This section defines the terms and acronyms that are used throughout this document.

API — Application Programming Interface
ARMS— Aircraft Repair Model Simulation
C —the programming language ANSI-C

DFD — Data Flow Diagram. Provides an indication of how data transforms occur as the data

moves through the system. DFDs al so depict the functions that transform the data.
ESEP — Earth Science Enterprise Program

GUI — Graphical User Interface

28

http://www.eecs.wsu.edu/~sheldon/cs422.html

MB — megabyte, asin 1 million bytes of data storage

NHDFD — Non-hierarchical Data-Flow Diagram with Central Transform
PC — Personal Computer

QS — Queuing Scenario

RAM — Random Access Memory

RTM — Requirements Traceability Matrix

P-Spec — Process Specifications

SSA/SD — Structured Systems Analysis/Structured Design

SRS- Software Requirements Specification

29

APPENDI X A: Data Dictionary

30

This appendix defines the data entities represented on the data flow diagrams of Section 3. Each

dictionary entry contains the following information:

Name:
Description:
Used In:
Units:
Range:
Data Type:

Attribute:

Data Store
Location:

Accuracy:

Name:

Description:

The name of the entity asit appears in the design documents and code.
A brief description of the variable.

The functional units using this variable.

The unit of measure for the variable's data.

The acceptable range of data values for the variable.

The data type to be used when declaring the variable during coding.

Indicates whether the variable contains data, control information, or a data

condition.

The common region where the variable must be stored.

The degree of accuracy required for output comparisons between
implementations. N/A means not applicable. TBD means to be to be
determined later.

Aircraft

An abstract data type that describes aircraft details. Specifically, it contains

the following variables:

Plane Type (unique identifier)

Priority level (can be used as awidebody indicator)
Engines

Mean time between arrivals

Min inspection time

Max inspection time

Repair probability

31

Repair time

Daily cost
Used In: All modules utilize this information, asit is part of the queuing scenario.
Units: Plane Type: N/A

Priority level: N/A
Engines. N/A
Mean time between arrivals. days
Min inspection time: days
Max inspection time: days
Repair probability: N/A
Repair time: days
Daily cost: dollars
Range: Plane type: 1 - max plane types (1-7 for thisanalysis)
Priority level: >=0
#Engines. >=0
Mean time between arrivals: >= 0
Min inspection time: >= 0, <= max inspection time
Max inspection time: >= min inspection time
Repair probability: >=0, <=1
Repair time: >=0
Daily cost: >=0
Data Type: Aircraft: Aircraft
ID: int

Priority level: int

32

Attribute:

Data Store
Location:

Accuracy:
Name:

Description:

Used In:
Units:
Range:
Data Type:
Attribute:

Data Store
Location:

Accuracy:

Engines: int

Mean time between arrivals: float
Min inspection time: float

Max inspection time: float
Repair probability: float

Repair time: float

Daily cost: float

Data

Pre-defined aircraft will be stored in a Java-formatted file. The aircraft
defined for the selected scenario will be loaded when the QS is loaded from
file.

All floats will be rounded to two decimal places.
Avg Aircraft Delay

The average delay in queue for each aircraft type;
statistics displayed to the output GUI.

part of the summary

Process Endsim, Process Events
Days

0-365

Float

Data

Temporary memory; derived from Simlib statistics; output to screen at the end

of the simulation.

Rounded to two decimal places.

33

Name:

Description:

Used In:
Units:
Range:
Data Type:
Attribute:

Data Store
Location:

Accuracy:
Name:

Description:

Used In:
Units:
Range:
Data Type:
Attribute:

Data Sore
Location:

Accuracy:
Name:

Description:

Avg Aircraft Down

The time-average number of aircraft down for each aircraft type; part of the

summary statistics displayed to the output GUI.
Process Endsim, Process Events

Aircraft

>=0

Float

Data

Temporary memory; derived from Simlib statistics; output to screen at the end

of the simulation.
Rounded to two decimal places.
Avg Downtime Cost

The total average daily downtime cost for all planes added together; part of
the summary statistics displayed to the output GUI.

Process Endsim, Process Events
Dollars

>=0

Float

Data

Temporary memory; derived from Simlib statistics; output to screen at the end

of the simulation.
Rounded to two decimal places.
Avg Queue Length

The time-average number of aircraft in the wait queue(s); part of the summary

34

Used In:
Units:
Range:
Data Type:
Attribute:

Data Store
Location:

Accuracy:

Name:

Description:

Used In:
Units:;

Range:

Data Type:

Attribute:

Data Store
Location:

statistics displayed to the output GUI.
Process Endsim, Process Events
Aircraft

>=0

Float

Data

Temporary memory; derived from Simlib statistics; output to screen at the end

of the simulation.
Rounded to two decimal places.
Bay (i.e., service station)

An abstract data type that describes a service station. Specificaly, it contains

the following variables:
ID (unique identifier)
Bay type
All modules utilize this information, asit is part of the queuing scenario.
N/A
ID: 1 - max bays
Bay type: 1 - max bay types
Bay: Bay
ID: int
Bay type: int

Data

Bays will be created in temporary memory when the queuing scenario is

35

Accuragcy:
Name:

Description:

Used In:
Units;

Range:

Data Type:

Attribute:

Data Store
Location:

Accuracy:
Name:

Description:

loaded from file.
N/A

Bay Type

An abstract data type that describes bay details. Bay type contains information
that is common to multiple bays. This saves storage space as only one bay
type must be defined for all bays of that type. Specifically, it contains the

following variables:
ID (unique identifier)
Aircraft accepted
All modules utilize thisinformation, asit is part of the queuing scenario.
N/A
ID: 1 - max bay types
Aircraft accepted: 1 - max aircraft
Bay Type: Bay Type
ID: int
Aircraft accepted: array of ints

Data

Pre-defined bay types will be stored in a Java-formatted file. The bay types
defined for the selected scenario will be loaded when the QS is loaded from
file.
N/A

Delay Time

Controls the speed of the ssimulation. Specifically, it is the amount of time to
keep each change in system state up on the progress GUI. Can be set by the
“throttle” dider on the progress GUI.

36

Used In: Process Events main loop.
Units: Milliseconds

Range: 500 to 5000 (exact range TBD)
Data Type: Int

Attribute: Control

Data Sore
Location: Temporary memory; global variable; initialized to __ seconds.

Accuracy: N/A
Name: Event

Description: Abstract data type containing information describing an event and its
attributes. The attributes include:

Event type (Arrive, Depart, or Endsim)
Time (time the event occurred)
Bay ID (uniquely identifies bay)
Aircraft ID (uniquely identifies aircraft)

Aircraft type

Used In: Initialization, Process Events, Arrival, Departure, Insert, Delete, Endsim
Units: Event type: N/A

Time: days

Bay ID: N/A

Aircraft ID: N/A
Aircraft type: N/A
Range: Event type: 1 - 3 (Arrive, Depart, Endsim)

Time: >0

37

Data Type:
Attribute:

Data Sore
Location:

Accuracy:

Name:

Description:

Used In:
Units:
Range:
Data Type:
Attribute:

Data Sore
Location:

Accuracy:

Name:

Description:

Used In:

Units:;

Bay ID: 1 - # bays (user specified)

Aircraft ID: >=1

Aircraft type: 1 - # aircraft types (1 - 7 for this simulation)
Array of 10 floats (most represent integer values).

Data

Stored in temporary memory; created by Simlib.
N/A
List (Simlib variable)

Simlib list of events. The event list (list 25) sorts scheduled events in

increasing time order. Queues and service station contents are also

represented by Simlib lists. Each list is identified by an integer ID ranging
from 1 to 25.

Initialization, Process Events (main event loop), Departure, Insert, Delete
N/A

N/A

Linked list of Events.

Data

25 lists are stored in temporary memory; created by Simlib.
N/A
Overall Avg Aircraft Delay

The overall average delay in queue for all aircraft types; part of the summary
statistics displayed to the output GUI.

Process Endsim, Process Events

Days

38

Range:
Data Type:
Attribute:

Data Sore
Location:

Accuracy:

Name:

Description:

Used In:
Units:
Range:
Data Type:
Attribute:

Data Sore
Location:

Accuracy:

Name:

Description:

Used In:

Units:;

0-365
Float

Data

Temporary memory; derived from Simlib statistics; output to screen at the end

of the simulation.
Rounded to two decimal places.
Pause Flag

Indicates whether the simulation has been paused or not. When the simulation
is paused, the Insert or Delete functions may be called via a button on the
progress GUI.

Process Events main loop.
N/A

true/false

Boolean

Control

Temporary memory; global variable; initialized to true.
N/A
Queue

An abstract data type that describes a queue. Specificaly, it contains the

following variables:

ID (unique identifier)

Queue type

All modules utilize this information, asit is part of the queuing scenario.

N/A

39

Range:

Data Type:

Attribute:
Data Store
Location:
Accuracy:
Name:

Description:

Used In:
Units:;

Range:

ID: 1 - max queues
Queue type: 1 - max queue types
Queue: Queue

ID: int

Queuetype: int

Data

Queues will be created in temporary memory when the queuing scenario is
loaded from file.
N/A

Queue Type

An abstract data type that describes queue details. Queue type contains
information that is common to multiple queues. This saves storage space as
only one gueue type must be defined for all queues of that type. Specifically,

it contains the following variables:

ID (unique identifier)

Name

Aircraft accepted

Priority level

All modules utilize this information, asit is part of the queuing scenario.
N/A

ID: 1 - max queue types

Name: N/A

Aircraft accepted: O - max aircraft

Priority level: >=0

40

Data Type:

Attribute:

Data Store
Location:

Accuragcy:
Name:

Description:

Used In:

Units:
Range:
Data Type:

Attribute:

Queue Type: Queue Type
ID: int
Name: string
Aircraft accepted: array of ints
Priority level: int

Data

Pre-defined queue types will be stored in a Java-formatted file. The queue
types selected for the ssmulation will be loaded into atemporary variable when
the QSisloaded.

N/A

Queuing Scenario

An abstract data type that contains:

Array of queues

Array of service stations

Array of aircraft

Array of queue types

Array of bay types

These variables will be used to describe the simulation.

All modules of the code utilize the queuing scenario (including the GUI

format) as it defines the scenario parameters.
N/A

N/A

Queuing Scenario

Data

41

Data Store
Location:

Accuragcy:

Name:

Description:

Used In:
Units:
Range:
Data Type:
Attribute:

Data Sore
Location:

Accuracy:

Name:

Description:

Used In:

Units:
Range:
Data Type:
Attribute:

Data Store
Location:

Pre-defined queuing scenarios will be stored in a Java-formatted file. The
gueuing scenario selected for the ssimulation will be loaded into a temporary
QSvariable.

N/A.

Simulation Clock

Simlib variable that indicates the current day of the simulation.
Initialization, Process Events

Days

0- 365

Float

Data (also has a control effect)

Temporary memory; created/managed by Simlib.
Rounded to two decimal places.
Stream

A list of random numbers use to calculate probabilistic parameters (one stream

per random variable).

The Initialization routine used to calculate and schedule arrival times and the

Departure routine used to cal culate and schedul e departure times.
N/A

>0

Array of long integers

Data

Stored in temporary memory; created by Simlib.

42

Accuracy: N/A
Name: Transfer Array

Description: A storage location for one event; used to transfer events between Simlib lists.

Used In: Process Events, Arrive, Depart, Endsim (processing summary statistics).
Units: The unit of measure for the variable's data
Range: N/A

Data Type: Array of 10 floats
Attribute: Data

Data Sore
Location: Stored in temporary memory; created by Simlib.

Accuracy: N/A

43

APPENDI X B: Project Schedule

This appendix summarizes the tasks required to complete the ARMS project. Figure 9 is a Gantt
chart which graphically displays the overall project path. Table 1 provides a complete listing of
all tasks and their dependencies.

o Sept 00 Oct "00 Mow "00 Dec "00
Act Name 3 1017 24 1 8 15|22 29 5 1219 26 3 1017

Draft Software Requirement Specification - —
SE=E Team Fewiew - Task 1 &
Deliver to Client - Task 14 &

Prelimmary Design Review (PFDR) f—
PDE Team Eewiew - Task 2 <&
Deeliver to Customer - Task 24 &

Program Design F NLRERRREEENLGERRRREREALEE Legend
Prototype GUI - Task 8 <& mm; Process
Finalize GUI - Task 10 & ¥ Design

¢

Translate Simlib code - Task 2 <& /1 Testing
Develop Sinulation model - Task 11 ¢ Milestone
Final SRS T A— o Dehverabld
SE= Team Fewiew - Task 3 <
Deliver to Client - Task 34 &
Critical Design Review (CDR) T A—
CDE Team Fewview - Task 4 <
o
 NNRNANNNNNNNNNANNANNNRRNNANRANNRARNEEE,

Deeliver to Chent - Task 44
Design Notebook (DINVE)
DME Team Eewiew - Task 5 <&
Deliver to Client - Task 54 9]
Draft Test Report (TR) T ——F
Team TE Fewview - Task & <
Deliver to Client - Task 64 9]
Draft User Manual (ITIV) T —F
M Team Eewiew - Task 12 <
Deliver to Client - Task 124 9]

Program Testing [1
Component Testing - Task 13 &
Integrated Testing - Task 14 o
UM Team Eewew - Task 15 <
Deliver to Client - Task 154 9]

Fmal TR A—
TE. Teamm Fewview - Taslke 7 <
Deliver to Client - Task 74 9]

Product Demonstration —
Demo Team BEewiew - Task 16 <

Deliver to Client - Task 164]
Produce & Deliver CD to Chent - Task]
3 10 17 |24 01 8 18 2229 & 1219 26 3 |1

o 17

Figure 9. OurColor project schedule

45

Table 1. OurColor tasks and dependencies

Task # Description Dependent on Timeframe Milestone
task number
1 Draft SRS 09/09 - 09/23 09/23/2000
1A Incorp Team Review 1 09/23 - 09/25 09/25/2000*
2 PDR 09/16 - 09/30 09/30/2000
2A Incorp Team Review 2 09/30 - 10/04 10/04/2000*
8 Prototype GUI 09/16 - 09/23 09/23/2000
9 Convert Simlib Code 09/16 - 09/23 09/23/2000
10 Finaize GUI 8 09/23 - 10/14 10/14/2000
11 Develop Sim model 9 09/23 - 10/14 10/14/2000
3 Fina SRS 1A,8,9 09/25 - 10/14 10/14/2000
3A Incorp Team Review 3 10/14 - 10/16 10/16/2000*
4 CDR 2,89 09/30 - 10/14 10/14/2000
4A Incorp Team Review 4 10/14 - 10/18 10/18/2000*
5 DNB 1 09/23 - 11/04 11/04/2000
5A Incorp Team Review 5 11/04 - 11/08 11/08/2000*
6 Draft TR 1 09/23 - 11/11 11/11/2000
6A Incorp Team Review 6 11/11 - 11/15 11/15/2000*
7 Fina TR 6A 11/15- 12/02 12/02/2000
7A Incorp Team Review 7 12/02 - 12/06 12/06/2000*
12 Draft UM 4,10, 11 10/14 - 1111 11/11/2000
12A Incorp Team Review 12 11/11 - 1115 11/15/2000*
13 Component Testing 8,9 09/23 - 10/14 10/14/2000
14 Integrated Testing 10,11, 13 10/14 - 12/02 12/02/2000
15 Fina UM 12A 11/11 - 12/02 12/02/2000
15A Incorp Team Review 15 12/02 - 12/06 12/06/2000*
16 Develop Product Demo 14 12/02 - 12/09 12/09/2000
16A Incorp Team Review 16 12/09 - 12/11 12/11/2000*
17 Produce CD 2A, 3A, 4A, 5A, 12/09 - 12/11 12/11/2000*
7A, 14, 15A, 16

* indicates external milestone

46

APPENDIX C: Requirements Traceability Matrix

a7

Table 2. Requirements Traceability Matrix.

Req. ID Req. ID DFD Module Name(s) | Verification | Test
System Level| Sub-System Level Identifiers Method
A01.00 GUI D

A01.01 GUI D
A01.02 GUI D
A01.03 GUI D
A01.04 GUI, 1.2 Evaluate # of Bays |D
A01.05 GUI, 1.3 Eval. Random Seed|D
A01.06 GUI D
A01.07 GUI D
A01.08 GUI D
A01.09 GUI A,D
A01.10 GUI D
A01.11 GUI, 3.3 Update GUI [,D
A01.12 GUI, 3.3 Update GUI [,D
A01.13 GUI, 3.3 Update GUI D
A01.14 GUI, 3.3 Update GUI [,D
A01.15 GUI D
A01.15.1 GUI, 3.24 ProcessEndsim |D
A01.15.2 GUI, 3.3 Update GUI D
A01.15.3 GUI, 3.3 Update GUI D
A01.15.4 GUI, 3.3 Update GUI D
A01.155 GUI, 3.3 Update GUI D
A01.15.6 GUI D
A01.16 GUI, 2.3 Init. Pause Flag D
A01.20 GUI, 3.24 ProcessEndsim |D
A01.21 GUI, 3.24 ProcessEndsim |I, D
A01.22 GUI, 3.24 ProcessEndsim |I, D
A01.23 GUI, 3.24 Process Endsim |I, D
A01.24 GUI, 3.24 Process Endsim |I, D
A01.25 GUI, 3.24 Process Endsim |I, D
A01.26 GUI D
A01.30 GUI I
A02.00 GUI D
A02.01 GUI D
A03.00 2.1 Initialize Simlib |l
A03.01 3.2 Proc. Intern. Eventsi||
B01.00 2. Init. Simulation A, |
B01.01 2.1 Initialize Simlib |1
B01.02 2.1 Initialize Simlib |1

Key: A = Analysis, D = Demonstration, | = Inspection, K = Anaogy

48

Table 2 continued. Requirements Traceability Matrix

Req. ID Req. ID DFD Module Name(s) | Verification | Test
System Level| Sub-System Level Identifiers Method
B01.03 2.1 Initialize Simlib ||
B01.04 2.1 Initialize Simlib A, |
B01.05 2.2 Init. Delay Time |A, D
B01.06 2.1 Initialize Simlib |A, D
B01.07 2.1 Initialize Simlib |A, D
B02.00 2. Init. Simulation ||
B03.00 3.24 ProcessEndsim |A, D
B04.00 3.2.2 Process Arrival ||
B04.01 3.2.2 Process Arrival ||
B04.02 3.2.2 Process Arrival ||
B04.03 3.2.2 ProcessArrival |A,1,D
B04.04 3.2.2 Process Arrival |A,
B04.05 3.2.2 Process Arrival |D
B04.06 3.2.2 Process Arrival |D
B04.07 3.2.2 Process Arrival |D
B05.00 3.2.3 Process Departure ||
B05.01 3.2.3 Process Departure ||
B05.02 3.2.3 Process Departure |A, D
B05.02.1 3.2.3 Process Departure ||, D
B05.02.2 3.2.3 Process Departure ||
B05.02.3 3.2.3 Process Departure ||
B05.02.4 3.2.3 Process Departure ||, D
B05.02.5 3.2.3 Process Departure ||
B05.02.6 3.2.3 Process Departure ||, D
B05.02.7 3.2.3 Process Departure ||, D
B05.02.8 3.2.3 Process Departure (A, D
B05.03 3.2.3 Process Departure A, D
B05.04 3.2.3 Process Departure ||, D
B06.00 3.2.2,3.3.3 | Arriva/Departure |I, D
B06.01 3.2.2 Process Arrival |D
B06.01.1 3.2.2 Process Arrival |, D
B06.01.2 3.2.3 Process Departure ||, D
B06.01.3 1. Evaluate Input D
B06.02 322 Process Arrival |I,D
B06.02.1 322 Process Arrival |I,D
B06.02.2 322 Process Arrival |I,D
B06.02.3 322 Process Arrival |I,D
B06.02.4 3.2.3 Process Departure ||, D
B06.02.5 3.2.3 Process Departure ||, D
B06.02.6 1. Evaluate Input D
B06.03 322 Process Arrival D

Key: A = Analysis, D = Demonstration, | = Inspection, K = Anaogy

49

Table 2 continued. Requirements Traceability Matrix

Req. ID Req. ID DFD Module Name(s) | Verification | Test
System Level| Sub-System Level Identifiers Method
B06.03.1 3.2.2 Process Arrival |I, D
B06.03.2 3.2.2 Process Arrival |I, D
B06.03.2 3.2.2 Process Arrival |I, D
B06.03.4 3.2.3 Process Departure D
B06.03.5 3.2.3 Process Departure D
B06.03.6 1. Evaluate Input D
B06.03.7 3.2.3 Process Departure |I, D
B06.04 1. Evaluate Input D
B07.00 2.1 Initialize Simlib |1, D
B08.00 2.1 Initialize Simlib (A, 1, D
B09.00 31 Proc. Ext. Events |D
B09.01 312 Processinsert D
B09.02 3.1.1,3.1.2 | Proc. Insert/Delete |D
B09.03 3.1.1,3.1.2 | Proc. Insert/Delete |D
B10.00 3.1, GUI Proc. Ext. Events |I, D
B10.01 3.1.1, GUI Process Delete D
B10.02 3.1.1, GUI Process Delete D
B10.03 3.1.1, GUI Process Delete D
B11.00 3.24 ProcessEndsm (A, I, D
B11.01 3.2.4, GUI ProcessEndsim |D
B11.02 3.24 Process Endsim ||
B11.03 3.24 ProcessEndssim A, D
B11.04 3.24 ProcessEndssim A, D
B11.05 3.24 ProcessEndsim A, D
B11.06 3.24 ProcessEndsim A, D
B11.07 3.24 ProcessEndsim A, D
B11.08 3.24 ProcessEndssim A, D
B11.09 3.24 ProcessEndssim A, D
B11.10 3.24 ProcessEndsim A, D
C01.00 3.2 Proc. Intern. Events|D
C02.00 3.2 Proc. Intern. Events|D
D01.00 2.1 Initialize Simlib |1
D01.01 2.1 Initialize Simlib |1
D01.02 2.1 Initialize Simlib |1
D01.03 2.1 Initialize Simlib |l
D01.04 2.1 Initialize Simlib |1
D02.00 1,2,3., GUI I
D02.01 1,2,3., GUI I
D03.00 2.1 Initialize Simlib |1
D04.00 312 Processinsert |l

Key: A = Analysis, D = Demonstration, | = Inspection, K = Anaogy

50

Table 2 continued. Requirements Traceability Matrix

Req. ID Req. ID DFD Module Name(s) | Verification | Test
System Level| Sub-System Level Identifiers Method
D05.00 311 Process Delete ||
D06.00 2.1 Initialize Simlib |l
D06.01 2.1 Initialize Simlib |l
D06.02 2.1 Initialize Simlib |l
D07.00 1.,2.,3.,GUl D

Key: A = Analysis, D = Demonstration, | = Inspection, K = Anaogy

51

APPENDIX D: Identified Test Cases

52

This appendix describes the principal test cases that have been identified for the ARMS software.
They are based on the transactions identified above in Section 3.4. and target the main
functionality of the ARMS system. In particular, they will verify that each queuing scenario
(one - three) performs correctly, that the insert and delete functions perform correctly, and that
the error checking of input parametersis handled correctly. This list, however, represents only a
small subset of the actual tests that will be performed. Additional test cases and testing methods
will be explained in the Draft Test Report.

Test Case 1:
Purpose: Verifying the description and logic associated with QSL.

Method: User selects QS1, enters a valid number of service stations, and presses start.

ARMS runs to completion using the logic defined by QSL.
Response: Results are displayed to output GUI.
Test Case 2:
Purpose: Verifying the description and logic associated with QS2.

Method: User selects QS2, enters a valid number of service stations, and presses start.
ARMS runs to completion using the logic defined by QS2.

Response: Results are displayed to output GUI.
Test Case 3:
Event: Verifying the description and logic associated with QS3.

Method: User selects QS3, enters valid numbers of service stations, and presses start.

ARMS runs to completion using the logic defined by QS3.
Response: Results are displayed to output GUI.
Test Case 4
Purpose: Verifying the error checking of input parameters.

Method: User selects QS3, entersinvalid numbers of service stations, and presses start.

53

Response: Error message is displayed to GUI. ARMS prompts user for re-entry until valid

parameters are entered.
Test Case S:
Purpose: Verifying the Delete function.

Method: User presses Pause button on progress GUI and highlights an aircraft from a
gueue (or an event from the event list or an aircraft from a service station -- all

three will be tested). User presses button to delete and then presses Resume.

Response: ARMS deletes that item from the selected list and then runs to completion.

Progress GUI shows that the item has been removed from the list.
Test Case6:
Purpose: Verifying the Insert function.

Method: User presses Pause button on progress GUI, presses button to insert an event to

the event list, and presses Resume.

Response: ARMS prompts the user for a description of the event, inserts the event to the
event list, and then runs to completion. Progress GUI shows that the event has

been inserted into the event list.

APPENDIX E: Simlib Flow Diagram

55

This flow diagram, which represents the next-event time-advance approach used by Simlib, was

taken from Law and Kelton, page 10 [6].

Initialization routine Main Timing routine
1. Set simulation 0. Invoke the initiadization routine [1. Determine the
clock =0 P P next event type,
2. Initialize system - say, i
state and » 1. Invoke the timing routine Loo » 2. Advancethe
statistical 2. Invoke the event routine i P simulation
counters T clock
3. Initialize event
list
Event routinei
A . .
Library routines
1. Update system state
2. Update Sta[IStlca| counters P Generate random
3. Generate future events and add variates
to event list >
Issimulation
over?
Report generator

1. Compute estimates of interest
2. Writereport

Figure 10. Flow of control for the next-event time-advance approach.

56

APPENDIX F: Simlib API

57

The following is a listing of the origina Simlib API functions that will be used in the ARMS

code [6].

/* This is simib.h. */

/* Include files. */

#i ncl ude <stdi 0. h>

#i ncl ude <stdlib. h>

#i ncl ude <mat h. h>

#i ncl ude "sinlibdefs. h"

/* Declare simib global variables. */

extern
extern
extern

i nt *[ist_rank, *list_size, next_event_type, maxatr, maxlist;
float *transfer, simtine, prob_distrib[26];
struct master {

float *val ue

struct master *pr;

struct nmaster *sr;
} **head, **tail;

/* Declare simib functions. */

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

void init_simib(void);

void list _file(int option, int list);
void list_renove(int option, int list);
void timng(void);

void event_schedul e(float tine_of _event, int type_of event);
i nt event _cancel (i nt event_type);

float sanpst(float value, int varibl);

float timest(float value, int varibl);

float filest(int list);

void out_sanpst(FILE *unit, int |lowar, int highvar);
void out_timest(FILE *unit, int |lowar, int highvar);
void out filest(FILE *unit, int lowist, int highlist);
fl oat expon(float mean, int stream;

i nt random.integer (fl oat prob_distrib[], int stream
float uniform(float a, float b, int stream

float erlang(int m float mean, int stream;

float |cgrand(int stream;

void |Icgrandst(long zset, int stream;

long Icgrandgt(int stream;

58

APPENDIX G: GUI Prototypes

59

This appendix presents the current prototypes for the ARMS input, progress, and output screens.

These prototypes are shown below in Figures 11 - 13, respectively.

[=iEix]

| Aircraft Repalr Model Simulation
INPUT SCREEN

Queue Discipline

|5eparate {Regular/Wide-Eady) v|

| Create new Queue Discipline |

Sarvice Stations

7]

Regular
Wide Body | R:Zg;’m
Total 10 IW
| QuIT | | START |

Figure 11. Input screen prototype.

| Aircraft Repair Model Simulation

[EI=ES

PROGRESS SCREEN

Initial Canfiguration Informatian

Queue Discipline Separare (Regular/Wide-Body) PAUSE
Duration[iz4 3Days Randam Seed [31525
Simulation Rate {7} 1 RESUME

Simulation

Event List

Queue List - Reg—

Add Event

Delete Item

Service S5tations

Delete Event

D185.2:0063T4
ALBL.2:0072T2
D186.3:0064T1
D187.5:0064T3
ALBR.1:0073T4
D188.4:0062T5
D1858.9:0061T3
D185.6:0074T6
A190.2:0075T7
D193 . 4:0066T6
D183 . 7:0067T1

1]

D185.2:0063T4
ALEL. 2:0072T2
D186.3:0064T1
D187.5:0064T3

a7 1. FoT A

-

Queue List - WBE—

Delete Item

D185.2:0063T4
ALBL.2:0072T2
D186.3:0064T1
D187.5:0064T3

a7 1. o T A

l:reg:D185 . 2:0063T4
2:reg:AL185 2:0072T2
J:reg:D186.3:0064T1
4:reg:D187.5:0064T3
S:reg:A188.1:0073T4
Gireg:D188 4. 0062T5
7:reg:D188 2:0061T3
Zowb:D189.6:0074TE
Qb A190 2 007577
10:wh:D193 . 4:0066TH

B [I»

Figure 12. Progress screen prototype.

60

Figure 13. Report screen prototype

61

APPENDI X H: User-Provided Aircraft Parameters

62

This appendix describes the seven distinct aircraft types that will be used in the ARMS

simulation. Specifically, the aircraft arrival and departure events shall be modeled according to
the aircraft-specific attributes listed in Table 3 below.

Table 3. Aircraft Parameter Table and corresponding value definitions.

Aircraft Wide Number of Arrival Inspection Time Repair Repair Daily
I Type Body Engines Interval Minimum | Maximum | Probability Time Cost
1 B707 No 4 8.1 0.7 21 30% 21 21
2 B727 No 3 29 0.9 18 26% 18 17
3 B737 No 2 3.6 0.8 16 18% 16 1.0
4 B747 Yes 4 84 19 2.8 12% 31 3.9
5 DC8 No 4 10.9 0.7 2.2 36% 2.2 14
6 DC9 No 2 6.7 0.9 17 14% 17 11
7 DC10 Yes 3 3.0 16 2.0 21% 2.8 3.7

Column Description

Aircraft TYype...ooovvece v,
WideBodycccoovvvnerniieneeiee

Number of Engines

Arrival Interval

Inspection Time, Minimum

I nspection Time, Maximum

An enumeration reference for the different sets of
configuration data (aircraft type).

Descriptive name that has a unique association with i.

The aircraft’ s designation as a wide-body aircraft type (yes)
or aregular aircraft type (no).

The total number of engines this aircraft type has.

The mean number of days between successive arrival
events (used in conjunction with the exponential

distribution to predict arrival times).

..The minimum amount of days it takes for this aircraft to

have one engine inspected (used in conjunction with a
uniform distribution to predict inspection times). Thistime

will be halved for all non-initial engine inspections.

..The maximum amount of days it takes for this aircraft to

have one engine inspected (used in conjunction with a
uniform distribution to predict inspection times). Thistime

will be halved for all non-initial engine inspections.

63

Repair Probabilityccccccoveeienne

Repair TiMe.....ccevveceveere e

Daily Cost

The individual probability that any single engine for this
aircraft will require arepair of some kind. This probability
will be halved for al non-initial engine inspections.

The number of days that will be needed to complete a
repair.

The cost per day for this aircraft to remain down. The
aircraft is considered to be down the entire time it isin a

queue or a service station. (in $10,000 USDollars).

	Introduction
	Project Purpose and Goals
	Design Approach
	Traceability Approach
	Background
	Document Organization

	Requirements Analysis
	Graphical User Interface
	Software interface
	Functional requirements
	Model Seven Aircraft Types
	Model Three Queuing Scenarios
	Provide Insert and Delete Capabilities
	Generate Final Report

	Performance requirements
	Design constraints
	Utilize the Simlib Library
	Develop ARMS Code in Java
	Utilize a "Middle-Pointer" Algorithm
	Support Extensibility

	Design
	Context Diagram
	Level 1 Data Flow Diagram and P-Specs
	Level 2/3 Data Flow Diagrams and P-Specs
	Transaction Analysis
	Partitions of the System DFD
	Identified Transactions

	Transform Analysis and Structure Chart
	Design Decision Log

	References
	Glossary

